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Summary  

 

High-throughput sequencing of PCR-amplified taxonomic markers like the 16S rRNA gene has enabled 

a new level of analysis of the human body’s complex microbial communities, which are collectively 

known as the human microbiome. Many tools exist to quantify and compare abundance levels of 

organisms via operational taxonomic units (OTUs) and to visualize the structure and composition of 

microbial communities in different conditions (e.g. healthy and diseased, or sick, states). In this 

introductory tutorial, we provide a simple workflow in R to perform basic analysis of gut and vaginal 

microbiome data in healthy and diseased states. This workflow is based on software packages from the 

open-source Bioconductor project (https://www.bioconductor.org/) and some CRAN packages. 

  

 
Introduction  
 
The human body is home to trillions of microorganisms that colonize the body inside and outside. 

Collectively, they are regarded as ‘The Human Microbiome’. The human microbiome can be 

determined from the genetic material from all the microbes that live on and inside the human body 

(bacteria, fungi, protozoa and viruses). In a healthy person, these “bugs” coexist peacefully throughout 

the body, with the largest numbers found in the small and large intestines (1, 2). The microbiome is 

even considered by some as a supporting organ because it plays many key roles in promoting the 

smooth daily operations of the human body, including digestion and immune support.   

 

The human gut microbiome corresponds to the total collection of microbes (and their genomic 

content) that reside inside the digestive tract of humans. It is an extremely variable, dynamic, and 

complex habitat, containing up to 1012-1015 microbial cells per gram of fecal material (3). The 

composition of this complex microbial population is highly variable over time and susceptible to both 

environmental and host-specific modifications (4). Several studies have highlighted the critical role that 

the gut microorganisms play in human health. Gut microbes are involved in a variety of essential 

activities for the host including energy harvest and storage, fermentation and metabolism of otherwise 

indigestible carbohydrates, maturation of host immune-defense, and even cognitive processes (5, 6).  

 

The vaginal tract is also home to more than 250 microbial species that have been associated with the 

healthy state; they are regarded as the vaginal microbiome (VM). It is believed that the VM plays an 

important role in regulating environmental disturbances and protecting against infections of the 

urogenital tract, including sexually transmitted diseases such as the human papillomavirus (HPV) (7). 



Key distinguishing features of the vaginal microenvironment in healthy women at reproductive age 

includes low pH (ranging from 3.8 to 4.5), high abundance of Lactobacillus spp., and low microbial 

diversity compared to other body sites such as the gut (8, 9). Shifts in structure and composition of the 

vaginal microbiota have been correlated with host-associated and environmental factors, including 

changes in estrogen levels, menstrual cycle, age, pregnancy, sexual behavior, ancestry, use of 

personal hygiene products, and even probiotic intake or diet.  

 

The human microbiome in health and disease. 

The human microbiome consists of microbes that are both helpful and potentially harmful 

(opportunistic). Most are symbiotic (where both the human body and microbiota benefit) and some, in 

smaller numbers, are pathogenic (promoting disease). In a healthy body, pathogenic and symbiotic 

microbiota coexist without problems. However, if there is a disturbance in that balance, perhaps brought 

on by infectious illnesses, chronic diseases, certain diets, or the prolonged use of antibiotics, dysbiosis 

occurs, which stops these normal interactions (10). As a result, the body may become more susceptible 

to disease.  

 

Next Generation Sequencing (NGS) technologies are powerful tools to study human microbiomes in 

health and disease. Bacterial communities can now be identified through the use of next generation 

sequencing applied at several levels. Shotgun sequencing of all bacteria in a sample delivers 

knowledge of all the microbes and genes present in a given sample.  

 

In this tutorial, we will focus in the detection and quantification of individual taxa (or phylogroups) that 

were identified through the sequencing of a fingerprint gene called 16SrRNA which is present in all 

bacteria. We will describe ‘how many’ different phylogroups can be detected in microbial ecosystems 

as the gut and the vaginal cavity and ‘how differently’ distributed are they in a healthy vs. disease states.  

