Modeling Bubbles of Beer

Michael A. Karls Department of Mathematical Sciences Ball State University Muncie, IN 47306 USA

Overview

- The goal of this talk is to look at how to model the behavior of CO₂ bubbles in a glass of beer.
- Note that the following arguments carry over to gas bubbles in liquids in general!

Physical Observations

- Pour a glass of beer, wait a few moments, and you will observe the following:
 - Bubbles form at the bottom of the glass and rise to the top.
 - Bubbles accelerate as they rise.
 - Bubble diameter at top is twice the initial diameter.

What do we want to Model?

- We want to model the height x(t) and radius r(t) at time t ≥ 0 of a CO₂ bubble that starts to rise at time t = 0 seconds.
- Parameters in our model include:
 - x₀:= initial depth of bubble below surface [m]
 - r₀:= initial bubble radius [m]
 - P_{atm}:= atmospheric pressure [N/m²]
 - T:= temperature of beer [°K]
 - K:= "freshness of beer" [moles/(m² s)] (rate at which CO₂ passes from beer into bubble)

Assumptions for our Model

- In our model we will make the following assumptions:
- (a) The bubble is a sphere.
- (b) Rate at which CO₂ enters bubble ~ Surface area of bubble.
- (c) The CO₂ in the bubble obeys the *Ideal Gas Law*.
 PV = nRT, where
 - P is pressure
 - V is volume
 - n is amount of CO₂
 - T is temperature
 - R is the *universal gas constant.*

Amount of CO₂ in Bubble

- We first find an equation for the amount of CO₂ in a bubble of beer.
- Let n(t):= number of moles of CO₂ in a bubble at depth x(t).
- Then assumptions (a) and (b) can be expressed mathematically as:

$$n'(t) = K4\pi [r(t)]^2.$$
 (1)

Amount of CO₂ in Bubble

 Using the equation for the volume of a sphere to relate the radius of a bubble to its volume and applying the Ideal Gas Law assumption, we see that

r(t) =	$\left\lceil 3V(t) ight ceil$	$\Big ^{1/3} = \Big $	3n(t)RT	1/3
	$\begin{bmatrix} 4\pi \end{bmatrix}$		$4\pi P(t)$	

so we can rewrite equation (1) as

(2)

,

Amount of CO₂ in Bubble

$$n'(t) = K4\pi \left[\frac{3n(t)RT}{4\pi P(t)}\right]^{2/3}$$

From college physics, we know that the pressure on a submerged bubble at a depth x(t) is given by:

$$P(t) = P_{atm} + P_{fluid} = P_{atm} - g\rho_{beer}x(t).$$

(The fluid pressure is the weight of a column of beer of height |x(t)| with unit cross--sectional area.)

It follows that

$$n'(t) = K4\pi \left[\frac{3n(t)RT}{4\pi [P_{atm} - g\rho_{beer} x(t)]} \right]^{2/3}.$$
 (3)

- Next we find an equation that describes the acceleration of a beer bubble.
- Recall Newton's Law: F(t) = m(t) x"(t).
- There are three forces acting on the bubble at time t:
 - (a) Buoyancy Force: $F_{buoy} = g \rho_{beer} V(t)$ (Weight of beer displaced by bubble. Archimedes, 250 B.C.)
 - (b) Fluid drag: F_{drag} = 4πη r(t) x'(t) (Hadamard, 1911)
 - (c) Weight: $F_{weight} = m(t)g = g \rho_{CO2}(t) V(t)$ (Newton?, 1665)

Therefore the total force on the bubble is:

$$F(t) = F_{buoy} - F_{weight} - F_{drag}$$

= $g\rho_{beer}V(t) - g\rho_{CO_2}(t)V(t) - 4\pi\eta r(t)x'(t)$
= $g\rho_{CO_2}(t)V(t) \left[\frac{\rho_{beer}}{\rho_{CO_2}(t)} - 1\right] - 4\pi\eta r(t)x'(t)$

and Newton's Law becomes:

$$m(t)x''(t) = g\rho_{CO_2}(t)V(t) \left[\frac{\rho_{beer}}{\rho_{CO_2}(t)} - 1\right] - 4\pi\eta r(t)x'(t).$$

 Dividing through by the mass of the CO₂ bubble, m(t), gives an equation relating x"(t) to ρ_{CO2}(t), r(t), x'(t), and m(t):

$$x''(t) = g \left[\frac{\rho_{beer}}{\rho_{CO_2}(t)} - 1 \right] - \frac{4\pi \eta r(t) x'(t)}{m(t)}.$$
 (4)

We'd like an equation with just x(t), n(t), and x'(t).

