Modeling Bubbles of Beer

Michael A. Karls
Department of Mathematical Sciences Ball State University
Muncie, IN 47306 USA

Overview

- The goal of this talk is to look at how to model the behavior of CO_{2} bubbles in a glass of beer.
- Note that the following arguments carry over to gas bubbles in liquids in general!

Physical Observations

- Pour a glass of beer, wait a few moments, and you will observe the following:
- Bubbles form at the bottom of the glass and rise to the top.
- Bubbles accelerate as they rise.
- Bubble diameter at top is twice the initial diameter.

What do we want to Model?

- We want to model the height $x(t)$ and radius $\mathrm{r}(\mathrm{t})$ at time $\mathrm{t} \geq 0$ of a CO_{2} bubble that starts to rise at time $t=0$ seconds.
- Parameters in our model include:
- $x_{0}:=$ initial depth of bubble below surface [m]
- $r_{0}:=$ initial bubble radius [m]
- $P_{\text {atm }}:=$ atmospheric pressure $\left[\mathrm{N} / \mathrm{m}^{2}\right]$
- $\mathrm{T}:=$ temperature of beer [K]
- $\mathrm{K}:=$ "freshness of beer" $\left[\mathrm{moles} /\left(\mathrm{m}^{2} \mathrm{~s}\right)\right]$ (rate at which CO_{2} passes from beer into bubble)

Assumptions for our Model

- In our model we will make the following assumptions:
- (a) The bubble is a sphere.
- (b) Rate at which CO_{2} enters bubble \sim Surface area of bubble.
- (c) The CO_{2} in the bubble obeys the Ideal Gas Law: PV = nRT, where
- P is pressure
- V is volume
- n is amount of CO_{2}
- T is temperature
- R is the universal gas constant.

Amount of CO_{2} in Bubble

- We first find an equation for the amount of CO_{2} in a bubble of beer.
- Let $\mathrm{n}(\mathrm{t}):=$ number of moles of CO_{2} in a bubble at depth $x(t)$.
- Then assumptions (a) and (b) can be expressed mathematically as:

$$
\begin{equation*}
n^{\prime}(t)=K 4 \pi[r(t)]^{2} . \tag{1}
\end{equation*}
$$

Amount of CO_{2} in Bubble

- Using the equation for the volume of a sphere to relate the radius of a bubble to its volume and applying the Ideal Gas Law assumption, we see that

$$
\begin{equation*}
r(t)=\left[\frac{3 V(t)}{4 \pi}\right]^{1 / 3}=\left[\frac{3 n(t) R T}{4 \pi P(t)}\right]^{1 / 3}, \tag{2}
\end{equation*}
$$

so we can rewrite equation (1) as

Amount of CO_{2} in Bubble

$$
n^{\prime}(t)=K 4 \pi\left[\frac{3 n(t) R T}{4 \pi P(t)}\right]^{2 / 3}
$$

- From college physics, we know that the pressure on a submerged bubble at a depth $x(t)$ is given by:

$$
P(t)=P_{a t m}+P_{\text {fluid }}=P_{a t m}-g \rho_{b e e r} x(t)
$$

(The fluid pressure is the weight of a column of beer of height $|x(\mathrm{t})|$ with unit cross--sectional area.)

- It follows that

$$
\begin{equation*}
n^{\prime}(t)=K 4 \pi\left[\frac{3 n(t) R T}{4 \pi\left[P_{a t m}-g \rho_{b e e r} x(t)\right]}\right]^{2 / 3} \tag{3}
\end{equation*}
$$

Motion of Bubble

- Next we find an equation that describes the acceleration of a beer bubble.
- Recall Newton's Law: $\mathrm{F}(\mathrm{t})=\mathrm{m}(\mathrm{t}) \mathrm{x}$ " (t).
- There are three forces acting on the bubble at time t :
- (a) Buoyancy Force: $\mathrm{F}_{\text {buoy }}=\mathrm{g} \rho_{\text {beer }} \mathrm{V}(\mathrm{t})$
(Weight of beer displaced by bubble. Archimedes, 250 B.C.)
- (b) Fluid drag: $F_{\text {drag }}=4 \pi \eta r(t) x^{\prime}(t)$
(Hadamard, 1911)
- (c) Weight: $\mathrm{F}_{\text {weight }}=\mathrm{m}(\mathrm{t}) \mathrm{g}=\mathrm{g} \rho_{\mathrm{CO} 2}(\mathrm{t}) \mathrm{V}(\mathrm{t})$
(Newton?, 1665)

Motion of Bubble

- Therefore the total force on the bubble is:

$$
\begin{aligned}
F(t) & =F_{\text {buoy }}-F_{w e i g h t}-F_{\text {drag }} \\
& =g \rho_{\text {beer }} V(t)-g \rho_{C O_{2}}(t) V(t)-4 \pi \eta r(t) x^{\prime}(t) \\
& =g \rho_{C O_{2}}(t) V(t)\left[\frac{\rho_{\text {beer }}}{\rho_{C O_{2}}(t)}-1\right]-4 \pi \eta r(t) x^{\prime}(t)
\end{aligned}
$$

and Newton's Law becomes:
$m(t) x^{\prime \prime}(t)=g \rho_{C O_{2}}(t) V(t)\left[\frac{\rho_{\text {beer }}}{\rho_{C O_{2}}(t)}-1\right]-4 \pi \eta r(t) x^{\prime}(t)$.

