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Quenching a Thirst with Differential 

Equations 
Martin Ehrismann 

Martin Ehrismann, of Eidgenossische Technische Hochschule 
Zurich, is also affiliated with the Institute for Theoretical Com? 

puter Science. His special interests are advanced educational 

technologies for mathematics and science. Sometimes he ex- 

changes his computer desk for a friend's bar, to practice his 

loosening-up exercises while playing a bartender's role. 

Most of us think of beer as an effervescent beverage designed to quench one's 

thirst. Yet this popular drink contains mathematical mysteries that can cause a 

differential equations class to bubble with interest. Can we model the behavior of 

C02 bubbles as they grow and rise in a glass of beer? 

A Physical Model 

Albert Einstein once said that one should make things as simple as possible, but 

not simpler. This is the guiding principle for the physical model we shall develop 
for the motion of the bubbles in a glass of beer. Observation tells us that bubbles 

of carbon dioxide form at certain sites in the bottom of the glass and rise to the top 
due to their buoyancy. Of course the bubbles are slowed down on their way by the 

resistance of the viscous liquid. It is a straightforward exercise to show that if the 

resistance were simply proportional to the speed of the bubbles, their speed would 

approach a constant "terminal velocity." Real bubbles, however, accelerate as they 
rise (see Figure 1 on page 414). Moreover, their diameter visibly increases, 

approximately doubling during their short trip to the surface. 

We are forced to create a subtler model. A bubble's growth takes place through 
its surface; we assume that the rate at which molecules of C02 pass from the beer 

into a bubble is proportional to the bubble's surface area. This assumption 
accounts for the acceleration of the bubbles, since the larger a bubble becomes the 

greater will be the buoyant force making it rise. (Of course the drag on the bubble 

also increases with the bubble size, but the buoyancy increases in proportion to the 

volume?the cube of the radius?while the drag should be proportional to the 

radius or perhaps the square of the radius. Thus as a bubble grows its buoyancy 
will increase faster than the drag; hence the bubble will accelerate.) 

We should also consider the added bubble growth due to the decrease in 

pressure acting on the bubbles as they near the surface. The relationship between 

the pressure, volume, amount of C02, and temperature in a bubble is assumed to 

be given by the "ideal gas" equation PV=nRT, in which we will assume that the 

temperature T remains that of the surrounding beer, a constant during the 

bubble's brief trip. 
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By permission of the American Institute of Physics 
and R. N. Zare [1]. 

Figure 1 

Very smooth (Reynolds number < 1) flow with speed v of a fluid around a solid 

sphere of radius r was shown by Stokes (1851) to produce a drag force F = 6irrjrv, 
where 17 is a constant characteristic of the fluid, called its viscosity. Later 

Hadamard (1911) showed that for a spherical bubble of gas moving slowly through 
a liquid the drag should be only about two-thirds as large as that for a solid sphere, 
because the mobile molecules of gas effectively lubricate the boundary surface [2]. 
We will assume that the beer bubbles are small enough that they remain spherical 
as they grow and rise, and we will use Hadamard's formula for the drag. This 

completes our discussion of the physical basis for our model. More details about 

the actual behavior of bubbles in beer, including experimental data, can be found 

in [1]. 

414 THE COLLEGE MATHEMATICS JOURNAL 



The Mathematical Model 

Let x(t) denote the depth at time t of a C02 bubble in a glass of beer, with the 

surface taken to be x = 0, and the bottom of the glass at some negative value 

x =xQ, so that xQ <x(t) < 0. Our model will have five parameters: the depth xQ, 
the radius r0 of the bubbles as they break free from a nucleation site on the 

bottom, the atmospheric pressure P and beer temperature T, and finally a 

constant K representing the rate at which carbon dioxide passes from the beer 

into the bubbles, per unit area of bubble surface. (The beer is kept under pressure 
until the glass is poured, so that a large amount of C02 is initially dissolved in the 

beer. The value of K gradually decreases as the beer goes flat, i.e., as its C02 
partial pressure decreases.) 

We first develop a differential equation for the amount of C02 in a bubble at 

depth x(t). Let n(t) denote the number of moles of C02 in the bubble at time t. 

