Euler's Method Activity Sheet

Suppose that y = f(t) satisfies the following conditions:

$$\frac{dy}{dt} = \cos t$$
 and $f(0) = 0$.

- 1. Verify that $y = \sin t$ is the solution to the above initial value problem.
- 2. Fill out the following tables using Euler's method and the appropriate given value of Δt .

$$\frac{dy}{dt} = f(y,t) \text{ with } y(t_0) = y_0$$
$$y_{n+1} = y_n + \Delta t \cdot f(y_n, t_n)$$

t	$\sin t$	y_n	$ \sin t - y_n $	

Table 2.
$$\Delta t = 0.1$$

- 3. Explain what the column labelled $|\sin t y_n|$ represents. How does it differ between the two values of Δt ?
- 4. Plot the points (t, y_n) and $(t, \sin t)$ from Table 1 and 2 on the next page. Be sure to label the axes appropriately.
- 5. Can you explain your observations in 3 using the above tables and plots?
- 6. What could be done to achieve a better numerical approximation to the solution of the original initial value problem?

Figure 1. $\Delta t = \frac{\pi}{2}$.

Figure 2. $\Delta t = 0.1$.