Euler's Method Activity Sheet

Suppose that $y=f(t)$ satisfies the following conditions:

$$
\frac{d y}{d t}=\cos t \text { and } f(0)=0
$$

1. Verify that $y=\sin t$ is the solution to the above initial value problem.
2. Fill out the following tables using Euler's method and the appropriate given value of Δt.

$$
\begin{aligned}
\frac{d y}{d t} & =f(y, t) \text { with } y\left(t_{0}\right)=y_{0} \\
y_{n+1} & =y_{n}+\Delta t \cdot f\left(y_{n}, t_{n}\right)
\end{aligned}
$$

Table 1. $\Delta t=\frac{\pi}{2}$

t	$\sin t$	y_{n}	$\left\|\sin t-y_{n}\right\|$

Table 2. $\Delta t=0.1$
3. Explain what the column labelled $\left|\sin t-y_{n}\right|$ represents. How does it differ between the two values of Δt ?
4. Plot the points $\left(t, y_{n}\right)$ and $(t, \sin t)$ from Table 1 and 2 on the next page. Be sure to label the axes appropriately.
5. Can you explain your observations in 3 using the above tables and plots?
6. What could be done to achieve a better numerical approximation to the solution of the original initial value problem?

2

Figure 1. $\Delta t=\frac{\pi}{2}$.

Figure 2. $\Delta t=0.1$.

