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SCENARIO DESCRIPTION

Equations of the type (1) and (2)

ay′′(t) + by′(t) + cy(t) = 0 , y(0) = y0 , y′(0) = v0 , (1)

ay′′(t) + by′(t) + cy(t) = f(t) , y(0) = y0 , y′(0) = v0 , (2)

will arise, as we shall see, quite often in any study of differential equations and their applications.

There are a number of ways to solve them and thus gain insight into the application under study. The

most common and traditional way makes use of the quadratic formula for the roots of a quadratic

equation. That is right. The formula we all learned in early algebra in junior or senior high school

is the key to solving the broadest class of differential equations. We can and do say more.

The world runs on second-order differential equations

. . . and the solutions depend on the quadratic equation!!! It is true. Motion requires forces and

the forces acting on a body can be accounted for in two ways: (1) the mass of the body times the

acceleration it possesses and (2) the sum of all the external forces acting on the mass. Condition (1)

can be modeled by m · y′′(t) where m is the mass of a body in some reasonable and consistent unit

(kilograms, grams, slugs, etc.) and y(t) is the one dimensional displacement from some equilibrium

or fixed point in some reasonable unit (meters, centimeters, feet, etc.) so that y′′(t) is the acceleration

the mass is experiencing. Condition (2) refers to
∑n
i=1 (External Force)i. Newton’s Second Law

says these two accountings must give the same result, i.e. the product of mass and the acceleration

applied to that mass is equal to the sum of all the external forces acting on t hat mass. This gives

us the mathematical formulation of (3):
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m · y′′(t) =

n∑
i=1

(External Force)i . (3)

If we can identify, formulate, and account for the External Forces acting on our body then we

have built a differential equation, albeit one with a second derivative, not just a first derivative as

we have previously studied. This will be a challenge, but if our section title is correct, “The world

runs on second-order differential equations,” then it will be a very rewarding challenge.

Springs

Consider a spring suspended from a bar with a mass attached to the bottom of the spring. Further-

more, the mass and a good portion of the attached spring is dipped into a cylinder of liquid. The

cylinder of fluid is often referred to as a dashpot . We take a thin rod and reach into the cylinder

and push down on the mass and withdraw the rod, thus stretching the spring.

a) Describe what happens and give some reasons for why you think your description reflects reality.

What kind of forces might the External Forces acting on the mass be? One obvious force is

the force due to gravity and it is simply m · g where m is our mass and g is the acceleration due

to gravity usually measured in units like m/s2 (MKS system for meter-kilogram-second) or cm/s2

(CGS system for centimeter-gram-second) where here m is meters while s is seconds and cm is

centimeters.

Let us work in the MKS system and thus m ·g has units kg ·m/s2. If we accelerate one kilogram

at a rate of one meter per second each second then we have a force whose magnitude is 1 and in

this case we call this 1 unit of force a Newton. If we were in the CGS system we would have a

comparable notion of force, for if we accelerate one gram at a rate of one centimeter per second

each second then we have a force whose magnitude is 1 and in this case we call this 1 unit of force

a dyne.

So, let’s go back to our spring. What we often do is construct a Free Body Diagram (FBD)

in which we simply isolate the body or mass we wish to analyze and in picture form draw arrows

indicating direction for the forces acting on this body. Force, of course, is a vector quantity and

has magnitude and direction. Both will be very important in our analysis. So we see our mass as

having a downward (agree??) force due to gravity of magnitude m · g. We show this in Figure 1

with more detail for a number of possible cases and other forces we will encounter.

Now picture this. We place the mass on the end of the spring and gently support it as it stretches

the spring and comes to rest. This resting position is often called the static equilibrium. IF gravity

is pulling the mass down and it is at rest (agree??) then there must be a counter force pushing up!

