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Abstract: The primary aim of this project is to draw a connection between differential equations and

vector calculus, using population ecology modeling as a vehicle. This setting allows us to also employ

multivariable optimization as a means of model fitting and multivariable integration in the context of

density functions. The project is designed for advanced first-year undergraduates in a multivariable and

vector calculus course, with a background in differential equations.

SCENARIO DESCRIPTION

Introduction

This is a group assignment. Your primary submission is a hard copy report that should not exceed

four (4) pages (not including appendices and title page). This report will include graphs reflecting

your work.

You should include any additional supporting graphs, equations, or computations in the ap-

pendices. An appendix is NOT a place to put printed computer code. If you think your code

is important, you may include it in an appendix, but you should ensure it includes annotations

describing what you are doing. You will also digitally submit Mathematica and/or Excel files you

develop via email. If you think a computation or equation is important for the reader, please ensure

it is in the main report or appendices and not just in your digital file.

Ensure all work is logical, neat, and organized. Submit a cover sheet and document any assistance

you receive. Doing the computations correctly is important, but analyzing, communicating, and

reflecting the relevance of your results is also critical.

In addition you will give a 10 minute presentation with time afterward for questions to your

instructor reporting your results. Your presentation will be no more than five (5) slides (one slide

per task, plus any background/introductory material).
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Goals:

1. Students clearly communicate their mathematical model and solution methods in written form.

2. Students explore aspects of the problem from a different disciplinary perspective to supplement

their mathematical modeling.

3. Students develop and solve a mathematical model for a real world problem using multivariable

calculus.

4. Students confront the ambiguity of problem solving and understand the necessity of making

assumptions in formulating a mathematical model and the impact these assumptions have on

their solutions.

5. Students apply technology learned in the course to analyze and solve a multivariable calculus

model and develop an appreciation for how technology enhances their problem solving capabil-

ities.

6. Students connect the concepts learned in multivariable and vector calculus to the knowledge

previously obtained in modeling with differential equations.

7. Students practice collaboration on a technical project.

Background

The following scenario is based on recent, real events. (See [2].)

Isle Royale National Park (IRNP) is an island in Lake Superior, near Northern Michigan, which

is 45 mi long and 9 mi wide. There is a predator-prey relationship of moose and wolf on the island.

Researchers have monitored this dynamic since the 1950s, observing (until recently) relatively stable

population trajectories.

However, the wolf population dropped down to only two wolves in January 2018 (male and

female), resulting in an explosion of the moose population. This is having negative second order

effects on the Park: overpopulation of moose has led to overfeeding, the vegetation change has

affected stream flows, which affected riverine ecological balance and even infrastructure damage on

the island.

Researchers working with the Isle would like to see if they can model the past dynamics of the

system. If so, they will assess whether they can return the population to equilibrium through careful

human interventions (e.g., bringing more wolves to the island, controlled hunting).

You are an engineer officer assigned to the U.S. Army Corps of Engineers (USACE) at the District

Headquarters in Detroit, MI. The Federal Parks Service has requested USACE aid in assessing the

damage to the park, which includes road and facilities damage. The District Commander assigns

you to temporary duty (TDY) as the liaison officer (LNO) between USACE and the IRNP.

While not part of your official duties, you volunteer to collaborate with the team of researchers

who are trying to model the population dynamics of the park.
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TASK 1: Exploring the Predator-Prey Model

We would like to model the population dynamic of moose and wolves on the Isle with a predator-prey

model,1

x′ = P (x, y) = −ax+ bxy,

y′ = Q(x, y) = dy − cxy
(1)

where x(t) represents the size of the predator population at time t, y(t) represents the size of the

prey population at time t, and a, b, c, and d are parameters of the model. Recall d is the growth

rate of the prey, a is the death rate of the predator, and b and c measure the effect of interactions

between the two species.

Define

G = 〈P, Q〉, and r(t) = 〈x(t), y(t)〉, (2)

Here r(t) is a vector equation of a space curve representing a solution trajectory of the system G.