 
 
Objectives 
 
1. To perform microbial ecology analysis of healthy and disease individuals based on the sequencing 

 of the 16S rRNA gene.  
2. To perform data analysis and visualization using open source, statistical tools in R 

3. To test statistical differences in community composition and structure within and between  

    samples using computational tools.  

 
 
Glossary 
 
Microbiome = the collection of all microorganisms and their genes found in a particular environment 
(including the body or a part of the body). 
 
16SrRNA = the 16S ribosomal RNA. The component of the 30S small subunit of a prokaryotic ribosome 
that binds to the Shine-Dalgarno sequence. It is widely used for phylogenetic reconstructions due to the 
slow rates of evolution in certain regions.  
 



OTUs = Operational Taxonomic Unit. It is an operational definition used to classify groups of closely 
related objects based on genetic material. In microbial ecology, OTUs are pragmatic proxies for 
microbial "species" at different taxonomic levels. 
 
Richness = A metric describing the number of different species (or OTUs) in a community. 
 
Evenness = A metric describing how even in numbers each species (or OTU) in a community are. 
 
Diversity = A metric describing how variable the specie (or OTUs) in a community are. 
 
Dysbiosis = A term describing an “imbalance” in a microbial community that is associated with disease.  
 

 
 
Data Analysis Workflow 
 
 
Part A: Taxonomic profiling of microbial communities in gut and vaginal cavity 
 
Part B: Alpha-diversity analysis (within sample analysis) 
 
Part C: Beta-diversity analysis (between samples and/or groups) 
 
 
 
Part A: Taxonomic profiling of microbial communities in gut and vaginal body sites 
 
We will initiate our microbiome data analysis by graphing taxa distributions at two different taxonomic 
levels: Phylum (L2) and Family (L5) using the library enveomics.R. The enveomics collection is a 

toolbox for specialized analysis of microbial genomes and metagenomes. The enveomics collection is 
freely available at https://github.com/lmrodriguezr/enveomics  
 
 
To install the latest version of enveomics.R uploaded to CRAN, execute in R: 

 
> install.packages ('enveomics.R') 

 

To load the library enveomics.R into the working space, simply execute: 
 

> library ('enveomics.R') 

 

 
We will initiate our microbiome analysis by studying the microbial community composition in the 
human gut in two groups of individuals: healthy and disease (individuals with acute diarrhea).  
 
 
1. Bacterial taxa distribution in the gut microbiome at the phylum level (L2) 
 
To load the initial dataset for the gut microbiome (Phylum level-L2), execute: 
 



> Gut_L2 <-read.table('Gut_L2.txt', header=TRUE, sep ='\t', row=1) 

 
The function ‘enve.barplot’ produces nice barplots from tab-delimitated tables. To graph barplots 

showing the estimated relative abundance percent of bacterial phylogroups at the phylum level, 
execute: 
 
> pdf(file="Gut_L2_Taxonomy.pdf", width=12, height=6) 

 
> enve.barplot(Gut_L2, bars.width = 3, add.trend = TRUE, organic.trend = 

TRUE, cex.names=0.6, las=2, main="Bacterial Taxa Distribution at the Phylum 

Level",ylab="Relative Abundance [%]") 

 

 
> dev.off() 

 
 
 

 
Now, let’s estimate the average relative abundance percent of the three most abundant bacterial 
phylogroups in the healthy set and compare them with the diarrhea set of samples. 
 