The rate at which the gas enters the bubble is proportional to the bubble's surface 

area: n'(t) = KA(t), and since the bubble is assumed to remain spherical, A(t) = 

Airr(t)2. If V(t) denotes the volume of the bubble, then V(t) = f ttKO3, so 

r(t) = [3/(Air)V(t)]1/3. Thus n'(t) = 47rK[3/(4jr)V(t)]2/3. By the ideal gas equa? 

tion, V(t) = [n(t)RT]/P(t). The pressure P(t) in the bubble is the sum of the 

(constant) atmospheric pressure P and the fluid pressure of the beer on the bubble 

at depth x(t). This fluid pressure, in turn, equals the weight of a column of beer of 

height \x(t)\ with unit cross-sectional area, or equivalently the weight density of the 

beer times the depth: ?gpbeeTx(t), where g is the acceleration due to gravity and 

pbeer is the mass density of beer. Hence P(t) = P - 
gpbeeTx(t), which we substitute 

to get our first differential equation: 

/ 1n(t\BT \2/3 

nf(t)=4irK 
3n(t)RT 

47r[P-gPbeerx(0] 
(1) 

Now we turn to the equation of motion of the bubble: Newton's law, 
m(t)x"(t) = F(t), where m(t) is the mass of the bubble and F(t) is the total force 

acting on it at time t. There are three vertical forces acting on the bubble as it 

rises: the buoyant force acting upward, i.e., in the positive direction on the x-axis, 
and the gravitational force and fluid drag acting downward. Archimedes' principle 
states that the buoyant force is equal to the weight of the beer displaced by the 

bubble: gPbeer^)- The gravitational force is just the weight of the bubble: 

m(t)g = gpco\^t)V(t). (The gas density pcop) varies with depth, while the beer 

density is essentially constant.) Substituting m(t)/pco (t) for V(t) in the expres? 
sion for the buoyant force gives an expression that can be combined with the 

gravitational force on the bubble: 

^buoy + ^grav 
= #"(0 

** - 1 
\Pco2(0 

Adding the (downward) drag force -4rrrir(t)xf(t) and dividing both sides of the 

equation of motion by the mass of the bubble then gives 

/ Pbeer \ 4l7"rjr(f) x'(t) 
x"(t)=g\ be;\ -1 - w 

Pco2(0 / m(0 

This is almost the differential equation desired, but we want the only variables on 

the right side to be the functions n(t), x(t), and x'(t). 
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Now pco {t) = m{t)/V{t) = 
mco n{t)/V{t), where mco is the mass per mole of 

carbon dioxide, a constant characteristic of this gas. By the ideal gas equation, 

n{t)/V{t) = P{t)/{RT), so pC02{t) 
= 

mC02[P-gPhccrx{t)]/{RT). By substituting 
this and replacing m{t) by mco ri{t), and using the expression r{t) = 

{[3n{t)RT]/[4irP{t)]}1/3 derived earlier, we then get our second differential equa? 
tion: 

x"(t)=g 
Pbe&rRT \ 4TrVx'(t) ( 3n(t)RT 

'1/3 

mCo2[P-SPh^x{t)} j mC02n(t)\4v[P-gpbeerx(t)] 

(2) 

We can reduce the system of differential equations (1), (2) by introducing the 

velocity of the bubbles as a new variable. The resulting system 

n'{t)=AirK 
3n{t)RT 

nV3 

4ir[P-gpbeer*(0] 

x'{t)=y{t) (3) 

y'{t)=g 

1 
Pbeer^ _ A _ ^M*) ( 3n(t) RT ^ 

mCO2[^-SPbeer*(0] / ?CO2"(0 \ 4^ [ P " 
SPbeer*( 0] 

can be solved numerically, given appropriate initial conditions, to find the motion 

of a rising bubble. 

Physical Constants and Initial Conditions 

It is a useful task for students to track down the values of the physical constants 

that occur in these equations and express them in a consistent system of units. 

Using SI units, based on the meter for length, kilogram for mass, and second for 

time, we find that g = 9.807 [m-s-1], a typical atmospheric pressure is P = 

1.013 X 105 [N ? m~2], the universal gas constant is R = 8.3145 [N ? 
m/(mole 

? ?K)], 
the mass per mole of C02 is mCOi 

= 4.401 X 10 ~2 
[kg/mole], and the density of a 

typical beer is about pbeer 
= 1.010 X 103 [kg ? m~3]. Finding the viscosity of beer is 

more difficult, but [1] gives a measured value at 8?C of 17 = 1.3 ?0.05 X 10~3 

[N ? s ? m~2], which is close to the published viscosity of water or ethyl alcohol at 

10? C. 

Finally, we have the constant K that measures the freshness of the beer, i.e., the 

rate at which C02 passes from the beer into the bubbles, per unit area of bubble 

surface. Estimating this value experimentally might be possible, but we will treat it 

as a "fudge factor," choosing its value to make our numerically computed results 

conform to the experimental observation that the radius of bubbles in a tall glass 
of beer approximately doubles as they float to the surface. 