Note also that r′(t) = G since

r′(t) = 〈x′(t), y′(t)〉 = 〈P,Q〉 = G. (3)

In Task 1, we will reformulate solutions to the predator-prey model in terms of level sets of some

underlying potential function. This will provide a vehicle for estimating parameters of the model

using data, in Task 2.

First let’s gain some intuition about the problem. Imagine a vector field G of a typical predator-

prey system, and form a new vector field F which is orthogonal to G at any given (x, y). If there

exists some potential function f such that F = ∇f , then it appears that the level curves of f would

correspond to solution curves of the system G. (See Figure 1.)

Note: There is no need to use Mathematica in this Task, however, you are welcome to employ it

as you see fit to check any of the simple algebraic manipulations.

1. Let’s explore some properties of F. Define

F = h(x, y) 〈Q, −P 〉 (4)

where h(x, y) is some arbitrary nonzero function.

(a) Show that G = 〈P, Q〉 is not conservative.

(b) Show that, with h(x, y) = 1, F is also not conservative.

(c) Show that F is orthogonal to G for any h(x, y).

(d) Finally, show that in order for F to be conservative, h(x, y) must solve the following partial

differential equation:
∂

∂x

(
hP
)

+
∂

∂y

(
hQ
)

= 0 (5)

1Reference Zill [5] Chapter 10 (p. 109, 417-418).
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(b) Example gradient field (F = ∇f) and

level curve f(x, y) = k.

Figure 1: Intuition: the predator-prey system vector field (left) is orthogonal to the gradient vec-

tor field of some potential function (right). Then a solution curve of the predator-prey system

corresponds to a level curve of the potential function.

2. We will now give mathematical justification of our observation in Figure 1. We know r′(t) = G.

Let q(t) = h(x, y) 〈y(t),−x(t)〉, and we also have q′(t) = F.

(a) Show that r′(t) is orthogonal to q′(t), for any t and any h(x, y).

(b) Assume that f(x, y) exists such that F = ∇f . Show that

d

dt
f
(
x(t), y(t)

)
= 0 (6)

(Hint: Begin by expanding the left side of this equation using the multivariable chain rule.

Then observe this results in a dot product of two quantities for which you have already

shown a key property.)

In other words, (6) tells us the change in f is zero along the solution trajectory given by r(t)

— the definition of a level curve!

3. We could attempt to solve the partial differential equation in (5) directly, but instead, let’s try

a different attack. Following the derivation in [5] (Zill, Chapter 10), we form a new differential

equation in terms of dy/dx and perform a separation of variables. We get the expression:

d lnx+ a ln y − cx− by = k (7)

where a, b, c, and d are parameters of the original model. Here, k is a constant that is determined

by initial conditions (x0, y0) — i.e. k = d lnx0 + a ln y0 − cx0 − by0.

Define

f(x, y) = d lnx+ a ln y − cx− by (8)
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and note that f(x, y) = k corresponds to a particular level curve of f(x, y).

(a) Show that F = ∇f . (This will involve identifying h(x, y).)

(b) Verify that h(x, y) satisfies (5).

4. Summarize your findings in this Task. What relationship have we shown, and how did we show

it? Looking toward the next Task, estimating the parameters a, b, c and d, why might this be

useful?

TASK 2: Estimating parameters based on data

Researchers working with IRNP have collected data on the moose and wolf populations over the last

N = 61 years, in particular 1956-2017.2 Each datapoint is a pair (xi, yi), with the wolf (x) and moose

(y) population for the i-th year. The observations are averaged over several park rangers’ counts at

the beginning of each year, and the moose are counted by 10’s. For example, (x1, y1) = (21, 53.4)

would represent there were 21 wolves and 534 moose observed in 1956.

In Task 2 we will estimate parameters of a predator-prey model that models this data.

For convenience define w = lnx and z = ln y, and we can now rewrite Equation (7) as

dw − cx− by + az = k (9)

Notice this represents an equation of a plane in 4-dimensional (w, x, y, z)-space (i.e. a “hyper-

plane”).3

Our data represents 61 points in this 4-dimensional space, with coordinates (wi, xi, yi, zi) for

the i-th datapoint. For example, a year-end reading of 21 wolves and 534 moose represents the

datapoint

(w, x, y, z) =
(

ln(21), 21, 53.4, ln(53.4)
)

= (3.044, 21, 53.4, 3.98) (10)

(Remember that moose are in 10’s.)