What could it be? Well, think about what happens when you pull on a spring or stretch it. What

does it want to do? It wants to restore itself to its original position. “Leave me at rest,” it says

to us. Thus there is a force we call a restoring force. How might we calculate this force? Well we

could go into the lab with our spring stretch it 0.1 m and measure the force tugging on us as we
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Figure 1. All possible variations of (1) restoration force

(k · y(t)) and (2) resistance force due to velocity c · y′(t).

hold the mass in place; then stretch the spring 0.2 m and measure the force tugging on us as we

hold the mass in place; then 0.2 m; then 0.4 m, etc. If we record all these forces we will find a very

(VERY!) interesting relationship between the force (F in Newtons) to displace a spring x meters.

We look to some history to find out what this relationship might be.

In physics, Hooke’s Law of elasticity states that the extension of an elastic spring is linearly

proportional to its tension.

The law holds up to a limit, called the elastic limit , or the limit of elasticity , after which

springs suffer plastic deformation up to the plastic limit or limit of plasticity, after which they

break down. Have you ever stretched a Slinky toy so far it has no restoring force? Indeed,

this ruins the fun of the Slinky!

It is named after the 17th century physicist Robert Hooke, who initially published it as an

anagram ceiiinosssttuv , which he later revealed to mean ut tensio sic vis, or “as the extension,

the force.”

“Linearly proportional,” eh? That simply means F = k · x where k is some constant of propor-

tionality with units N/m for Newton per meter. This means that for every meter we wish to stretch
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our spring we will have to exert k Newtons. Many of us did a laboratory in high school physics

in which we hung successive weights or masses on a spring and measured the displacement. It was

amazing, for it came out to be a straight line plot of F = k · x.

Again, let us get back to our spring. We find that when we hang a mass of m kg on the end of

the vertically hanging spring we subject the spring to a force of m · g N and if we know our spring

constant k (which is often offered by the manufacturer or we can get a simple collection of a few

data points to determine the linear relationship F = k · x and hence the value of k) then we can

pencil in another force acting on our spring, namely k · y(t) where k is the spring constant with

units N/m and y(t) is the vertical displacement with units m. (See this force in Figure 1.)

This is VERY IMPORTANT. Notice that when we place our mass on the spring and gently let

the spring stretch and come to rest or an equilibrium at an extended length of ye we have two equal

and opposite forces, namely m · g due to gravity, downward, and k · ye (in this case when t = 0) due

to the restoring force of the spring, upward. They cancel because we see the mass is at rest - so no

motion means the two forces are equal and opposite.

Let us denote positive distance and direction as downward (completely arbitrary, but we need

to be consistent). This means in (3) for our differential equation we now have

m · y′′(t) =

n∑
i=1

(External Force)i = m · g − k · ye + other External Forces

= 0 + other External Forces = other External Forces , (4)

where m · g − k · ye = 0. So we are on our way. Now let us continue to develop our differential

equation (4) by finding out what these other forces might be.

If we find our spring extended downward (beyond length ye) at time t, say to an extended length

of y(t) > 0, then there will be a restoring force due to Hooke’s Law upward of size k ·y(t). Similarly,

if we find our spring compressed upward (above length ye) at time t, say to an extended length of

y(t) < 0, then there will be a restoring force due to Hooke’s Law downward of size k · y(t), which

we denote as −k · y(t).

For various phenomena the notion of resistance due to the media or device itself has been studied.

In low velocity motion in liquid empirical and theoretical considerations support the conclusion that

the force of resistance is proportional to the velocity of the object, i.e. c·y′(t), while in higher velocity

motions such as parachutes, bullets, airplane fuselages, etc. the force of resistance is proportional to

the square of the velocity of the object, i.e. c · (y′(t))2. Thus for certain types of physical situation

we still have a linear term, while others it might appear to be a quadratic term.

Now we need to discuss exactly what the spring is doing at the start, t = 0 s, of our experiment.

Suppose we push our spring down (could be up as well), i.e. we initially extend the spring beyond its

static equilibrium position, to say y(0) = y0 m (y0 > 0 if downward and y0 < 0 if upward). Further,

we decide to impart an initial velocity of y′(0) = v0 (v0 > 0 if moving downward and v0 < 0 if

moving upward). We have four possible cases, two each for y(t) and y′(t) being positive or negative.
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We outline them below and then depict them in Figure 1.

