The Needleman-Wunsch Algorithm Exercise – Instructor’s Guide
					
Course level
This exercise is used in a sophomore-junior level bioinformatics course. It typically has both Bioinformatics majors and Biology majors in the course, all of whom have had a year of General Biology. Most of the Bioinformatics majors have had at least one programming course, but typically have not had a course that involves algorithms. The Biology majors have not had any programming courses.

Textbook
Exploring Bioinformatics (2nd edition), by St. Clair and Visick (Jones & Bartlett Publishing). Chapter 3.
					
Class presentation
In the week or so prior to doing this exercise, students have been introduced to a scenario where they would want to compare DNA sequences, and have learned how to score alignments. They haven’t learned about substitution matrices yet. The purpose of this exercise is to introduce the concept of an algorithm that can generate a sequence alignment, as opposed to just scoring an existing alignment. After doing this exercise we start to look at some computer code that implements this algorithm. They then have an assignment to make some modifications to that code.

I typically introduce the algorithm on the whiteboard, explaining how it works by drawing a matrix similar to the one used in the exercise. I then have them spend about 15 minutes or so filling out the diagram. Depending on the time I will go over the answer on the board then or at the beginning of the next class period.
					
Expected student knowledge
· Understanding of the central dogma
· Understanding of different types of mutations (silent, missense, nonsense, frameshift)
· Understanding of what sequence alignments are and some idea about why they would want to make a sequence alignment
· Understanding of what indels/gaps are
· Basic understanding of how to score an alignment

				

			
The Needleman-Wunsch Algorithm Exercise
					
One of the fundamental techniques in bioinformatics is the pairwise alignment of nucleic acid or protein sequences. This basic procedure underlies a large number of bioinformatics applications, and can be used to accomplish a wide range of tasks. For example, the BLAST algorithm, which is used for rapidly searching large databases of sequences to find sequences that are similar to the query sequence, is based on aligning the sequences. Multiple sequence alignments, which can be used to see patterns of conservation in a particular gene across different organisms, are based on alignment algorithms. Phylogenetic trees can be constructed to examine the evolutionary history of genes based on multiple sequence alignments. Predicting the three-dimensional structure of a protein is based on aligning the sequence of interest to another sequence whose 3D structure is already known.

While it is often straightforward to align sequences that are both short and fairly similar (basically by eye, or by trying all the combinations and picking the best one), most sequences are far too long to align manually. If the two sequences are not highly similar it is not straightforward to determine the best way to align the two sequences. This is where alignment algorithms come in. Algorithms are “recipes” for solving particular problems in mathematics or computer science. That is, they are specific, logical, sequences of steps that accomplish a desired task. Like recipes, algorithms can be modified and varied to create different results. The first published sequence alignment algorithm was the Needleman-Wunsch (NW) algorithm, and it has provided the foundation for a large number of subsequent alignment algorithms, such as that used by the BLAST program. Understanding how the Needleman-Wunsch algorithm works provides a foundation for you to understand a variety of other bioinformatics algorithms. In this exercise you will implement a NW algorithm using pen and paper as preparation for being able to implement it in a computer program.
					
The question that needs to be answered is, given two sequences, what is the best alignment between them? The solution must not involve actually generating each individual alignment and scoring it, as this takes too much time even with very fast computers. The NW algorithm uses a matrix approach, placing the letters for the two sequences to be aligned along the rows and columns of a matrix. It then involves pre-computing alignment scores at each position in the matrix, then tracing back through the matrix to determine the highest scoring, or optimal, alignment between the two sequences. The algorithm produces at least one optimal alignment, but it is important to recognize that 1) just because the algorithm spits out an alignment doesn’t mean that the alignment is biologically meaningful, and 2) there can be more than one alignment with the same overall score. The algorithm produces a global alignment, requiring the sequences to be aligned over their complete lengths.
					
Using the Needleman and Wunsch dynamic programming method outlined below, construct the alignment score matrix on the following page for the following two sequences, using the following scoring parameters:
· match score (nucleotides in the row and column are the same) = +1
· mismatch score (nucleotides in the row and column are different) = 0
· gap penalty (a horizontal or vertical move, which corresponds to putting a gap (-) in the alignment = -1.
					
ACGT and ACGGT

Show the traceback path on the matrix and write the resulting alignment below the matrix.
					
Carry out the following steps on the attached matrix:
1. Start in the upper-left corner of the matrix and put a zero in the circle.

0. Every horizontal or vertical move corresponds to introducing a gap in the alignment, so for each such move in the first row or first column add the gap penalty to the score and write the number in the circle.

0. Every diagonal move corresponds to aligning two nucleotides (or amino acids). For the first diagonal down and to the right of the upper left circle determine whether the two nucleotides are the same or different and calculate the score after adding the match or mismatch score.

