
Fitting Exponential and Logistic Growth Models to Bacterial Cell Count Data

Introduction

Bacterial colonies are often used as a standard example for population growth models since they
are easy to study under laboratory conditions. Colonies can be grown on an agar nutrient plate
relatively free from external pressures, and population counts can be obtained by several laboratory
methods (such as measuring the amount of light that can pass through the plate, which decreases
in a predictable way as more bacteria accumulate).

Under ideal conditions bacteria reproduce at a fairly consistent
rate. Assuming that there are no limitations due to nutrients or
space, the population of bacteria is generally thought to grow expo-
nentially, in which case a graph of the bacterial population versus
time would follow an exponential curve.

Of course, in the real world, most things don’t follow mathe-
matical models exactly. Random noise due to fluctuations in in-
dividual cell behavior and measurement errors mean that our real-
world measurements are unlikely to fit perfectly onto an exponential
curve. However, it is still useful to be able to fit a model as closely
as we can to the real-world data, since then the model can be used
to make predictions or to better understand the mechanisms of the
underlying system.

The goal of this project is to explore how to fit a simple mathematical model to describe a set
of noisy real-world data. Along the way we will also explore the exponential growth model in more
depth, and see how the method used to display data can help to better understand and analyze it.
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Learning Objectives

After completing this project, you should be able to:

� Generate a semi-log plot of data, and understand when doing so might be useful.

� Apply your understanding of minimizing a function to find a mathematical model that min-
imizes an error.

� Use mathematical analysis in conjunction with computational technology, by developing the-
oretical results by hand and then implementing those results in a program to quickly process
data.

Part 1: Exponential Growth and Computational Technology

The exponential growth model comes from the Law of Natural Growth, which is a differential
equation of the form

dP

dt
= rP (1)

The Law of Natural Growth states that the rate of change in the population P with respect to time
t is proportional to the current population, with a constant of proportionality r > 0 that describes
how quickly the given population grows. The solution to this differential equation (i.e. the function
P (t) whose derivative satisfies the above property) is the exponential growth model

P = P0e
rt (2)

where P0 is the initial population (i.e. the population when t = 0). This equation explicitly gives
the population as a function of time (in minutes).

Activity

During this project you will be making use of computational technology for quickly processing large
amounts of data. For simplicity this activity uses Microsoft Excel (these same commands should
also work in free alternatives like Google Sheets and OpenOffice Spreadsheets, but the instructions
below will refer to “Excel”). As an initial exercise, we will use Excel to create a plot for the
exponential growth function

P = 40e0.015t (3)

1a. Open the file first_exercise.xlsx. You should see a spreadsheet with the first two columns
labeled “t” and “P”, with the first column containing a list of times between 0 and 600 minutes
in 30-minute increments.

1b. You will be using the second column to generate the population values for each of these times.
In Excel, calculations are performed within cells by beginning the cell entry with an equals
sign (=) followed by whatever mathematical operations or functions are needed. The contents
of other cells can be included in these formulas by referring to their column/row coordinate
(for example, the cell in the fourth column and third row would be D3).
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According to the model in equation (3), the first population value (in cell B2) should be defined
as the value of the function 40e0.015t evaluated at the first time value (in cell A2). To do this,
enter the following formula into cell B2:

=40*EXP(0.015*A2)

(Note that you can also click on the cell A2 to insert it into the formula rather than typing
“A2” manually.) Multiplication in Excel is performed with the star * operator, and EXP( ) is
Excel’s version of the exponential function ex. After you enter the formula and press [Enter]
you should see the number 40 appear in the cell, which is indeed the correct population at
time t = 0.

1c. In order to quickly copy this same formula into all of the remaining rows of column 2, click on
cell B2 to highlight it, then drag the bottom right corner down to copy it into the cells below.
You should see numbers appear in cells B2 through B22. If you click on any of them and look
at the “fx” row above the table you’ll see that their formulas have automatically incremented
the time cell that they refer to, so for example the formula in cell B16 is =40*EXP(0.015*A16).

1d. Finally, use these data to generate a plot by highlighting all of the filled cells (cells A1 through
B22), clicking Insert on the ribbon, clicking the scatter plot button, and choosing an appro-
priate type of scatter plot (in Google Sheets, plots can be inserted by selecting the Insert
drop-down menu and clicking Chart to access the chart editor).