Motion of Bubble

- Dividing through by the mass of the CO_{2} bubble, $m(t)$, gives an equation relating $x^{\prime \prime}(t)$ to $\rho_{\mathrm{CO} 2}(\mathrm{t}), \mathrm{r}(\mathrm{t}), \mathrm{x}^{\prime}(\mathrm{t})$, and $\mathrm{m}(\mathrm{t})$:

$$
\begin{equation*}
x^{\prime \prime}(t)=g\left[\frac{\rho_{\text {beer }}}{\rho_{C O_{2}}(t)}-1\right]-\frac{4 \pi \eta r(t) x^{\prime}(t)}{m(t)} \tag{4}
\end{equation*}
$$

- We'd like an equation with just $\mathrm{x}(\mathrm{t}), \mathrm{n}(\mathrm{t})$, and $x^{\prime}(\mathrm{t})$.

Motion of Bubble

- Note that

$$
\rho_{C O_{2}}(t)=\frac{m(t)}{V(t)}=\frac{m_{C O_{2}} n(t)}{V(t)}
$$

where $\mathrm{m}_{\mathrm{CO} 2}$ is the (fixed) mass/mole of CO_{2}.

- Using the Ideal Gas Law to write the volume in terms of pressure and moles of CO_{2}, we see that

$$
\begin{equation*}
\rho_{\mathrm{CO}_{2}}(t)=\frac{m_{\mathrm{CO}_{2}} n(t)}{n(t) R T / P(t)}=\frac{m_{\mathrm{CO}_{2}}\left[P_{a t m}-g \rho_{b e e r}\right]}{R T} . \tag{5}
\end{equation*}
$$

Motion of Bubble

- Then, writing $\mathrm{m}(\mathrm{t})=\mathrm{m}_{\mathrm{CO} 2} \mathrm{n}(\mathrm{t})$, and using (2) and (5), (4) becomes

$$
\begin{aligned}
x^{\prime \prime}(t)= & g\left[\frac{\rho_{\text {beer }} R T}{m_{C O_{2}}\left[P_{\text {atm }}-g \rho_{\text {beer }} x(t)\right]}-1\right] \\
& -\frac{4 \pi \eta x^{\prime}(t)}{m_{C O_{2}} n(t)}\left[\frac{3 n(t) R T}{4 \pi\left[P_{\text {atm }}-g \rho_{\text {beer }} x(t)\right]}\right]^{1 / 3} .
\end{aligned}
$$

- Letting $x^{\prime}(\mathrm{t})=\mathrm{y}(\mathrm{t})$, we get a first order system of three differential equations in the three unknown functions $x(t), y(t)$, and $n(t)$:

Mathematical Model

$$
\begin{align*}
n^{\prime}(t)= & 4 \pi K\left[\frac{3 n(t) R T}{4 \pi\left[P_{a t m}-g \rho_{b e e r} x(t)\right]}\right]^{2 / 3} \tag{6}\\
x^{\prime}(t)= & y(t) \tag{7}\\
y^{\prime}(t)= & g\left[\frac{\rho_{b e e r} R T}{m_{C O_{2}}\left[P_{a t m}-g \rho_{b e e r} x(t)\right]}-1\right] \\
& -\frac{4 \pi \eta y(t)}{m_{C O_{2}} n(t)}\left[\frac{3 n(t) R T}{4 \pi\left[P_{a t m}-g \rho_{b e e r} x(t)\right]}\right] \tag{1/3}
\end{align*}
$$

Parameters and Initial Data

- To actually check that this model works, we can put in measured values for the parameters and initial data:
- $\mathrm{g}=9.807\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
- $\mathrm{P}_{\mathrm{atm}}=1.013 \times 10^{5}\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
- $R=8.3145\left[\mathrm{Nm} /\left(\mathrm{mole}{ }^{\circ} \mathrm{K}\right)\right]$
- $\mathrm{m}_{\mathrm{CO} 2}=4.401 \times 10^{-2}[\mathrm{~kg} / \mathrm{mole}]$
- $\rho_{\text {beer }}=1.010 \times 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$
- $\eta=1.3 \times 10^{-3}\left[\mathrm{~N} \mathrm{~s} / \mathrm{m}^{2}\right]$ (viscosity of beer at $8^{\circ} \mathrm{C}=46.4^{\circ} \mathrm{F}$)
- $\mathrm{T}=281\left[{ }^{\circ} \mathrm{K}\right]$
- K = "fudge factor" (freshness of beer) [moles/(m² s)]

Parameters and Initial Data

- Initial Data:
- $\mathrm{x}_{0}=-.156 \mathrm{~m}=-15.6 \mathrm{~cm}$
- $r_{0}=1.7 \times 10^{-4} \mathrm{~m}=0.17 \mathrm{~mm}$
- $\mathrm{n}_{0}=\mathrm{P}(0) \mathrm{V}(0) /(\mathrm{RT})=9.05893 \times 10^{-10}$ moles
- Finally, assume $y(0)=x^{\prime}(0)=0 \mathrm{~m} / \mathrm{sec}$.

Testing our Model

- To check our model, we can use
Mathematica to solve ODE system (6)-(8) numerically and compare to actual data!

time (sec)	depth (cm)	radius/r0
0	-15.6	1
0.54	-14	1.15
1.08	-12.2	1.29
1.62	-10.4	1.44
2.16	-8.6	1.58
2.7	-6	1.73
3.24	-3.2	1.88
3.78	0	2.03

References

- This talk is based on the paper "Quenching a Thirst with Differential Equations" by Martin Ehrismann which appeared in the College Mathematics Journal: Volume 25, Number 5, pp. 413-418.