(a) y(t) > 0 and y′(t) > 0 (b) y(t) < 0 and y′(t) > 0.

(c) y(t) > 0 and y′(t) < 0 (d) y(t) < 0 and y′(t) < 0.

Remember upward arrows are in the negative direction and downward arrows are in the positive

direction. Thus in case (a) since y(t) > 0 and y′(t) > 0 and both k, c > 0 we have upward forces

applied to our mass since y(t) > 0 means the mass has been extended or stretched downward and

the restoring force is upward, while since y′(t) > 0 means the motion is downward and the resistance

force is upward. You should check out each case and make sure the accounting is correct as well as

the diagrams. This is illustrated in Figure 1. Can you draw the Free Body Diagrams on your own?

We are ready to sum up our “other External Forces.” No matter which of the four cases (a) -

(d) we consider, the “other External Forces” sum this same way, −k · y(t) − c · y′(t). Hence our

differential equation describing the position of the spring’s mass is evolving with

m · y′′(t) =

n∑
i=1

(External Force)i = m · g − k · ye︸ ︷︷ ︸
0 at static equilibrium

+ other External Forces

= other External Forces

= −k · y(t)− c · y′(t) ,

to (5) with our initial conditions y(0) = y0 and y′(0) = v0:

m · y′′(t) = −k · y(t)− c · y′(t) , y(0) = y0 , y′(0) = v0 . (5)

Equation (5) is called the Spring Mass Dashpot differential equation for an oscillating spring

with mass attached and if we can solve it we will be able to predict how our spring behaves by

obtaining a function which represents y(t), the displacement in meters of the mass at the end of the

spring at time t in seconds. Are you ready to solve? Well, let’s go for it!!

First, we point out that (5) is often written as differential equation (6):

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 . (6)

Quite often in reality v0 = 0 as we would really have trouble consistently imparting a set velocity

to our spring mass configuration under water, say!

This equation is an example of a second-order, constant coefficient, linear, homogeneous differ-

ential equation with initial conditions; second-order because is has a second derivative; constant

coefficients because all the function terms have constant coefficients; linear because we have all

derivatives and the function for which we are solving to first power; and homogeneous because there

are no terms other than terms with our function, y(t) and its derivatives, involved.

Before attempting a general solution of (6) let us consider the situation were c = 0, i.e. where

there is no resistance due to the media in which the spring mass configuration sits. This is unreal,

because all moving spring mass objects will meet with resistance either do to internal friction or
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external media resistance. We know this because they do not oscillate forever. Nevertheless, let us

study this spring mass system, presumably purchased from our local “Ideal Physics Store” where

such things as perpetual motion machines are offered on sale at marked down prices, no doubt! If

c = 0 then we have the following differential equation (7):

m · y′′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 . (7)

a) Suppose we had a mass of m = 1 kg and our spring constant was k = 1 N/m. Further suppose

we displaced our mass by y(0) = 1 m and gave it an original velocity of y′(0) = 0 m/s, i.e. can

we find a solution of the differential equation (8)?

y′′(t) + y(t) = 0 , y(0) = 1 , y′(0) = 0 . (8)

Think hard and ask if you know any functions y(t) which have the property that when you

add the function and its second derivative you get 0. We asked that you think hard, but not

too hard!! Write down two such function. Hint: They are in the same family of functions.

y1(t) = and y2(t) = .

By the way, the function y(t) = 0 does not count as it is what we refer to as the trivial solution

and will not give us anything useful in our model solution. Check with your neighbors to see

what they got.

Here is one of the beauties of linear homogeneous differential equations. If you have two

solutions, say y1(t) and y2(t), you can add them to get a new function ynew(t) = y1(t) + y2(t)

and you will find that ynew(t) still solves the same differential equation. Go ahead and take

time to check and see if when you add your two candidate solutions that the sum of them is

also a solution. This means directly substituting ynew(t) = y1(t) + y2(t) into y′′(t) + y(t) = 0,

and seeing if the equation is satisfied, i.e. take the second derivative of your new ynew and add

it to ynew and check that it comes out 0. Do it!

