M. Drew LaMar Fall 2014 Millington 112 TR 9:30-10:50 am

Office hours: M 4-5 pm; R 11 am-12 pm Office hour location: Millington 234

<u>Overview</u>: This course will be an overview of the mathematical tools used in quantitative analysis and modeling of biological systems. The goal is to develop quantitative reasoning skills through the use of mathematical modeling, data analysis, and computer simulation. This is a unique course in the biology curriculum by covering both organismal and cellular biology through the use of mathematical, statistical and computational approaches, and by focusing on the development of skills in model development, validation and refinement.

Expectations: You will attend 2 lectures each week. Homework will be given throughout and due each week. There will be 2 midterms worth 15% each. Participation, via in-class, Blackboard discussion, blog postings, and reading quizzes, will be part of your grade as well. You will start a project about mid-semester, which is explained in more detail below.

Grading:

Homework: 30%
Midterms: 30%
Final: 20%
Participation: 10%
Project: 10%

<u>Homework</u>: Homework will be due each week on Monday at 11:59 pm on Blackboard. For each assignment, 70% of your grade will be on completion, with the other 30% based on correctly answering two questions from your homework on Blackboard. Two of your lowest homework grades will be dropped.

<u>Midterms</u>: Midterms are scheduled for the following dates: *Tuesday, September 30* and *Tuesday, November 11*. **No make-ups will be given.** To account for legitimate exam absences, the points from one missed exam will be folded into your final, which will then be worth 45% of your grade.

<u>Final</u>: Tuesday, December 9, 9 am - 12 pm. Location TBA.

<u>Participation</u>: Participation breakdown is as follows: 5% for weekly blog posts and 2 reviews/comments to other student's posts; 3% for short online Blackboard reading quizzes (due every Monday and Wednesday at 11:59 pm); 2% for in-class and Blackboard discussions.

<u>Project</u>: You will be expected to pick a modeling paper from the primary literature. Your goal will be to rediscover results from the paper via analysis or computer simulation, critique assumptions, and possibly extend/refine the model.

Required texts:

- "Intuitive Biostatistics: A Nonmathematical Guide to Statistical Thinking," by Harvey Motulsky
- "Complex Population Dynamics: A Theoretical/Empirical Synthesis," by Peter Turchin
- "An Introduction to Systems Biology: Design Principles of Biological Circuits," by Uri Alon

Software: Excel, R, and Netlogo

Prerequisite: BIOL 220, BIOL 225 and MATH 111/131

Timeline

Date	Topic	Readings for today
08/28 (R)	Introductions and overview of course	None
09/02 (T)	Statistics, probability, and sampling	Motulsky: Ch. 1-3
09/04 (R)	Introduction to confidence intervals	Motulsky: Ch. 4, 6
09/09 (T)	Types of random variables	Motulsky: Ch. 7-9
09/11 (R)	Gaussian distribution and averages	Motulsky: Ch. 10, 12
09/16 (T)	Theory of confidence intervals	Motulsky: Ch. 13, 14
09/18 (R)	P-values and hypothesis testing	Motulsky: Ch. 15-17
09/23 (T)	Interpretation of significance and power	Motulsky: Ch. 18-20
09/25 (R)	Key concepts and traps in statistics	Motulsky: Ch. 44-45
09/30 (T)	Exam #1	None
10/02 (R)	No class	Graur: Ch. 2: pp. 39-47
10/07 (T)	Population genetics: Selection & Drift	Graur: Ch. 2: pp. 47-53
10/09 (R)	Population genetics: Gene substitution	Graur: Ch. 2: pp. 53-64
10/14 (T)	Fall Break	None
10/16 (R)	"Are There Laws of Genome Evolution?"	Koonin article
10/21 (T)	Introduction to theoretical ecology	Turchin: Ch. 1
10/23 (R)	Exponential growth and self-limitation	Turchin: Ch. 2.1-2.3
10/28 (T)	Predator-prey cycles and process order	Turchin: Ch. 2.4, 2.5 (to end of p. 39), 2.6
10/30 (R)	Single-species: Model types and drivers	Turchin: Ch. 3.1, 3.2
11/04 (T)	Age- and stage-structured models	Turchin: Ch. 3.3, 3.5
11/06 (R)	Trophic Interaction: Functional responses	Turchin: Ch. 4.1, 4.2-4.2.1
11/11 (T)	Exam #2	None
11/13 (R)	Mathematical theory vs. Empirical dynamics	Turchin: Ch. 5
11/18 (T)	Introduction to Systems Biology	Alon: Ch. 1
11/20 (R)	Basics of transcription networks	Alon: Ch. 2
11/25 (T)	Autoregulation	Alon: Ch. 3
11/27 (R)	Thanksgiving	None
12/02 (T)	Feed-forward loops	Alon: Ch. 4
12/04 (R)	Global structure of transcription networks	Alon: Ch. 5