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STATEMENT  

The student is asked to derive and solve a differential equation that 

gives the position (angle) of a pendulum bob as a function of time t. 

One relationship that allows us to express the angle 𝜃 as a function of 

time t comes from the conservation of energy principle of physics. The 

pendulum’s motion is a constant tradeoff between kinetic energy and 

potential energy. Indeed, the sum of the potential energy and the 

kinetic energy of the pendulum remain constant for an ideal (no or 

almost no friction effect) pendulum.   

 

Potential energy (PE) = mgh where m is the mass of the pendulum 

bob, g is the acceleration due to gravity, and h is the height of the bob 

from its lowest point. Kinetic Energy (KE) = 
1

2
𝑚𝑣2. Conservation of 

energy suggests that the sum of these two terms will be constant. 

𝑚𝑔ℎ +
1

2
𝑚𝑣2 = 𝐶 

𝑚𝑔ℎ +
1

2
𝑚(

𝑑𝑠

𝑑𝑡
)2 = 𝐶, 

 

and note that s=L 𝜃 and h = L(1-cos(𝜃 ))which gives 

 

𝑚𝑔𝐿(1 − cos(θ) +
1

2
𝑚(𝐿

𝑑θ

𝑑𝑡
)2 = 𝐶. 

 

Differentiate with respect to t (don’t forget the chair rule) and obtain 

 

𝑚𝐿2
𝑑𝜃

𝑑𝑡
[
𝑑2θ

𝑑𝑡2
+

𝑔

𝐿
sin(θ)] = 0 , 

 

from which we infer 

[
𝑑2θ

𝑑𝑡2
+

𝑔

𝐿
sin(θ)] = 0                                                             (1) 

 

As an alternate approach one could start with Newton’s Second Law of Motion, F=m*a,  which 



asserts that the total force acting on a body is its mass times its acceleration. We apply this along 

the tangential direction to the arc traveled by the mass (pendulum bob). 

 
 

 

From F=ma it follows that 

𝑚 ∗ 𝐿
𝑑𝜃2

𝑑𝑡2
= −𝑚𝑔 ∗ sin(𝜃) 

 

(the negative sign because this is a restoring force.) Upon algebraic manipulation this becomes 

 

[
𝑑2θ

𝑑𝑡2
+
𝑔

𝐿
sin(θ)] = 0 

 

which agrees with (1) 

 

This is a non-linear second order differential equation but can be simplified by substituting 

θforsin(θ).The graph below shows two y=sin(𝜃) and two Taylor polynomials y= 𝜃 and 𝑦 = 𝜃 −
𝜃3

6
 plotted on the same axes. This suggests that for small values of 𝜃,  sin(𝜃) can reasonably be 

replaced by 𝜃. This substitution will greatly simplify solution of (1).        

        

sin(𝜃) ≈𝜃 for small angles 𝜃. 

 

[
𝑑2θ

𝑑𝑡2
+

𝑔

𝐿
θ] = 0 is recognized as a linear second order equations with constant coefficients. By 

finding the characteristic polynomial and following usual procedures one finds a general solution  

𝜃(𝑡) = 𝐶1 ∗ cos (√
𝑔

𝐿
∗ 𝑡) + 𝐶2 ∗ sin (√

𝑔

𝐿
∗ 𝑡)                                        (2) 

 



 
 

 

We will now build a physical pendulum and see how well our solution tracks the physical object. For 

this exercise the student needs to obtain a cord of about 36 inches (sewing thread will work) and a 

weight (something compact, like a fishing weight.) The author used a nut of 2.75 oz. Attach one end 

of the cord to the weight and secure the other end to a support that will let the cord and weight 

swing freely. Perhaps tie the thread to a push pin in the center of a door way. Carefully measure and 

record the length “L” of your pendulum. As you can see from the solution (2) the mass of the 

pendulum bob does appear which means that there is no compelling reason to accurately measure 

the mass. Anything compact and of two to three ounces will work. Decide on an initial displacement 

to start your pendulum. The sin(𝜃) ≈𝜃  simplification works well for displacement up to about 

150 = .2618 radians.  

 

You have a general solution for a pendulum, and now you have a particular pendulum that you have 

built.  

 

Using your pendulum set your initial conditions (0) and 𝜃’(0). With these initial conditions and the 

general solution to the differential equation find your particular solution.  

 

My pendulum has length 31.5 inches. The bob weighs 2.37 ounces, and my initial displacement was 

140 = .2443 radians. You could measure an initial displacement with a protractor, an instrument 

which is no longer ubiquitous among students, (see illustration after REFERENCES below) or use the 

law of cosines to calculate the linear displacement of the bob from the rest position at 140. 



In my pendulum L = 31.5 inches and  =140 so  𝑑 = 7
11

16
  .  The particular solution for my pendulum is 

𝜃(𝑡) = 0.2443 ∗ cos(√
𝑔

𝐿
∗ 𝑡). L is 31.5 inches and an accepted value for g in the units inches per 

second squared is g = 386.088 which makes my particular solution 

𝜃(𝑡) = 0.2443 ∗ cos(√
386.088

31.5
∗ 𝑡)                            (3) 

 

Displace the bob and release it to start the pendulum swinging. Use a stop watch to measure the 

time for ten cycles. The period of your pendulum is the time required for one cycle and so the time 

value you measured above must be divided by ten. In this way I obtained an empirical estimate of 

the period (call it �̂�) of 1.792 seconds. To find the theoretical period of my pendulum I use my 

particular solution (3) and note that the period of cos(√
386.088

31.5
∗ 𝑡) is P=2𝜋√

𝐿

𝑔
= 1.794𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

This is good agreement with a percent error of -0.15%. 

 

Let’s do it again. This time my pendulum is 1.00965 meters long (I was trying to tie it off at 1 meter. I 

got close!) and I selected an initial displacement of 120 = .2094 radians. Solving for an initial 

displacement d as before we find d=.209 meters or 20.9 cm. And proceeding just as before, for my 

new pendulum I find a period �̂� = 2.012. With confidence in my measurements I assert that  

�̂� = 2.012 ≈ 𝑃 = 2𝜋√
𝐿

𝑔
= 2𝜋√

1.00965

𝑔
 

We can use this pendulum to solve for the acceleration due to gravity. Solving for g we find g=9.846 

m/sec2. We can use WolframAlpha to obtain a reverence value. 

Using the value for local acceleration due to gravity as a reference we find our calculated value of g 

has a percent error of 0.56%. Again, this is good agreement. 
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