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Abstract: The recent coronavirus outbreak has infected millions of people worldwide and spread to

over 200 countries. The virus is spreading rapidly. Infectious disease modeling is an essential part of the

effort to minimize the spread and help predict the likely course of an epidemic. How can we use differential

equations to study the spread of coronavirus? In this activity, students are engaged in the real life challenge

to examine the dynamics of the pandemic using systems of nonlinear differential equations. The SIR model,

force of infection and basic reproduction number are introduced to guide students to set up the equations

and analyze the results. Students obtain estimates of model parameters from the real data and visualize

the behavior of the solutions.

SCENARIO DESCRIPTION

On December 31, 2019, the city of Wuhan in China reported an outbreak of a novel coronavirus

(COVID-19). It is the seventh member of the coronavirus family, together with MERS-CoV and

SARS-CoV, that can spread to humans [1]. The virus is spreading rapidly. As of April 20, 2020,

over 2.4 million people worldwide have been infected, spanning 210 countries and territories. The

World Health Organization (WHO) has declared the outbreak as a pandemic.

The word ‘pandemic’ comes from the Greek word ‘pandemos’, meaning “pertaining to all people”.

The Greek word ‘pan’ means “all” and ‘demos’ means “people”. Pandemics are usually caused by

an infectious agent that is capable of rapidly spreading. An epidemic is specific to one city, region,

or country, but a pandemic spreads beyond national borders, possibly worldwide. The 1918 Spanish

flu was the worst pandemic in modern human history. It infected 500 million people around the

world and resulted in the deaths of over 50 million people [2]. Increased travel and mobility have

increased the likelihood of new diseases spreading. Figure 1 lists the major epidemics and pandemics

that have occurred over time. The recent ones are SARS, swine flu, Ebola, MERS, and COVID-19.



2 Pandemic Modeling

Infectious disease modeling is an essential part of the effort to minimize the spread. A well-

designed model not only can help predict the likely course of an epidemic, but also can reveal the

most promising and realistic strategies for containing it.

How can we use mathematical models and differential equations to study the spread

of coronavirus?

Figure 1. Major epidemics and pandemics in human history, modified from [3].

Mathematical modeling – the SIR model

Let’s first examine differential equation models in epidemiology. Epidemiology is the study of the

distribution and causes of disease in populations. The spread of infectious diseases, such as measles
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and malaria, can be modeled by a system of nonlinear differential equations. The simplest model is

the SIR model (Susceptible-Infected-Recovered). The model makes several basic assumptions:

A1. The total population is constant.

A2. Once an individual has been infected and subsequently recovered, that individual cannot be

re-infected, such as in the case of measles, mumps, and smallpox.

A3. The rate of transmission of the disease is proportional to the number of encounters between

susceptible and infected individuals.

A4. The rate at which infected individuals recover is proportional to the number of infected.

As the first step in the modeling process, we identify the independent and dependent variables.

The independent variable is time t, measured in days. The dependent variables are the numbers of

individuals in each group, each as a function of time.

s(t) = the number of susceptible individuals

i(t) = the number of infected individuals

r(t) = the number of recovered individuals

s(t) + i(t) + r(t) = N (the total population)

It may seem more natural to work with population counts, but some of our calculations will

be simpler if we use the fractions instead. Therefore, we normalize the dependent variables by the

total population to represent the fraction of the total population in each group. The two sets of

dependent variables are proportional to each other, so either set will give us the same information

about the progress of the epidemic.

S(t) = s(t)/N = the fraction of susceptible individuals

I(t) = i(t)/N = the fraction of infected individuals

R(t) = r(t)/N = the fraction of recovered individuals

S(t) + I(t) +R(t) = 1
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The SIR model is illustrated schematically in Figure 2, and described by the nonlinear system

of ODEs below, where a is the transmission rate and r is the recovery rate.

S′(t) = −aSI (1)

I ′(t) = aSI − rI (2)

R′(t) = rI (3)

Figure 2. The SIR model.

To understand this model, let’s analyze the differential equations and parameters. The trans-

mission rate a is the product of two factors: the rate of contact and probability of transmission. a

describes the fraction of those contacts that may result in infection, or it can be interpreted as the

expected number of people an infected person infects per day. The function λ(I) = aI is the rate at

which susceptible individuals become infectious, called the force of infection. The rate of change

of the susceptible population is negative the force of infection times the number of susceptible,

leading to (1).

The recovery rate r is the rate at which infected individuals get over the disease, that is the

proportion of infected recovering per day, thus the rate of change of the recovered population is rI,

leading to (3). Importantly, the parameter r is measured in time−1 and 1/r can be interpreted as

the average time to recover, or the number of days an infected person has and can spread the

disease.

Can you explain (2)?

In the GeoGebra App [4], let’s solve the nonlinear system (using ‘NSolveODE’), plot the solutions,

and visualize the interaction of the three groups. The GeoGebra tutorials are available online [5].