In fact if you take any multiple of a solution to such a differential equation, say a times y1(t)

to obtain ymultiple(t) = a · y1(t) then ymultiple(t) will also be a solution. Go ahead and try it

with one of your candidate solutions. Use the same process as we did in checking that ynew(t)

satisfies the same differential equation.

Now comes a really neat fact. There is always a great deal of theory that supports applied

mathematics and one of the results of theory says roughly that if we could produce two solutions

of a linear homogeneous differential equation, say like your two candidates, y1(t) and y2(t),

and if these solutions are not scalar multiples of each other (there is no constant c such that

y1(t) = c · y2(t) - this condition is called linear independence, meaning in this case y1(t) and

y2(t) are linearly independent) then the complete solution, called the general solution to (8),

will always be of the form ygeneral(t) = c1 · y1(t) + c2 · y2(t). Ah, there is a key word form, a

rather amorphous term. But take the time now to check that for your candidate solutions y1(t)
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and y2(t) the ygeneral(t) = c1 · y1(t) + c2 · y2(t) function IS, in fact, a solution to differential

equation (8). Do it!

Now here is a wonderful piece of good news. In an effort to determine just what c1 an d c2

are in our case of our (8) what information could we use to determine c1 and c2? We will let

you ponder that for a bit. Go ahead and do so and actually determine what the c1 and c2 are

so that the general solution c1 ·y1(t)+c2 ·y2(t) is actually the unique solution to our differential

equation(8) with initial conditions (the last two words are a hint!)

N.B.: Engineers refer to this addition of scalar multiples of two solutions to obtain a general

solution superposition. We call it the addition of scalar multiples of two solutions to obtain a

general solution!

Report your conclusions in words AND in mathematical symbols and be sure to

check that your final unique solution IS really a solution.

b) Now, look at your solution from (a) above and ask, “Is it reasonable that this function should

be a solution to our spring mass (albeit ideal) differential equation(8)?” Go ahead and do just

that and write up your defense as to why it IS reasonable or unreasonable. Take time out to

celebrate this news. High Five your room mate! Treat yourself to a candy bar! Take a break

and play a game of ping-pong in the dorm rec room! Go ahead and do it, you deserve it, but

come back and reflect upon what you just did and be prepared to move on.

Now differential equations come in all sizes and variations and some model reality and some do

not. Consider the following differential equation which might not have any basis in reality but is an

example of a differential equation worth our time for what it will teach us.

y′′(t) = y(t) , y(0) = 2 , y′(0) = 1 . (9)

This is asking us to find a function y(t) such that when we take its second derivative we get

the same function. Hmmmmm!!! Know any function like that? Sure you do, y(t) = et, indeed, its

buddy y(t) = e−t does the same thing. Sure y(t) = 0 is a candidate, but we are really interested

in substance, in stuff, and y(t) = 0 is not stuff!! Now remember that if we have two solutions, say

y1(t) = et and y2(t) = e−t we can form a linear combination c1y1(t) + c2y2(t) = c1e
t + c2e

−t and

that combination will also be a solution. Moreover, if we can get two such linearly independent

solutions and add them we know we will have found the most general solution to the differential

equation (9) - in the case we have a second-order differential equation, namely

ygeneral(t) = c1e
t + c2e

−t .

How do we find these two constants c1 and c2 out of all the possible set of constants? Let us

not forget that every differential equation we shall study usually comes from a physical situation

(well, this one does not!) and in addition to some physical or natural law in the formulation of the

equation itself we also have initial conditions, in this case, y(0) = 2 and y′(0) = 1.
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c) Use the initial conditions y(0) = 2 and y′(0) = 1 to determine the constants c1 and c2 in our

general solution ygeneral(t) = c1e
t + c2e

−t of differential equation (9) and thereby recover THE

solution to this differential equation.