To estimate the average relative abundance in the set of healthy (C1:C8) and diarrhea (C9:C16) 
individuals, execute this: 
 

> Merged_dataframe <- 

cbind(data.frame(MeanGutHealthy=rowMeans(Gut_L2[,1:8])), 

data.frame(MeanGutDiarrhea=rowMeans(Gut_L2[,9:16]))) 

 

 
Visualize the new data frame that was created: 
 

> Merged_dataframe 
 

 

Graph the new data frame containing the estimated average relative abundance percent for healthy 
and sick individuals with the function ‘enve.barplot’: 
 

 

> enve.barplot(Merged_dataframe, bars.width = 3, add.trend = TRUE, 

min.report = 5, main="Average Bacterial Taxa Distribution (Phylum 

Level)",ylab="Relative Abundance [%]") 

 

 
 

 
Analyze the two graphs that you just produced and answer the following questions: 
 

1. How many individuals compose the healthy and sick groups?  
 

 
 



2. How many phyla were identified in total with the 16S rRNA sequencing in the gut microbiome? 
 

 
 

3. Which are the three most abundant phylogroups observed in all individuals? 
 
 

4. Which is the first most abundant (dominant) phylum observed in the set of healthy individuals? 
 
 

 
5. Which is the first most abundant (dominant) phylum identified in the set of sick (diarrhea) 

individuals? 
 

 
 

6. How the average taxonomic composition of Bacteroidetes, Firmicutes and Proteobacteria 
varies between healthy and sick groups?  
 

 
 
 

7. Do you observe ‘high’, ‘medium’ or ‘low’ variation in the taxonomic composition and 
abundance within healthy and sick groups?  
 

 
 
 
Independent work:  
Repeat the same community composition analysis for the dataset Gut_L5.txt (family level). 
Paste your code below.  
 

 
 

 
 
2. Bacterial taxa distribution in the vaginal cavity at the family level (L5) 
 
Now, let’s visualize the vaginal microbiome taxonomic profile at the family level (L5) in healthy and 
sick women with cervical cancer  
 
 
To load the initial dataset for the Vaginal Microbiome (Family level-L5), execute: 
 
> Vaginal_L5 <-read.table('Vaginal_L5.txt', header=TRUE, sep ='\t', row=1) 

 
 
To graph barplots showing the estimated relative abundance percent of bacterial phylogroups at the 
family level, execute: 
 



> pdf(file="Vaginal_L5_Taxonomy.pdf", paper="a4") 

 
> enve.barplot(Vaginal_L5 , bars.width = 2, top=15, add.trend = TRUE, 

organic.trend = TRUE, cex.names=0.5, las=2, main="Bacterial Taxa 

Distribution at the Family Level",ylab="Relative Abundance [%]") 

 

> dev.off() 

 
 

 
Analyze the graph that you just produced and answer the following questions: 
 
1. What is the most dominant OTU (phylogroup) detected in the healthy vaginal microbiome group? 
      
 
2. Do you observe more phylogroups detected in the healthy or disease group?  
 
 
3. Which individuals showed a relative high abundance of the family Bifidobacteriaceae? are they  
   mostly observed in healthy or disease groups? 
 
 
 
Independent work:  
Repeat the same community composition analysis for the dataset Vaginal_L2.txt (phylum 
level). Paste your code below.  
  
 

 
 
Part B: Alpha-diversity Analysis (within sample analysis) 
 
Species diversity is a valuable tool for describing the ecological complexity within a sample (alpha 

diversity) or between samples (beta diversity). However, diversity is not a physical quantity that can be 

measured directly, and many different metrics have been proposed to quantify diversity. Species 

diversity consists of three components: species richness, species evenness. and taxonomic (or 

phylogenetic) diversity.  

 

We will continue our microbiome data analysis by comparing alpha diversity metrics (richness, 

evenness and Shannon diversity) in microbiome data obtained from gut and vaginal body sites in 

healthy and disease individuals using boxplots.  

 
 



 
 

Figure taken from: https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51 
 
 
A boxplot (figure above) is a standardized way of displaying the distribution of a dataset based on five 
numbers summary: 
 

 Median (Q2/50th percentile) = The middle value of the dataset 
 

 First quartile (Q1/25th Percentile): the middle number between the smallest number (not the 
“minimum”) and the median of the dataset. 