You should see a scatter plot of the exponential growth curve appear. If you wish, you can
double-click on various elements of the plot to select different style options for them from the
format menu on the righthand side.

1e. You can save this image for your submission either by taking a screenshot or by right clicking
it and selecting “Save as Picture. . . ”.
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Part 2: Preliminary Analysis and Semi-Log Plots

Suppose you are studying a colony of Staphylo-
coccus equorum, a species of bacteria found in
the skin of horses (and some smoked sausages1).
Suppose that a culture of S. equorum has been
isolated and grown in a petri dish, and that
population measurements have been collected at
30-minute intervals (see the Excel spreadsheet
data_table.xlsx). From a preliminary obser-
vation of the data the population of S. equo-
rum seems to grow exponentially, so it would
be reasonable to begin by attempting to model
the population using the exponential growth
model.

Activity

2a. Open the file data_table.xlsx (which includes population measurements at times ranging
from 0 to 300 minutes) and create a scatter plot of the data.

2b. The population appears to roughly follow the exponential growth model given in equation (2).
The data table gives the initial population as P0 = 16, so in particular the population might
follow the model

P = 16ert (4)

for some growth rate r.

Go to the Desmos link labeled Fitting an Exponential Model2, which displays a scatter plot of
the data alongside the exponential growth curve P = 16ert. Play with the slider to see how
r affects the shape of the graph. What value of r seems to cause the model to most closely
match the data?

2c. Your eventual goal will be to find a mathematically precise way to choose the “best” value for
r, in the sense of producing the model that most closely represents the real-world data. That
turns out to be hard to do for the exponential model, itself, in part because the rapid increase
in the function values causes minor differences in the first few population values to appear
insignificant next to the larger values. This issue can be addressed by transforming the data
in some way that will display all of the values on roughly the same scale.

In STEM applications, data that encompass a wide range of scales are often displayed on a
semi-log plot, where the vertical axis shows the logarithm of the dependent measurement
while the horizontal axis remains unmodified. You can generate a semi-log plot of the data by
evaluating the natural logarithm of each population value.

1S. Leroy, I. Lebert, J.-P. Chacornac, P. Chavant, T. Bernardi, and R. Talon. Genetic diversity and biofilm for-
mation of Staphylococcus equorum isolated from naturally fermented sausages and their manufacturing environment.
International Journal of Food Microbiology, 134(1–2):46–51, 2009. https://doi.org/10.1016/j.ijfoodmicro.2008.
12.012.

2Fitting an Exponential Model: https://www.desmos.com/calculator/fm6rsv7mmp

4

https://doi.org/10.1016/j.ijfoodmicro.2008.12.012
https://doi.org/10.1016/j.ijfoodmicro.2008.12.012
https://www.desmos.com/calculator/fm6rsv7mmp


The Excel function for natural logarithm is LN( ). In column C of data_table.xlsx, labeled
“ln(P )”, calculate the natural logarithms of the population measurements in each row, and
then display ln(P ) versus t on a scatter plot. This can be accomplished by holding [Ctrl] while
selecting two separate data ranges (the times in cells A3 through A13 and the log-populations
in cells C3 through C13), and then inserting a scatter plot as in Part 1.

2d. The plot of ln(P ) versus t seems to roughly follow a straight line, and this can be explained
using the properties of logarithms. Taking logarithms of both sides of equation (4) produces

ln(P ) = ln(16ert)

Use the properties of logarithms to show that the righthand side of this equation is equivalent
to a linear function of t. What is the slope of this linear function? What is the intercept?

2e. The previous problem shows that, if P grows exponentially with respect to t, then ln(P ) grows
linearly with respect to t. It’s far easier to fit a linear function to data than an exponential
function, so the next goal will be to try to find the linear model that most closely matches the
data. From the previous problem you should have found that the slope is r while the intercept
is b ≈ 2.772589, so the linear model has the form

ln(P ) = rt+ 2.772589 (5)

Go to the Desmos link labeled Fitting a Linear Model3, which displays a scatter plot of the
log-transformed data alongside the linear curve y = mx+2.772589. Play with the slider to see
how the slope affects the shape of the graph. What slope seems to cause the model to most
closely match the data?