Experiments [1] using a glass of beer filled to a depth of 15.6 cm (so x{0) =xQ = 

-0.156 [m]) with the beer temperature about 8? C (so T = 281 [? K]) found that the 

bubbles break free from the nucleation sites in the bottom of the glass when their 

radius is about 0.17 mm (so r0 = 1.7 X 10~4 [m]). Using the ideal gas equation 
n{t) = [P{t)V{t)]/{RT) once more, with P{0) = P - 

gpheerx{0) and V{0) = fTrr3, 
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yields the initial number of moles of C02 in the bubble: 

4^(P-S,w?,)] 
v } 3RT 

We assume the bubbles break free with zero initial velocity: y(0) = 0. 

Virtual Beer 

Now the moment of truth: When we turn over to a computer the system (3), with 

the initial conditions just discussed, using a program for numerically approximating 
the solution, how does the behavior of the bubbles in our "virtual beer" compare 
with the experimental measurements [1] of the real thing? As mentioned above, 
some tinkering with values of the C02 diffusion rate coefficient K is required, but 

we find that K= 7.5 X 10~3 [moles ? m-2 ? s_1] produces the observed doubling of 

the bubble radius during the trip to the surface, using the experimentally measured 

value for the viscosity of beer and Hadamard's formula for the drag force on the 

rising bubbles. However, we find that the bubbles in our virtual beer reach the 

surface in less than one second! If we decrease the value of K, slowing the rate of 

growth of the bubbles and hence retarding their increase in buoyancy, we can 

make them take the required 3.8 seconds to ascend?but then we find that their 

radius is nearly constant throughout the trip. There is no value of K that will 

produce the desired doubling in bubble radius and also a rise time of about 3.8 

seconds. Our plausible model produces virtual beer that is quite unlike the real 

thing! 
The flaw in our model appears to be that the drag force is neither Hadamard's 

-4Trrir(t)x'(t) nor Stokes's -6Trr\r(t)x'(t). Apparently the bubbles rise too 

rapidly to satisfy the assumptions of "creeping flow" on which these formulas 

depend, or possibly some other effect we have ignored has a significant bearing on 

the drag. However all is not lost?we may yet gain some insight into the motion of 

the bubbles by assuming that the drag force is proportional to the radius and speed 
of the bubbles, but no longer insisting that the coefficient of proportionality be a 

known multiple of the viscosity of beer. Thus we may suppose the drag force is of 

the form Fdmg(t)= -dr(t)x'(t), where the coefficient d is, like K, a "fudge 
factor" that we can adjust to make the bubbles rise in the desired 3.8 seconds 

while doubling in size. When this is done, we find that the choice K= 2 X 10"3 

[moles ? m~2 ? s_1] and d = 0.068 [N-s-m-2] gives acceptable results, shown in 

Table 1. However, scrutiny of the table shows that the bubbles in our virtual beer 

Table 1 
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Table 2 

begin by rising too slowly (falling almost 1 cm behind), then accelerate enough to 

reach the surface in the same time as bubbles in genuine beer. 

Could better results be obtained by continuing to assume that the drag is 

proportional to the speed of the bubbles, but is proportional to their cross-sec- 

tional area rather than their radius? That is, assume FdTag{t)= -dr{t)2x'{t) for 

some constant d. All that is required is to change the exponent in the equation for 

y'{t) from \ to ?, and to experimentally determine appropriate values of the 

constants K and d. We find that the same value of K, together with d = 260 

[N ? s ? m~3], gives bubbles that double in size while rising to the top in about 3.8 

seconds. Moreover, the bubbles in our virtual brew now ascend at about the same 

rate as those in real beer; see Table 2. The uncertainty in the measured values is of 

the same order of magnitude as the deviations from our computed values, so 

further attempts to refine our model to fit the experimental data would be 

pointless. 
This example illustrates the importance of comparing the results of models with 

experimental data. Our quite plausible model, based on well-known physical 

principles, gave a poor performance. This is not uncommon in fluid dynamics, a 

subject fraught with complications and paradoxes. By simplifying the 

model?abandoning the hope of expressing the drag in terms of fundamental 

constants, like viscosity and density, that characterize the fluid properties of beer 

?we obtained reasonable agreement between bubble behavior in virtual beer and 

the real thing. 
We've gained some insight into the phenomenon of bubble formation and 

motion, but there remain plenty of mysteries to contemplate when next we gaze 
into a full pilsener glass. Working through this analysis may have left you with a 

parched palate?perhaps more experimental investigation is called for ... . Cheers! 

Acknowledgment. I am indebted to Stanislav Bartori, Dominick Gruntz, and Werner Hartmann for 
their support, and to the referees for improvements in this article. 
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