In class when we are working with students we often tell them to hum a mantra of the

form “Hmmmmm,” when they are to the point in their solution where they are going to

apply the initial conditions to exact THE unique solution to their differential equation

by solving for the constants c1 and c2, for that way we know they are on the right track

during exams! The room is alive with various pitches of “Hmmmmm!” Try it. It works

and it will remind you that you are almost done with solving the differential equation.

While we do not even play a medical doctor on television we are doctors and highly

recommend this therapy.

So we are developing a pretty good approach to solving these types of differential equations

except for one thing: we are apparently expected to guess our solution and then build from our

guesses. In a sense, that is true and we will make one more guess approach, but WHAT a guess it

will be. We have seen enough, we believe, that you are ready to get in the serious guessing game.

Ready, here we go.

Consider the differential equation (10) (repeated here for ease of reference) for our spring mass

dashpot:

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 . (10)

Suppose the solution to differential equation (10) is of the form y(t) = eλt (where λ is the lower

case Greek letter “lambda.”) Such a strategy could be called guessing, but we prefer (tut! tut!)) to

call this conjecturing. Indeed, if we were to try y(t) = eλt in equation (10) and it was to produce

two linearly independent solutions ALL THE TIME that would be great, but let us see what this

might entail. We will need y′(t) and y′′(t) - not that hard to produce for y(t) = eλt.

d) Put your conjecture y(t) = eλt into differential equation (10) and see what happens. Go ahead.

Do not be shy. Just do it! Explain what happens. Is there anything familiar somewhere along

the process? What do you do with that familiar object to continue? Explain and be sure to

acknowledge that you learned this from your algebra teacher early in your mathematical travels,

let us call her Ms. Baumgartner, and we shall be thanking her for all she did for us more and

more as our study continues. Believe me you will come to think she was the best person in

your life as we proceed. We will encourage you to send a, ”Thank you,” note to her from time

to time.

e) There are lots of things that can happen at the end game of (d) above, but let us consider a

specific model of the spring mass dashpot with numbers (for we all like numbers!) Consider

differential equation (10) with m = 1 kg, c = 7 N/(m/s), and k = 12N/m, with initial conditions
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y(0) = 1 m and y′(0) = 0. Describe this situation in words as completely as you can and draw

a diagram to illustrate what we are about to study.

Let us make the conjecture, y(t) = eλt, and substitute it into the differential equation you

just wrote down. Follow the trail, do the natural thing, produce two linearly independent

solutions, take a linear combination of them to form a general solution, then (Hmmmmm!) use

your initial conditions to determine your two constants c1 and c2, and sit back and look at your

unique final solution to your differential equation. Plot the solution and describe what happens

as time goes on for this spring mass dashpot.

f) In (e) change the resistance due to the media constant, c, from 7 N/(m/s) to 13 N/(m/s). (Ask

yourself, “What did we just do physically?”) Again, use your initial conditions to determine your

two constants c1 and c2, and sit back and look at your unique final solution to your differential

equation. Plot the solution and describe what happens as time goes on for this spring mass

dashpot. Now compare your complete answers to those from (e). Actually plot BOTH your

solution from (e) and from (f) on the same axes for t ∈ [0, 5] s. Describe as completely as you

can what is happening and what these graphics tell you. Here is a command that might help

you see things better if you are using Mathematica :

Plot[{ys1[t], ys2[t]}, {t, 0, 5},
PlotStyle -> {Thickness[.001], Thickness[.005]}]

Let us get back to the most general situation in differential equation (10) and use an obviously

powerful command DSolve in Mathematica to point the way for future study. First we get a solution,

we grab the solution, we name it, and we expand it out.

ysol[t_] = y[t] /. DSolve[{m y’’[t] + c y’[t] + k y[t] == 0, y[0] == y0,

y’[0] == v0}, y[t], t][[1]] // Expand

Here is the output Mathematica gives.

ysol(t) = −m v0 e
t(−
√

c2−4km−c)
2m

√
c2 − 4km

+
m v0 e

t(
√

c2−4km−c)
2m

√
c2 − 4km

+
1

2
y0 e

t(−
√

c2−4km−c)
2m

+
1

2
y0 e

t(
√

c2−4km−c)
2m − c y0 e

t(−
√

c2−4km−c)
2m

2
√
c2 − 4km

+
c y0 e

t(
√

c2−4km−c)
2m

2
√
c2 − 4km

(11)

Awesome!!! Is that beautiful or what? Let us look carefully (with a surgical scalpel) at parts

of this solution. We see −c−
√
c2−4km
2m and −c+

√
c2−4km
2m popping up every where. What are these?