 

 Third quartile (Q3/75th Percentile): the middle value between the median and the highest value 
(not the “maximum”) of the dataset. 

 

 Interquartile range (IQR): 25th to the 75th percentile. 
 

 Whiskers (shown in blue) 
 

 Outliers (shown as green circles) 
 

 Maximum: Q3 + 1.5*IQR 
 

 Minimum: Q1 -1.5*IQR 
 

 
In each boxplot, the horizontal thick black band represents the median value, and the boxplot margins 

indicate first and third quartiles.  

 
 



We will use the package 'ggplot2' to display the distribution of the different diversity metrics with 

boxplots 
 
To install the package 'ggplot2', execute in R: 

 
> install.packages ('ggplot2') 

 
 
Next, load the library into your working space 
 
> library(ggplot2) 

 
 
Next, load the initial alpha diversity metric dataset (tab-delimitated table in txt format) for gut and 
vaginal microbiomes. Execute in the console: 
 
> alpha<-read.table('alpha_diversity_metrics.txt', check.names=F, 

header=TRUE, sep = '\t', row=1) 
 

> attach(alpha) 

 
The ‘attach’ function attach a set of objects to a search path. This means that the data frame is 

searched by R when evaluating a variable, so objects in the data frame can be accessed by simply 
giving their column names. 
 

 
1. Richness 
 
Richness, as measured by Chao1 (Chao 1984) is a measure of abundance of species. In short, it 
uses the number of rare species found just once, and weights those against more common species, 
to measure how diverse a community is. The higher the Chao1 (richness), the more diverse a 
community. 
 
Now let’s create a PDF file with boxplots containing the richness values comparing the categories 
described in the column named ‘Metadata’. For this purpose, we will use the package ‘ggplot2’.  

 
Run the following lines in the R console: 
 

> pdf(file="Richness_Chao1.pdf", paper="a4") 

 

> ggplot(data=alpha, 

aes(x=Metadata,y=Chao1))+geom_boxplot(aes(fill=Metadata)) 

 

> dev.off() 

 

 
 
 
 
 

 



2. Evenness 
 
Evenness describes how abundant species are in a community relative to one another. The closer the 
evenness to 1, the more equally the species are represented among all individuals in a community 
(or, said another way, the more equal the probability of pulling an individual of any species in that 
community at random).  
 
 
Now let’s create a PDF file with boxplots containing the values of evenness comparing the categories 
described in the column named ‘Metadata’. 
 
Run the following lines in the R console: 
 
> pdf(file="Evenness.pdf", paper="a4") 

> ggplot(data=alpha, 

aes(x=Metadata,y=Evenness))+geom_boxplot(aes(fill=Metadata)) 

> dev.off() 

 

 

 
 
3. Diversity (Shannon) 
 
Lastly, we’ll take a look at diversity, as measured by the Shannon Diversity Index (H). This 
measurement accounts for both species abundance and evenness. The higher the H, the higher the 
diversity.  
 
Now let’s create a PDF file with boxplots containing the values of diversity comparing the categories 
described in the column named ‘Metadata’. 
 
Run the following lines in the R console: 
 
> pdf(file="Shannon.pdf", paper="a4") 

> ggplot(data=alpha, 

aes(x=Metadata,y=Shannon))+geom_boxplot(aes(fill=Metadata)) 

> dev.off() 

 

 
 

Statistics 
Now let’s test whether the observed differences in richness within and between groups are significant. 
For this purpose, we will use the function ‘subset()’ to cut our current data frame into subgroups.  

 
Execute the following lines in the R console: 
 

> Gut_Healthy <- subset(alpha, Metadata == 'Gut_Healthy') 

> Gut_Diarrhea <- subset(alpha, Metadata == 'Gut_Diarrhea') 

 

 

To determine whether the observed differences in alpha diversity metrics between groups are 
significant, we will use a non-parametric test. A statistical method is called non-parametric if it makes 



no assumption on the population distribution or sample size. R provides functions for carrying out non-
parametric tests, such as the Wilcoxon Rank Sum Test (WRST), which we will use here. Because it 
does not rely on having a normal distribution, you can think about the WRST as a more general version 
of a parametric t-test.  
 