Note that

$$\rho_{CO_2}(t) = \frac{m(t)}{V(t)} = \frac{m_{CO_2}n(t)}{V(t)},$$

where m_{CO2} is the (fixed) mass/mole of CO_2 .

 Using the Ideal Gas Law to write the volume in terms of pressure and moles of CO₂, we see that

$$\rho_{CO_2}(t) = \frac{m_{CO_2}n(t)}{n(t)RT/P(t)} = \frac{m_{CO_2}[P_{atm} - g\rho_{beer}]}{RT}.$$
(5)

Then, writing m(t) = m_{CO2} n(t), and using (2) and (5), (4) becomes

$$x''(t) = g \left[\frac{\rho_{beer} RT}{m_{CO_2} [P_{atm} - g\rho_{beer} x(t)]} - 1 \right]$$
$$- \frac{4\pi \eta x'(t)}{m_{CO_2} n(t)} \left[\frac{3n(t)RT}{4\pi [P_{atm} - g\rho_{beer} x(t)]} \right]^{1/3}$$

Letting x'(t) = y(t), we get a first order system of three differential equations in the three unknown functions x(t), y(t), and n(t): Mathematical Model

$$n'(t) = 4\pi K \left[\frac{3n(t)RT}{4\pi [P_{atm} - g\rho_{beer}x(t)]} \right]^{2/3}, \quad (6)$$

$$x'(t) = y(t), \quad (7)$$

$$y'(t) = g \left[\frac{\rho_{beer}RT}{m_{CO_2}[P_{atm} - g\rho_{beer}x(t)]} - 1 \right]$$

$$- \frac{4\pi\eta y(t)}{m_{CO_2}n(t)} \left[\frac{3n(t)RT}{4\pi [P_{atm} - g\rho_{beer}x(t)]} \right]^{1/3} (8)$$

Parameters and Initial Data

- To actually check that this model works, we can put in measured values for the parameters and initial data:
 - g = 9.807 [m/s²]
 - $P_{atm} = 1.013 \times 10^5 [N/m^2]$
 - R = 8.3145 [Nm/(mole °K)]
 - m_{CO2} = 4.401 x 10⁻² [kg/mole]
 - $\rho_{\text{beer}} = 1.010 \times 10^3 \text{ [kg/m^3]}$
 - $\eta = 1.3 \times 10^{-3}$ [N s/m²] (viscosity of beer at 8°C = 46.4°F)
 - T = 281 [°K]
 - K = "fudge factor" (freshness of beer) [moles/(m² s)]

Parameters and Initial Data

- Initial Data:
 - x₀ = -.156 m = -15.6 cm
 - $r_0 = 1.7 \times 10^{-4} \text{ m} = 0.17 \text{ mm}$
 - $n_0 = P(0)V(0)/(RT) = 9.05893 \times 10^{-10}$ moles
- Finally, assume y(0) = x'(0) = 0 m/sec.

Testing our Model

 To check our model, we can use
 Mathematica to
 solve ODE system
 (6)–(8) numerically
 and compare to
 actual data!

time (sec)	depth (cm)	radius/r0
0	-15.6	1
0.54	-14	1.15
1.08	-12.2	1.29
1.62	-10.4	1.44
2.16	-8.6	1.58
2.7	-6	1.73
3.24	-3.2	1.88
3.78	0	2.03

References

This talk is based on the paper "Quenching a Thirst with Differential Equations" by Martin Ehrismann which appeared in the College Mathematics Journal: Volume 25, Number 5, pp. 413-418.