0. Each circle after the first row and column has three arrows pointing to it. For each circle, calculate the score for each of the three arrows and write it next to the arrow head. For example, the three arrows for the second circle in the second row are a -2 (from the left – zero plus a down gap and an across gap), 1 (from the diagonal – zero plus a match), and -2 (from above – zero plus an across gap and a down gap). Write the largest of the three numbers inside the circle (we are trying to find the highest possible score). Continue this until all the circles are filled in.

0. When you get to the bottom right circle, the number in the circle is the optimal alignment score.

0. To determine the traceback path, start in the bottom right circle. Determine which of the three arrows had the highest score and draw an arrow in the opposite direction parallel to that arrow. Keep repeating that process for each circle until you end up back at the upper left circle. You should now have a path leading through the matrix from the bottom right circle to the top left circle. In some places there may be two alternatives to going backwards, because two different moves gives the same score. You can draw the traceback arrows for each of these.

0. Convert the path to an alignment by aligning the corresponding letters in any diagonal move. Write out the alignment right-to-left. Put the top sequence on top, and the vertical sequence on the bottom. For horizontal moves, insert a gap (a dash) in the bottom sequence. For vertical moves, insert a gap in the top sequence. If there are multiple traceback paths, write out the alignments for each of the paths.

0. You can then score these alignment manually to double-check that both alignments end up with the same score, which is in the bottom right circle on the matrix.

Post-exercise reflection
It is worth thinking about what you have just done. Rather than simply writing out every possible alignment of the two sequences, by going through the matrix you have pre-computed the maximum score for a sub-alignment (an alignment of just part of the sequences). The process of pre-computing certain values and then determining the optimal result is known as dynamic programming, and is a common technique in computer science. For example, the 2 in the third circle over, and third circle down, is the best score you can get from aligning the AC in the first sequence with the AC in the second sequence. The possible alignments and their scores are below:
AC--	--AC	AC-	A-C	AC-	-A-C	AC-	-AC	AC
--AC	AC--	A-C	AC-	-AC	A-C-	A-C	AC-	AC
-4	-4	-1	-1	-2	-4	-1	-2	2
				
The Needleman-Wunsch algorithm calculates this maximum score automatically, in a much faster procedure than manually creating all the alignments and scoring them. Subsequent algorithms have been developed that further speed up the process (e.g. BLAST and FASTA), or that only calculate a local alignment rather than a global one (e.g. Smith-Waterman). The latter is very useful if you are aligning long stretches of DNA (thousands of base pairs), but you only care about aligning the regions where they are similar (which might only be hundreds of base pairs). If you forced a global alignment all of the negative scores from the portions where they don’t match would swamp out the positive score from where they do match. You will learn about the Smith-Waterman algorithm in future classes.		

[image:]

Scoring system: Match = 1, Mismatch = 0, Gap = -1

Answer Key – Filling the Matrix
[image:] -3
-4
-6
-1
-2
-4
1
0
-2
2
3
 0
-2
-3
-5
0
-1
-3
2
2
-1
1
3
 1
-1
-2
-4
1
0
-2
0
3
 0
-1
1
 2
0
-1
-3
-1
2
-1
-2
0
1
-3
-1
0
-2
1
-2
-3
-1
0
-4
-2
-1
-5
-3
-2
-5
-3
-1
 1
 3
-4
-2
 0
 2
 3
-3
-1
 1
 3
 2
-2
 0
 2
 1
 0
-1
 1
 0
-1
-2
0
-1
-2
-3
-4

Scoring system: Match = 1, Mismatch = 0, Gap = -1

Maximum Alignment Score

Answer Key – Traceback
[image:] -3
-4
-6
-1
-2
-4
1
0
-2
2
3
 0
-2
-3
-5
0
-1
-3
2
2
-1
1
3
 1
-1
-2
-4
1
0
-2
0
3
 0
-1
1
 2
0
-1
-3
-1
2
-1
-2
0
1
-3
-1
0
-2
1
-2
-3
-1
0
-4
-2
-1
-5
-3
-2
-5
-3
-1
 1
 3
-4
-2
 0
 2
 3
-3
-1
 1
 3
 2
-2
 0
 2
 1
 0
-1
 1
 0
-1
-2
0
-1
-2
-3
-4

Two alignments have the maximal alignment score of 3.

Alignment #1 (Purple): AC-GT	Alignment #2 (Blue): ACG-T
				ACGGT				 ACGGT

Alternative matrix for practice.
Scoring system: Match = 2, Mismatch = 1, Gap = -2C[image:]
A[image:]
G
G

[bookmark: _GoBack][image:]C
A
A
C
G

1

image1.emf

A C G T

A

C

G

G

T

image2.emf