 
To perform statistical analysis within each body site, execute: 
 

> wilcox.test(Gut_Healthy$Chao1, Gut_Diarrhea$Chao1, paired=FALSE) 

 

Wilcoxon rank sum test 

data:  Gut_Healthy$Chao1 and Gut_Diarrhea$Chao1 

W = 57, p-value = 0.006993 

alternative hypothesis: true location shift is not equal to 0 

 
 
Repeat the same analysis for the remaining alpha diversity metrics: 
 

 

> wilcox.test(Gut_Healthy$Evenness, Gut_Diarrhea$Evenness, paired=FALSE) 

 

Wilcoxon rank sum test with continuity correction 

data:  Gut_Healthy$Evenness and Gut_Diarrhea$Evenness 

W = 54.5, p-value = 0.02077 

alternative hypothesis: true location shift is not equal to 0 

 

 

> wilcox.test(Gut_Healthy$Shannon, Gut_Diarrhea$Shannon, paired=FALSE) 

 

Wilcoxon rank sum test 

data:  Gut_Healthy$Shannon and Gut_Diarrhea$Shannon 

W = 58, p-value = 0.004662 

alternative hypothesis: true location shift is not equal to 0 

 

 

 
 
Analyze the different alpha diversity plots that you just produced with ALL statistical tests performed 
for gut microbiomes and answer the following questions: 
 

1. Compare the richness (chao1) boxplots for gut microbiome in healthy and disease groups. 
Which of these communities has the highest number of OTUs? Are the differences statistically 
significant?  
 

 
 

2. Compare the evenness boxplots for gut microbiome in healthy and disease groups. Which of 
these communities has the highest equitability of OTUs? Are the differences statistically 
significant? 
 
 



 
 

3. Compare the diversity boxplots for gut microbiome in healthy and disease groups. Which of 
these communities has the highest diversity? Are the observed differences statistically 
significant? 
 

 

 
 
Now let’s perform the same non-parametric statistical analysis for the vaginal microbiome dataset: 
 
 
First, subset the original data frame executing: 
 

> Vaginal_Healthy <-subset(alpha, Metadata == 'Vaginal_Healthy') 

> Vaginal_Cancer <-subset(alpha, Metadata == 'Vaginal_Cancer') 

 

 
And perform the different non-parametric statistical analyses: 
 

> wilcox.test(Vaginal_Healthy$Chao1, Vaginal_Cancer$Chao1, paired=FALSE) 

 

Wilcoxon rank sum test 

data:  Vaginal_Healthy$Chao1 and Vaginal_Cancer$Chao1 

W = 0, p-value = 0.0001554 

alternative hypothesis: true location shift is not equal to 0 

 
 

>wilcox.test(Vaginal_Healthy$Evenness, Vaginal_Cancer$Evenness, 

paired=FALSE) 

 

Wilcoxon rank sum test with continuity correction 

data:  Vaginal_Healthy$Evenness and Vaginal_Cancer$Evenness 

W = 0, p-value = 0.0009148 

alternative hypothesis: true location shift is not equal to 0 

 

 

>wilcox.test(Vaginal_Healthy$Shannon, Vaginal_Cancer$Shannon, paired=FALSE) 

 

Wilcoxon rank sum test 

data:  Vaginal_Healthy$Shannon and Vaginal_Cancer$Shannon 

W = 0, p-value = 0.0001554 

alternative hypothesis: true location shift is not equal to 0 

 

 

 

 
 
 
 



Analyze the different alpha diversity plots that you just produced with ALL statistical tests performed 
for vaginal microbiomes and answer the following questions: 
 
 

4. Compare the richness (chao1) boxplots for vaginal microbiome in healthy and disease 
groups. Which of these communities has the highest number of OTUs? Are the differences 
statistically significant? 
 