Part 3: Fitting the Linear Model to the Data

From Part 2 you might suspect that the population of S. equorum follows the exponential growth
model, in which case its log-transformed population should follow a linear growth model. Moreover,
the slope of the linear model corresponds to the growth rate of the population model. While you
could try to fit a linear model to the data by eye, that’s not something that a computer is equipped
to do, and it wouldn’t generalize well to data sets with more than one independent measurement
(which would need to be displayed in more than two dimensions). As a result, the next goal will
be to develop a mathematically precise, programmable way of calculating the “best” slope for the
line.

There are many possible definitions for what “best” means in this case, but in general the goal
is to choose our model’s parameters in a way that minimizes some kind of error, or the difference
between what the model would predict for a certain time and the actual value at that time. Since
this error depends on the model’s parameters, finding the model that minimizes the error is an
optimization problem. In the next activity you will use your knowledge of optimization techniques
to find the slope that minimizes the model’s error.

3Fitting a Linear Model: https://www.desmos.com/calculator/hwcsxo7oyc
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Activity

3a. For any given time t, the linear model in equation (5) provides a prediction for the log-
population. Like most real-world data, the semi-log plot from Part 2 was not a perfectly
straight line, and so some of these predictions will be slightly wrong. For example, if you
attempted to use the model with r = 0.015,

ln(P ) = 0.015t+ 2.772589

for the log-transformed data, then for time t = 180 minutes the model would predict a log-
population of

0.015 · 180 + 2.772589 ≈ 5.472589

but the actual log-population at t = 180 should be ln(675) ≈ 6.514713, for an absolute error
of

|5.472589− 6.514713| ≈ 1.042124

For a variety of computational and analytical reasons, statisticians usually prefer to study
squared error, which is the squared difference between a predicted value and the measured
value

(5.472589− 6.514713)2 ≈ 1.086022

The squared error at a particular point clearly depends on the model being used. For example,
choosing r = 0.02 instead of r = 0.015 would produce a squared error of

[(0.02 · 180 + 2.772589)− 6.514713]2 ≈ (6.372589− 6.514713)2 ≈ 0.020199

which is much smaller. A reasonable criterion to use in choosing the parameters for the model
would be to try to minimize the sum of squared errors over all 11 data points.

Go to the Desmos link labeled Linear Model Error4, which displays the linear model from
before, now with the errors drawn as lines between the predicted and actual log-populations,
and with a numerical readout of the sum of squared errors. Play with the slider to see how the
slope affects the sum of squared errors. What value of r seems to cause error to be minimized?
How does this relate to your estimate from Part 2?

4Linear Model Error: https://www.desmos.com/calculator/jzecmsidnt
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3b. Setting aside the bacterial growth model for a moment, consider a more general problem where
the goal is to fit a linear function of the form

f(x) = mx+ b

to a set of three data points: (x1, y1), (x2, y2), and (x3, y3). Suppose that you’ve already
decided on a value of b, so the only task left is to choose the slope m.

For any of the measured x-values, say x2, the model would predict the corresponding y-value
to be f(x2) = mx2 + b, while the true y-value should actually be y2. The squared difference
between the predicted value and the measured value is

(mx2 + b− y2)
2

and the sum of all squared errors over the entire data set would be

S(m) = (mx1 + b− y1)
2 + (mx2 + b− y2)

2 + (mx3 + b− y3)
2

This sum S(m) is a quadratic function of m. Use the optimization techniques you’ve learned
in class to find the value of m that minimizes S. Show that the optimal slope is

m =
(x1y1 + x2y2 + x3y3)− (bx1 + bx2 + bx3)

x21 + x22 + x23

and use the second derivative test to verify that this corresponds to a local minimum of S.

(Note: Since S is quadratic, this also implies that it is the global minimum.)

3c. Returning now to the bacterial growth model, the formula for the optimal slope from the
previous problem can be generalized to work for any number of data points. If you wanted to
fit a linear model to n data points (x1, y1), (x2, y2), . . . , (xn−1, yn−1), (xn, yn), then the method
used in the previous problem could be used to obtain an optimal slope of

m =
(x1y1 + x2y2 + · · ·+ xn−1yn−1 + xnyn)− (bx1 + bx2 + · · ·+ bxn−1 + bxn)

x21 + x22 + · · ·+ x2n−1 + x2n
(6)

This formula can be used to fit the linear model in equation (5) to the log-transformed pop-
ulation data. The x-values are the time measurements t, the y-values are the log-population
measurements ln(P ), the intercept is b ≈ 2.772589, and the slope you’re trying to find is m = r.
The three sums included in equation (6) can be evaluated quickly using Excel, but some setup
will be required first.