Unfortunately there is no set of parameters a, b, c, d, and k such that Equation (9) is fulfilled for

every single datapoint! (This is similar to the idea of linear regression with two-dimensional data:

the datapoints appear to form a line, but not a perfect line. Now, the datapoints appear to form a

plane, but not a perfect plane.) 4

So, we would like to choose parameters (a, b, c, d) and k for our hyperplane that make it fit the

data as “best as possible”. See Figure 2. Recall that the distance of a point (w0, x0, y0, z0) to the

hyperplane in (9) is5

dist =
|dw0 − cx0 − by0 + az0 − k|√

a2 + b2 + c2 + d2
⇒ dist2 =

(dw0 − cx0 − by0 + az0 − k)2

a2 + b2 + c2 + d2
(11)

2We will use a slight modification to this data which is given in the Mathematica notebook issued with this project.
3You may also interpret it as a 4-dimensional level surface where the 5-dimensional function f(w, x, y, z) = dw −

cx− by + az equals k. Say that five times fast!
4Note: the typical regression method is ordinary least squares. In this Task, we are performing total least squares,

or orthogonal regression, also known as error-in-variables regression. (See [1].)
5Reference [4] Stewart, Section 12.5, p. 829-830.
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(a) Fitting a line (2-D). (b) Fitting a plane (3-D).

Figure 2: Choosing parameters for the line (2-D) or plane (3-D) that minimizes the orthogonal

distance between datapoints and the plane. In Task 2 we are dealing with a hyperplane (4D).

Let’s select parameters a, b, c, d, and k that minimize the sum of the squared distances from

each point to the hyperplane. That is, we’d like to determine a, b, c, d and k which solve the

optimization problem

minimize

N∑
i=1

(dwi − cxi − byi + azi − k)2

a2 + b2 + c2 + d2
. (12)

Notice this optimization problem is ill-defined: we could just send a, b, c, and d toward infinity,

the denominator of (12) would get arbitrarily big, and the objective function would go to zero.6

We know the parameters must be finite, so the sum of their squares must also be finite — let’s

define this sum to be a constant s2. We can use this fact to constrain our optimization, giving:

minimize

N∑
i=1

(dwi + azi − cxi − byi − k)2

s2

subject to a2 + b2 + c2 + d2 = s2

(13)

which we may solve using the technique of Lagrange multipliers.

But this requires knowing s, which we don’t know! We can avoid this issue by dividing through

by s2 and creating the equivalent optimization problem

minimize

N∑
i=1

(d̂wi + âzi − ĉxi − b̂yi − k̂)2

subject to â2 + b̂2 + ĉ2 + d̂2 = 1

(14)

where

â =
a

s
, b̂ =

b

s
, ĉ =

c

s
, d̂ =

d

s
, and k̂ =

k

s
. (15)

1. Solve the constrained optimization problem in (14) for our data, using Mathematica. What are

the optimal scaled parameters â, b̂, ĉ, d̂, and k̂?

6This is clearer if we peek ahead at (13) and (14), and note that if s2 is allowed to go to infinity, or equivalently

if we drop the constraint in (14), the objective value will be (trivially) zero.
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2. We really want the unscaled parameters a, b, c, d, and k. To do this, we use three facts:

� Recall from your study of systems of ODEs that we can closely estimate the period T of

the system using the eigenvalues of the Jacobian near the central critical point. (Refer to

[5] Zill Chapter 10.) Specifically, T = 2π√
ad

.

� We know, through observation of the real populations, that the period T is equal to about

25 years.

� Finally, recall that âd̂ = ad/s2.

Use these facts to find an equation for s in terms of the period and the product âd̂. Then use

this value of s to recover a, b, c, d, and k.

3. Using NDSolve, with your estimated model parameters, plot the trajectories of x(t) and y(t).

Overlay the actual data with these plots. Make a qualitative assessment of your model against

the real data.

TASK 3: Intervention Strategy

Michigan Technological University’s lead wolf researcher, Rolf Peterson, has recommended resort-

ing to human intervention strategies to restore balance in the wolf-moose balance on Isle Royale.