 
 
 
 

5. Compare the evenness boxplots for vaginal microbiome in healthy and disease groups. 
Which of these communities has the highest equitability of OTUs? Are the differences 
statistically significant? 
 
 
 
 

6. Compare the diversity boxplots for vaginal microbiome in healthy and disease groups. 
Which of these communities has the highest diversity? Are the observed differences 
statistically significant? 
 

 
 
Critical thinking: 
 
7. How does the healthy vaginal microbiome compare to the healthy gut microbiome? Explain 

 
 
 
 

8. How does the disease vaginal microbiome compare to the disease gut microbiome? Do trend 
follow the same pattern as above? Explain. 
 
 

 
 
 

 
 
Part C: Beta-diversity Analysis (between samples and/or groups) 
 

1. Dissimilarity analysis based on Bray-Curtis distances (multidimensional analysis with NMDS 
plots) 
 

2. Hierarchical clustering  
 
 

 



1. Dissimilarity analysis based on Jaccard distances 

 

Now, we will finalize our microbiome data analysis by comparing all versus all individuals using 

multidimensional scaling plots (NMDS). A multidimensional scaling analysis is a visual representation 

of distances or dissimilarities between sets of objects (11). “Objects” can be colors, faces, map 

coordinates, etc. In this case, ‘objects’ represent a particular taxonomic configuration (statistical 

arrangement) of the microbial community per individual. Microbiomes that are more similar are closer 

together (or separated by shorter distances) on the graph than less similar communities. 

 

 

To install the package 'vegan' and 'ggplot2', execute in R: 

 
> install.packages ('vegan') 

> install.packages ('ggplot2') 

Next, load the library into your working space 
 
> library(vegan) 

> library(ggplot2) 

 

Next, load both the Abundance-weighted Jaccard distance matrix and metadata files 
 

> distances<-read.table('abund_jaccard_dm.txt', head=TRUE, row.name=1, 

sep="\t") 

> metadata <-read.table('mappingFile2.txt', head=TRUE, sep="\t", check.name 

= F, row.names=1) 

 

Now we are ready to perform an NMDS plot with our microbiome data. The following lines will calculate 

an NMDS and use the results to compose a data frame with NMDS coordinates and associated 

metadata for each sample 

 

> dist_mat<- dist(distances, method = 'euclidean') 

> NMDS <- metaMDS(dist_mat, distance = "bray") 

> MDS1 = NMDS$points[,1] 

> MDS2 = NMDS$points[,2] 

> NMDS = data.frame(MDS1 = MDS1, MDS2 = MDS2, BodySite = metadata$BodySite, 

Clinical = metadata$Clinical) 

 

 

We always want to check if the figure we made shows 'good' data. We do this by looking at the ‘stress’, or a 

measure of the degree to which distances between samples in our reduced dimensional space capture 

actual differences with more dimensions. Lower stress values mean we’ve captured this information well, 

whereas higher values indicate that the arrangement of the data points doesn’t truly reflect their similarities 

very well. 

 



By a general rule, stress < 0.05 provides an excellent representation in reduced dimensions, < 0.1 is great, 

<0.2 is good/ok, and stress < 0.3 provides a poor representation. Look at the stress values generated when 

creating the NDMS figure above. What are they generally? 

 

 

Here is a peak at what our data frame should look like: 

 

> head(NMDS) 

 

 

 

 
 

 

 

Now, let’s plot the NMDS and take a look at where our samples fall in the ‘ordination space’ based on 

the ‘body site’. We will use the package ‘ggplot2’ for this purpose.  

 

> ggplot(NMDS, aes(x=MDS1, y=MDS2, col=metadata$BodySite)) + geom_point() + 

stat_ellipse() + theme_bw() + labs(title = "NMDS Plot") 

 

 

Now, let’s repeat the analysis based on ‘clinical status’. 

