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STATEMENT

Your goal in this project is to develop a partial differential equation (PDE) model that governs a

population (of birds, fish, insects, etc.) that disperses as it migrates. In doing so, you will explore

the following:

• the effects of various nonlinear terms on solutions of PDE models;

• the effects of varying initial population profiles;

• the effects of varying diffusion coefficients; and

• Fundamental solutions of differential equations.

All Mathematica notebooks are available in the Supporting Documents where the Modeling

Scenario resides.

First model: the Logistic Equation

Consider the logistic equation

dy

dt
= ky(A− y), k, A > 0, y(0) = y0 ≥ 0 (1)

Here, y(t) denotes the population size at time t. The explicit solution of (1) is given by

y(t) =
y0Ae

Akt

y0eAkt +A− y0
(2)
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For more details on the model, see e.g., [1, Section 3.2].

Question 1.

Play around with the Mathematica Module Logistic Module. Discuss the effects of changing

the growth constant k, the carrying capacity A, and the initial population y0. Compare your

analysis with the solution (1). Does this make sense?

Time Evolution of Spatial Profile Curve

Let’s now consider a PDE model by thinking of the population being spread out along a narrow strip

of land. Suppose we have an initial population distribution u0(x), which provides the population

at position x along the strip of land. The time evolution of the population is a modification of the

logistic equation (1)

∂u

∂t
= ku (A(x)− u) , k, A(x) > 0, u(x, 0) = u0(x) ≥ 0 (3)

Question 2.

How exactly does this generalize (1)? How can we recover it as a special case of (3)?

In (1), the term A was the carrying capacity. The same holds here–except now it depends on

the location! In the Mathematica Module Time Evolution of Spatial Profile Module, we have

taken

A(x) = 300 + 100 cos

(
2πx

50

)
and the growth constant k = 0.04.

Question 3.

Why might the initial population u0(x) tend towards A(x) as time evolves? Then, see Mathe-

matica module Time Evolution of Spatial Profile Module.

Question 4.

Further questions:

1. Suppose you change the carrying capacity. Would the initial population still evolve

towards A(x)? Why is this? Verify with some Mathematica demos in the Module

Time Evolution of Spatial Profile Module. PS: For initial populations, we suggest
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various cosine curves (e.g., [3+Cos[2*Pi*x/50])

2. What is the effect of taking larger k on the time it takes u0(x) to approach equilibrium?

3. Investigate instead the model

∂u

∂t
= k(x)u(A− u) (4)

with variable growth parameter. Try various cosine curves for k(x). Explain what you see.

Migrating Populations

Next we consider a PDE model where the time rate of change of the population is proportional to

its slope:

∂u

∂t
= −c∂u

∂x
, u(x, 0) = u0(x) (5)

This model governs migratory population u(x, t) with a parameter c that controls the speed of the

migration.

Question 5.

Explore the Mathematica Module Migrating Populations Module. What happens as you

increase the speed c? What happens when you change the initial population distribution?

We suggest trying the following initial population distributions: Probability density function

with various means and standard deviations (e.g., 25, 6 respectively):

PDF[NormalDistribution[25,6],x].

Note: If p(x) is a density function for some characteristic of a population, then∫ b

a

p(x)dx = fraction of population for which a ≤ x ≤ b

If p(x) is a probability density function, then∫ b

a

p(x)dx = probability that a ≤ x ≤ b

The probability density of a normal distribution is

p(x, µ, σ) =
1

2πσ2
e−

(x−µ)2
2σ2

where µ is the mean of the distribution and σ is the standard deviation. Why might this choice

of initial population be reasonable?
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We can use Mathematica to solve (5) explicitly. Enter the following code into Mathematica:

Module[{u}, pdeMigration=D[u[x,t],t]==-cD[u[x,t],x];

uMigrationSoln[c ,u0 ][x ,t ]:= u[x,t] /.

First[DSolve[{pdeMigration, u[x,0]==u0[x]}, u[x,t], {x,t}]];
Row[{"u[x,t] = ", uMigrationSoln[c,u0][x,t]}]]

Question 6.

Show that, for any u0(t), the function u0(x− ct) satisfies (5).

A solution of the form u(x, t) = u(x− ct) is called a traveling wave.

Question 7.

Explore the Mathematica module Traveling Wave Module. What can you see? How does the

sign of c play a role?

Seasonal Migration

To model the periodic nature of certain animals, we can translate the initial population distribution

to u(x, t) = u0(x−A sin(ct)). Then this u satisfies

∂u

∂t
= −Ac cos(ct)

∂u

∂x
, u(x, 0) = u0(x) ≥ 0 (6)

Question 8.