Use columns E, F, and G of data_table.xlsx, labeled “t ln(P )”, “bt”, and “tˆ2”, to compute
the values of t ln(P ), bt, and t2, respectively, for each row. Note that exponentiation in Excel
is performed with the caret ^ operator.

3d. Next you will need to compute the sums of the values in these columns. In Excel, ranges of
cells are specified by placing the colon : operator between two cell coordinates, so for example
A3:A13 specifies all of the cells from A3 through A13. Summation is performed with the
SUM( ) function on a range of cells, so for example =SUM(A3:A13) would produce the sum of
all values in cells A3 through A13.

Use Excel to compute the sums of the t ln(P ), bt, and t2 columns. Leave the calculated sums
underneath the corresponding columns, in the row labeled “Sums:”.

7



3e. With all three sums calculated you can finally apply equation (6) to obtain the optimal slope.
Perform the computation at the top of column H of data_table.xlsx, labeled “r”. How does
this estimate compare to your estimate from problem 3a?

3f. With the slope r and the intercept b ≈ 2.772589 now set, you’ve finally defined a linear model
for the log-transformed population. In column I of data_table.xlsx, labeled “Log Model”, use
the slope you’ve just computed in the linear model from equation (5) to compute an estimated
log-population for each time. This can be accomplished quickly by using the formula

=H$3*A3+2.772589

in cell I3 and then dragging the corner of the cell down to copy the formula into the remaining
rows. The dollar sign in H$3 prevents the row coordinate from being automatically incremented
when the formula is copied into the lower cells, which is needed here since every cell in every
row of column I should use the value in H3 as the slope.

3g. Plot the log model estimates on the same set of axes as the actual log-population from the
ln(P ) column. This can be done by holding [Ctrl] while selecting cells A3 through A13 (for t),
cells C3 through C13 (for ln(P )), and cells I3 through I13 (for the Log Model) all at the same
time and then inserting a scatter plot.

3h. In Part 2 the slope of the linear model r came from evaluating the natural logarithm of the
exponential model in equation (4). In column J of data_table.xlsx, labeled “Model 1”, use
this same value of r to compute an estimated population P = 16ert for each time.

3i. Create a scatter plot of the actual data P along with the Model 1 on the same scatter plot.
How do the estimates compare to the real data?
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Part 4: Extending to a Logistic Growth Model

Suppose that additional data has come in from the culture of S. equorum, with population measure-
ments now extending to 600 minutes (see the Excel spreadsheet data_table_revised.xlsx). Now
that more time has passed the population growth rate seems to be starting to trail off, possibly due
to overcrowding or limited nutrients on the plate. In order to account for this added complexity,
you’ve decided to try modeling the population using the logistic growth model.

The logistic growth model is based on the differential equation

dP

dt
= rP

(
1− P

K

)
(7)

which describes the rate of change in the population P with respect to the time t. Like the
exponential growth model there is a growth rate constant r > 0, but now there is also a new
parameter K > 0. The solution to this differential equation, which gives the population as a
function of time (in minutes), is

P =
KP0

P0 + (K − P0)e−rt
(8)

where P0 is again the initial population. Your next goal will be to analyze this more complicated
population model, and to utilize the techniques developed in Part 3 to find the logistic growth model
that most closely matches this new set of population data.

Activity

4a. Open data_table_revised.xlsx (which includes population measurements at times from 0
to 600 minutes) and create a scatter plot of the data.

4b. The first goal is to investigate the significance of the parameter K from the logistic growth
model, which you will do in two ways. First consider the function P of t in equation (8).
Determine the long-term behavior of this function by evaluating the limit

lim
t→∞

KP0

P0 + (K − P0)e−rt

4c. Next consider the definition of the derivative dP
dt from equation (7). For what populations P

is the rate of population growth positive? Negative? Zero? What does this imply will happen
to the population in the long term?

4d. The exponential and logistic growth models are closely related, which can be seen by looking
at their derivatives. When the population is very small compared to K, the factor of (1− P

K )
in equation (7) is close to 1. In this case the logistic growth derivative (7) is essentially the
same as the exponential growth derivative rP from equation (1), which indicates that the
logistic growth model behaves almost like exponential growth when the population is small.
As a result, for the purposes of this activity you will treat r as known, using r = 0.02 (which
should be similar to the value you estimated at the end of Part 3). The initial population is
still P0 = 16, which leaves K as the only parameter left to estimate.