Consider the initial population fractions S(0) = 0.99, I(0) = 0.01, R(0) = 0 (S + I + R = 1),

a = 1, r = 0.2, and a time period of 30 days. An example demonstration is provided in [6] with a

screenshot in Figure 3. Adjust the parameters values to examine different behaviors and view the

changes in action. What do you observe by increasing or decreasing a?

Basic Reproduction Number R0

The basic reproduction number R0, “R naught”, is introduced to measure the transmission potential

of a disease. It is the expected number of secondary infections produced by a single infective. For
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Figure 3. A screenshot of GeoGebra dynamic constructions.

example, if the R0 for measles in a population is 16, then we would expect each new case of measles

to produce 16 new secondary cases over the period of time during which the infected individual

can actually spread the disease. R0 is affected by several factors: the rate of contacts in the

host population, the probability of infection being transmitted during contact, and the duration of

infectiousness. In the SIR model described above,

R0 =
a

r
. (4)

R0 is essentially a metric of how contagious a disease is. It can capture three basic scenarios,

illustrated in Figure 4.

Figure 4. Basic reproduction number R0 [7].

If R0 < 1, on average, an infected person infects less than one person. The disease is expected to

stop spreading. If R0 = 1, an infected person infects an average of one person. The disease spread

is stable, or endemic. If R0 > 1, on average, an infected person infects more than one person. The
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disease is expected to increasingly spread in the absence of intervention. Here is the estimated R0

for several diseases [3]. Measles tops the list, being the most contagious with a R0 range of 12-18.

Early estimates of R0 for COVID-19 vary in the range of 2-3.

The following activities will guide you through some deeper investigations.

1. Examine (1) and (2) again
dS

dt
= −aSI, dI

dt
= aSI − rI

(a) According to the differential equation for dI/dt, under what conditions will I(t) be increas-

ing? decreasing? What does this mean about the spread of the disease? Using this result,

explain whether quarantine will be effective against the disease.

(b) Use the chain rule to show that
dI

dS
= −1 +

1

R0S
(5)

Two features of this new equation are particularly worth noting:

� The only parameter that appears is R0, the reproduction number.

� The equation is independent of time. That is, what we learn about the relationship

between S and I must be true for the entire duration of the epidemic.

Compute d2I/dS2. Determine when the number of infected will begin to decrease.

Compare this to your reslult from (a).

(c) Show that I must have the form

I = −S +
1

R0
lnS + C (6)

where C is a constant.

(d) For a disease such as COVID-19, I(0) is approximately 0 and S(0) is approximately 1. A

long time after the onset of the epidemic, we have I(∞) approximately 0 again, and S(∞)

has settled to its steady state value, observable as the fraction of the population that did

not get the disease. Explain why

R0 =
lnS∞
S∞ − 1

.

(e) Describe the meaning and significance of “herd immunity”. How can vaccination lead to

herd immunity?

2. Recovered individuals may lose their immunity and become re-infected, such as in the case of

malaria and tuberculosis, as well as COVID-19. We add a new assumption.

A5. Re-infection occurs at a rate proportional to the population of recovered individuals.

Call this proportional parameter b.

Sketch a schematic diagram similar to Figure 2. Modify (1)-(3) and set up the new model

– the SIRS model, with parameters a, r, and b.
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3. In reality, deaths may occur due to the disease. For simplicity, let’s only consider deaths from

the infected group I, with a death rate c.

(a) Modify your previous diagram and model in 2, including four differential equations with

the fourth being D′(t) = . . ., and parameters a, r, b, and c.

(b) Pick one pandemic from the list in Figure 1 and a region, such as a city or a country.

Research into the data available and obtain reasonable estimates of the parameters a, r,

b, and c, as well as initial conditions S(0) and I(0). Set R(0) = D(0) = 0. Note that

S + I +R+D = 1.

(c) Solve your model with these parameter values and visualize the solutions in GeoGebra.

Include a sharable link to your work. Describe the behavior of the solutions. Compare

your results with the real data. Does your model seem reasonable? Explain.

Other models include SEIR, SEIS, SEAIR, MSIR, MSEIR, and MSEIRS. For many infections,

there is an incubation period during which individuals have been infected but are not yet infectious

themselves. During this period the individual is in class E (for exposed), leading to the SEIR model.

The SEIS model is like the SEIR except that no immunity is acquired at the end. In the E class,

a significant number of persons may never develop symptoms, but they are capable of transmitting

the disease, introducing an additional compartment A, and thus SEAIR. For many infections, such

as measles, babies are not born into the susceptible compartment but are immune to the disease

for the first few months of life due to protection from maternal antibodies. The M class contains

infants with maternally derived immunity (or passive immunity). The MSEIRS model is similar to

the MSEIR, but the immunity in the R class would be temporary, so that individuals would regain

their susceptibility when the temporary immunity ended.
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