Explore the Mathematica module Seasonal Migration Module. What role does A play in the

graph of the solution?

Dispersion

If there is overcrowding in one area, a population may disperse over a wider area. One model for

this phenomenon is to say the time evolution of the population is proportional to its concavity. In

this case the model becomes

∂u

∂t
= D

∂2u

∂x2
, D > 0 (7)

where D is called the dispersion coefficient.
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Question 9.

Verify that the fundamental solution of (7)

u(x, t) =
1√

4πDt
e−

x2

4Dt (8)

actually solves (7). More details on fundamental solutions are provided below.

Question 10.

Now, in the Mathematica module Dispersion Module, explore the effects of the dispersion

coefficient on the solution. What happens when D becomes larger?

Why is (8) called a fundamental solution of (7)? Generally, a fundamental solution of a PDE

is a solution with right hand side given by the Dirac Delta function δ(x) (see [1, Section 7.9]). So

(8) actually solves the equation
∂u

∂t
−D∂

2u

∂x2
= δ(x)

This is beyond the scope of this course, but if you’re interested, take a course in PDEs!

Actually, one can also discuss the fundamental solution of an ODE as well! Indeed, given a

differential operator L (say, L =
d2

dx2
), the fundamental solution for L is the solution u(x) of

Lu(x) = δ(x). It is known that
d

dx
H(x) = δ(x)

where H(x) is the so-called Heaviside function (see [2, Section 6.3]) defined by

H(x) =
d

dx
max {x, 0} , x 6= 0 .

Thus, to find a fundamental solution of L =
d2

dx2
, it is enough to solve

du

dx
= H(x) + C, C constant .

The solution of this equation can be found to be

u(x) = C0|x|

for some constant C0. See Figure 1.

Your model
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Figure 1. The Heaviside function H(x).

Question 11.

Develop your own model for a population u(x, t) that disperses as it migrates. How many

parameters do you have? Can you formulate a fundamental solution of your equation, based on

the ideas of the previous section?
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POSSIBLE WRITING PROJECT RUBRIC

Each of the following elements are rated along a range of 0− 4, depending on the completeness

and quality of the work on that element.

1. Organization: You must have the following organizational elements in the final paper, each

with a clear header.

• Problem Introduction Section

• Model Section

• Mathematical Analysis Section

• Prediction and Evaluation Section

• Credits: Give credit to people that assisted you or references you used (if any)

2. Layout and Formatting: This is a report, not an assignment, so please write this paper in

narrative (paragraph) format, except putting equations and formulas on separate lines. Here

are further guidelines:

• Narratives in paragraphs. Typed 11 or 12 point font.

• Equations and calculations, etc. are on a separate line and easy to read.

• Understandability of graphs. (Suggestion: You may take a picture of hand drawn graphs

and of graphs on calculators or other software.)

• Clear identification of graphs in the narratives through labeling of the graphs (e.g., “see

Figure 1”).

• Graphs are used effectively in the narratives and explanations. In other words, you refer

to the graphs and use the graphs in your discussions.

3. Introduction: Must include:

• Introduction of the problem. (Summarize the problem in your own words.)

• Discuss how this problem may be similar and different from other applied problems you

have encountered.

4. Model: Must include:

• Clear mathematical statement of the model.

• Definitions of variables.

• Explanation of the different parts of the model and how they relate to each other.

• Justification of the model and its parts.
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5. Mathematical Analysis: Must include:

• Qualitative Analysis: Discuss what mathematical information the qualitative analysis gives

about the solution.

• Analytical Analysis: Solve and discuss what mathematical information the analytical anal-

ysis gives about the solution.

• Numerical analysis: Solve and discuss what mathematical information the numerical anal-

ysis gives about the solution.

• Explain: Each analysis should include an explanation of the steps taken analyzing the

model. (But note you don’t have to state or show every single basic algebraic step.)

• Model verification: Are the results of the model consistent with any data? How? If there

is no data, what else can you do to verify if the model results are accurate?

• Compare/Contrast: Compare and contrast the three techniques (graphical, analytical,

numerical). What is similar and different? Did they agree with each other? For this

problem, in what ways were they useful or not?

6. Prediction, Interpretation, and Evaluation: Must include:

• Prediction: Make predictions based on the model. See the project directions.

• Interpretations: Be sure to state what your solution and predictions mean or say in terms

of the applied problem. This should be done throughout the write-up as necessary.

• Evaluation: Critique the interpretations and predictions. Do the interpretations of the

solution and predictions make sense for that applied problem? Why or why not?

• Evaluation: What might your solutions and predictions imply and why is it important

for the people, animals, or objects in the applied problem? Does it imply any actions

that should be taken in the future, i.e. do you have any recommendations based on your

conclusion?