With the values of r and P0 set, for the remainder of this activity your main goal will be to
model the revised data set using the differential equation

dP

dt
= 0.02P

(
1− P

K

)
(9)
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and its resulting population function

P =
16K

16 + (K − 16)e−0.02t
(10)

Go to the Desmos link labeled Fitting a Logistic Model5, which displays a scatter plot of the
data alongside the logistic growth curve from equation (10). Play with the slider to see how
K affects the shape of the graph. What value of K seems to cause the model to most closely
match the data?

4e. The next goal is to find the value ofK that minimizes the error between the model’s predictions
and the data. Unfortunately, unlike the exponential growth model, a semi-log plot is not much
help here since evaluating the natural logarithm of both sides of the equation (10) does not lead
to anything linear with respect to t. However the differential equation (9) can be manipulated
to obtain a linear relationship.

Dividing both sides of (9) by P gives dP/dt
P on the lefthand side, and a linear function of P on

the righthand side. What is the slope of this linear function? What is the intercept?

4f. The value dP/dt
P actually has a biological interpretation on its own. Considering that dP

dt is the

rate of change in the total population size, what biological measurement does dP/dt
P represent?

Part 5: Fitting the Logistic Growth Model to the Data

The observations from Part 4 show that, if P grows logistically with respect to t, then dP/dt
P changes

linearly with respect to P . Moreover, the slope and intercept of this linear relationship can be used
to compute K, and from Part 3 you know how to fit linear functions to data. In this particular
case the intercept is 0.02, so the linear function has the form

dP/dt

P
= mP + 0.02 (11)

for some slope m. In this final activity you will use the techniques built up over the previous
parts to fit this linear model to the revised data set.

Activity

5a. Fitting the model from equation (11) requires knowing both P and dP
dt at each time t, but

the derivatives are not directly given by the data. You will have to instead estimate them
using average rates of change (i.e. difference quotients) between pairs of nearby data points.
Use column D of data_table_revised.xlsx, labeled “dP/dt”, to compute an estimate for the
derivative of P at each time value t. Then use column E, labeled, “(dP/dt)/P”, to compute

the approximate value of dP/dt
P at teach time value t.

5b. Go to the Desmos link labeled Fitting a Second Linear Model6, which displays a scatter plot of
dP/dt
P versus P , alongside the linear curve dP/dt

P = mP + 0.02. Play with the slider to see how
m affects the shape of the graph. What value of m seems to cause the model to most closely
match the data? How does this relate to the value of K that you found in Part 4?

5Fitting a Logistic Model: https://www.desmos.com/calculator/iria3vrzp2
6Fitting a Second Linear Model: https://www.desmos.com/calculator/selvf1cyro
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5c. In Part 3 you derived a formula for finding the slope that minimizes the sum of squared errors
between a linear model and a set of data. To apply that to this linear model dP/dt

P = mP +0.02
you will need to compute the three sums in equation (6). Bearing in mind that the data points

in this case have the form (x, y) = (P, dP/dt
P ), one of these sums includes terms of the form

xy = P dP/dt
P , one includes terms of the form bx = bP , and the third includes terms of the form

x2 = P 2. Since P dP/dt
P = dP

dt , the “dP/dt” column already contains one of the terms that you
need.

For the other two, use columns F and G of data_table_revised.xlsx labeled “bP” and “Pˆ2”
to compute the values of 0.02P and P 2, respectively, for each row.

5d. Compute the sums of the dP
dt , bP , and P 2 columns. Leave the calculated sums underneath the

corresponding columns.

5e. Apply these three sums in formula (6) to obtain the optimal slope. Perform the computation at
the top of column H of data_table_revised.xlsx, labeled “m”. How does this slope compare
to your estimate from problem 5b?

5f. In the previous problem you found that the slope of the linear function for dP/dt
P is related to

the parameters r and K from the logistic growth model. Use the slope you just calculated
along with r = 0.02 to compute the value of K. Perform the computation at the top of column
I of data_table_revised.xlsx.

5g. In column J of data_table_revised.xlsx, labeled “Model”, use this value of K to compute
an estimated population

P =
16K

16 + (K − 16)e−0.02t

for each time.

5h. Create a scatter plot of the actual data P along with the Model 1 estimates on the same scatter
plot. How do the estimates compare to the real data?
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