 

> ggplot(NMDS, aes(x=MDS1, y=MDS2, col=metadata$Clinical)) + geom_point() + 

stat_ellipse() + theme_bw() + labs(title = "NMDS Plot") 

 

 

 

2. Hierarchical Clustering Analysis  

 
Hierarchical clustering is an analysis in data science that groups similar objects into groups 
called ‘clusters’. The endpoint is a set of clusters, where each cluster is distinct from each other cluster, 
and the objects within each cluster are broadly more similar to each other than with other clusters (12).  
 
Hierarchical clustering can be performed with either a distance matrix or on raw data. When raw data 
are provided, the software will automatically compute a distance matrix in the background. Clustering 
analysis can be visualized through dendrograms. A dendrogram is a diagram that shows the 



hierarchical relationship between objects. It is most commonly created as an output from hierarchical 
clustering. The main use of a dendrogram is to work out the best way to allocate objects to clusters.  
 
 

Now let’s perform a hierarchical clustering analysis based on microbiome distance matrices  

 
> distances<-read.table('abund_jaccard_dm.txt', head=TRUE, row.name=1, sep="\t") 

 

> dist_mat<- dist(distances, method = 'eucledian') 

 

> hclust_avg <- hclust(dist_mat, method = "ward.D2") 

 

> library(dendextend) 

 

> avg_dend_obj <- as.dendrogram(hclust_avg) 

 

> avg_col_dend <- color_branches(avg_dend_obj, k = 2)%>% set("labels_cex", 0.6) 

 

> pdf(file="Clustering.pdf", paper="a4") 

 

> plot(avg_col_dend, ylab = "Height (Distance)", main = "Hierarchical Clustering 

Dendrogram") 

 

> dev.off() 

 

 

Finally, we will run a statistical test to determine whether two or more groups of samples are 
significantly different, while taking into account how they are grouped. For this purpose, we will run an 
ADONIS model.  
 
 
Adonis is a nonparametric statistical test that takes a distance matrix and a category to determine 
sample grouping. It computes an R2 value denominated ‘effect size’ which shows the percent of 
variation explained by the supplied category, as well as a p-value to determine the statistical 
significance. 
 
Adonis creates a set by first identifying the relevant centroids of the data and then calculating the 
square deviations from these points. After that, significant tests are performed using F-tests based on 
sequential sums of squares from permutations of the raw data. In short, you can think of this as 
comparing clusters to give F values you interpret like an ANOVA. 
 
 
To run an ADONIS model with the category ‘BodySite’, execute in the terminal 
 
> adonis(formula = dist_mat ~ BodySite, data = metadata) 

 
You will get these results. The percent of microbiome variation explained by the body site is 48.18% 
and it is significantly different based on the site (p-val = 0.001).  
 
 

https://www.displayr.com/what-is-hierarchical-clustering/
https://www.displayr.com/what-is-hierarchical-clustering/


 
 
 

 
Almost half of the microbial community variation in these samples is explained by the body site where 
they were obtained (gut or vaginal cavity).  
 
 
 
Independent work:  
Repeat the same analysis to run an ADONIS model using this time the category ‘Clinical’. 
Paste your code below.  
 
 
 
Take-home points: 

 
1. The human microbiome is a complex ecosystem that varies considerably across the body and 
between individuals.  

 
2. The microbiota of the gut is more diverse compared to other body sites, such as vaginal cavity 
 
3. There is still considerable variation in the constituents of the gut and vaginal microbiota among 
apparently healthy individuals (High inter-sample variation) 

 
4. Different factors (indigenous and exogenous) shape the structure and composition of the human 
microbiome in different body sites. 

 
5. Both infectious and chronic diseases can disrupt the ecology of the healthy human microbiome 
producing a state of polymicrobial dysbiosis that can be studied and described using metagenomic 
tools.  
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