Where did they come from? Think about what Ms. Baumgartner taught you, then answer. Try

to answer this question before continuing, but think of several things (1) our original differential

equation m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 , (2) our conjecture y(t) = eλt,

(3) what you get when you substitute this conjecture into the differential equation (10), and (4) the
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resulting algebra that Ms. Baumgartner taught you how to handle. Do it!

Where do these expressions, −c−
√
c2−4km
2m and −c+

√
c2−4km
2m , occur in our solution? Why, in the

exponent of e from our conjecture of the form y(t) = eλt.

f) Write a short essay in which you describe what you think is going on with regard to our solution

of the differential equation m·y′′(t)+c·y′(t)+k ·y(t) = 0 , y(0) = y0 , y
′(0) = v0 . Be as complete

as you can and do take leaps and speculate. This is not science fiction, but observational or

natural science, based on what you have seen thus far. We will get back to you on this.

g) Report what happens in (11) if we set only v0 = v0 = 0. Explain in detail. What if we set only

y0 = y0 = 0? Explain in detail. What if we set both v0 = v0 = 0 and y0 = y0 = 0. Explain in

detail. What physically have we done in the latter case? Much like your little brother or sister

says, we can say of the latter case, “This is so boring.” Don’t you agree? Do you agree much

with your little brother or sister?

It appears that exponential functions are popping up all over the place and they might prove a

fertile area for hunting solutions to our differential equation (10. Let us just do that.

h) For the differential equation (10) put a conjecture of the form y(t) = eλt into the equation

and see what it leads to. What conditions on λ exist as a direct result of your conjecture and

substitution? What would Ms. Baumgartner say about your situation? Write down what you

would have to do to get two (Got it? TWO) solutions y1(t) and y2(t)? We shall now try it out

with some numbers - for some a comfort zone.

i) Consider the differential equation (12):

1 · y′′(t) + 6 · y′(t) + 5 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (12)

Place your conjecture, y(t) = eλt, into differential equation (12). Then, again as in (d)

- it never hurts to repeat to get something down solid) follow the trail, do the natural thing,

produce two linearly independent solutions, take a linear combination of them to form a general

solution, then (Hmmmmm!) use your initial conditions to determine your two constants c1 and

c2, and sit back and look at your unique final solution to your differential equation. Plot the

solution and describe what happens as time goes on for this spring mass dashpot.

j) Let us try another one. Something scary might happen in this one, but do not fret. We are

here to help.

1 · y′′(t) + 6 · y′(t) + 25 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (13)

Place your conjecture, y(t) = eλt, into differential equation (13). Then, again as in (d)

(it never hurts to repeat to get something down solid) follow the trail, do the natural thing,

produce two linearly independent solutions, take a linear combination of them to form a general

solution, then (Hmmmmm!) use your initial conditions to determine your two constants c1 and

c2, and sit back and look at your unique final solution to your differential equation. Be sure to

plot your solution.
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What is the ONLY difference between the differential equation model of a spring mass

dashpot in (j) from that in (i)? Hint: recall the physical meaning of each of the constant

coefficients. Argue that this difference might be enough to explain the different behaviors as

displayed by the plots of the position of the mass at the end of the spring.

k) Here is yet another differential equation (14)

1 · y′′(t) + 6 · y′(t) + 130 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (14)

Again, place your conjecture, y(t) = eλt, into differential equation (14). Then follow the

trail, do the natural thing, produce two linearly independent solutions, take a linear combination

of them to form a general solution, then (Hmmmmm!) use your initial conditions to determine

your two constants c1 and c2, and sit back and look at your unique final solution to your

differential equation. Be sure to plot your solution.