Specifically, he proposes relocating two wolfpacks from the nearby forests in Canada to the Isle.

You propose to assist this decision process by modeling the density of moose on the Isle. Through-

out this task, we will place a coordinate axes on the Isle with origin in the center, the main body of

the island running along the x-axis, and the scale in miles. (See Figure 3.)

The Isle Royale National Park knows the moose tend to herd together in two distinct groups,

North and South, based on their typical feeding patterns. Under our coordinate axes scheme, the

observed geographic centers of the Moose Group North and Moose Group South are

North: (10, 1), South: (−16,−1) (16)

There are a total of 1,600 moose on the Isle at a ratio of 3:2 between the North and South

populations.

1. First consider a density function of the form:7

P (x, y) =
1

25π
exp
{
− 1

25

(
(x−m)2 + (y − n)2

)}
(17)

with parameters m and n. Notation: exp{x} = ex. Let’s familiarize ourself with the behavior

of P (x, y) on the domain of all of R2.

(a) Using Mathematica, to what value does P (x, y) integrate, for arbitrary parameters m,n?

(Bonus: show how to solve this by hand, by switching to polar coordinates.)

7Although we are not using it to model probability, this density function is in the family of bivariate Gaussian

probability density functions, i.e. the normal distribution. The univariate version of this density function is sometimes

called the “bell curve.”
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Figure 3: Isle Royale with coordinate axes. (Image: Google Maps.)

(b) Using Mathematica, what is the center of mass (x̄, ȳ) of P (x, y), for arbitrary parameters

m,n? Why is this property of P (x, y) useful?

Now we’ll use a combination of density functions of the form P (x, y) to model the moose popu-

lation on the Isle. Let’s model each moose subpopulation (North and South) with its own density

function and associated parameters, that is

Pnorth(x, y) with mnorth, nnorth Psouth(x, y) with msouth, nsouth. (18)

Choose these 4 parameters based on the observed geographic subpopulation centers and your ob-

servation in Question 1b. Let the units of Pnorth and Psouth be moose per sq. miles (the same scale

as the coordinate axes in Figure 3).

Then create a new, combined density function ρ(x, y) for the whole Isle:

ρ(x, y) = K
(

0.6 Pnorth(x, y) + 0.4 Psouth(x, y)
)
. (19)

where K is a scaling parameter. Note the units of ρ(x, y) are also moose per sq. miles.

2. What is the purpose of the “weights,” 0.6 and 0.4, in ρ(x, y), in relation to the distribution of

the moose groups on the island?

3. Finally, we need to incorporate the shape of the island into our model.

(a) Based on Figure 3, let’s use an ellipse to model the boundary of the island. Recall that

an ellipse has the form x2

a2 + y2

b2 = c2. Choose parameters a, b, c for an ellipse that closely

model the island and visualize your choice.

(b) Integrate ρ(x, y) over your chosen model of the island boundary, and choose an appropriate

value for K given the total moose population. You will likely need to use NIntegrate to

evaluate the double integral.
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(c) Visualize ρ(x, y) over your chosen model of the domain using ContourPlot. The commands

RegionFunction and AspectRatio will be useful. For example,

ContourPlot[x Cos[y], {x,-5,5}, {y,-2,2}, AspectRatio->2/5,

RegionFunction->Function[{x,y}, (x/4)^2+(y/2)^2 <= 1]]

plots the function x cos(y) over the interior of an ellipse while maintaining the difference

in scale in the x and y directions. (Bonus: try using Plot3D with BoxRatios.)

4. Calculate the overall center of mass of the total moose population of the entire island, using

ρ(x, y). Include this location, along with the North and South Group centers of mass, on your

visualization of the island-wide moose density above.

5. Make a recommendation to Rolf Peterson and the Isle Royale National Park as to where to

place the two Canadian wolfpacks. Does your recommendation change if we are only able to

acquire one wolfpack? Use your recommendation(s) as a new initial condition for the predator-

prey system, and find the resulting solution curves. Note this is now a projection of future

population trajectories. Use the results to quantify the effects of your recommendation.
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