What is the ONLY difference between the differential equation model of a spring mass

dashpot in (k) from that in (i) and (j)? Argue that this difference might be enough to explain

the different behaviors as displayed by the plots of the position of the mass at the end of the

spring.

This complex arithmetic IS scary and we would like to eliminate it, for it may make you un-

comfortable. Frankly, it does not make some people uncomfortable, for example electrical engineers

thrive on the imaginary i =
√
−1, only they call it j! Well, Leonhard Euler comes to the rescue for

us with a beautiful mathematical truth, now called Euler’s Identity:

eiω = cos(ω) + i sin(ω) . (15)

Here i is, of course our imaginary square root of -1 while ω stands for the lower case Greek letter

omega. Incidentally, Mathematica knows Euler’s Identity (and more!). You can see this by applying

the command ComplexExpand to, say e3i or even e3it.

ComplexExpand[Exp[ 3 I ]] = .

ComplexExpand[Exp[ 3 I t]] = .

What Euler’s Identity allows us to do is to change expressions with i in the exponent of e and

thus reduce messy formulae with i in an exponential function to one which has i as a coefficient

of a sine term. Incidentally, for just about the most beautiful formula in mathematics use Euler’s

Identity to compute

eiπ = .

This set of symbols has it all for mathematics types. We have a colleague who believes this formula

is so beautiful and captures the essential major numbers of mathematics that he had a coffee table

made with the result tiled in to the surface. Some conversation piece that is!
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Let us get back to another differential equation (16) and let us “work” it together and learn even

more.

1 · y′′(t) + 6 · y′(t) + 10 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (16)

Our conjecture y(t) = eλt leads us to (17)

λ2eλt + 6λeλt + 10eλt = 0 , (17)

from which we have been factoring out eλt from both sides. Then, because Ms. Baumgartner told

us that if the product of two terms, eλt and λ2 + 6λ+ 10 is 0 then one of them must be 0 and since

eλt can never be 0 we must have

λ2 + 6λ+ 10 = 0 . (18)

We will call (18) the characteristic equation of differential equation (16) for its roots will char-

acterize the solutions of (16). Often the roots of the characteristic equation are called eigenvalues.

If you have been doing your work here all along you have seen many characteristic equations.

Now we seek the roots of (18). It would be nice and is has been so in several instances thus far

if this quadratic factored the way it did early in Ms. Baumgartner’s course, but this one does not so

we have to use the quadratic equation which Ms. Baumgartner taught us later in that same course.

Do you begin to see how important she is in your life? Wait, there will be much more she did for

us. Have you found out her school address so you can write to her and tell her how you appreciate

all she did for you?

What does the quadratic formula give us for the solution of (17)? It give us the two roots to

(18):

λ =
−6±

√
62 − 4 · 1 · 10

2 · 1
=
−6±

√
−4

2
= −3± i . (19)

In our method you have developed to solve the differential equation (17) we now know there are

two solutions from which we can build a general solution:

y1(t) = e(−3+i)t and y2(t) = e(−3−i)t . (20)

We know that we need to take a linear combination of these two solutions to form our general

solution:

ygeneral(t) = c1e
(−3+i)t + c2e

(−3−i)t . (21)

Using our initial conditions, y(0) = 2 and y′(0) = 0 yields two equations in the unknowns c1 and

c2:
2 = c1 + c2

0 = (−3 + i)c1 + (−3− i)c2
from which we find c1 = 1− 3i and c2 = 1 + 3i. Finally, then we have our complete solution in (22):
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Figure 2. Plot of solution of differential equation (16).

y(t) = (1− 3i)e(−3+i)t + (1 + 3i)e(−3−i)t . (22)

We can live with this, indeed, in Mathematica we can plot this (see Figure 2).

Now, if we were to apply Euler’s Identity or Mathematica’s ComplexExpand to (22) we would

realize a real looking solution whose plot would be exactly the same as the plot in Figure 2:

y(t) = 6e−3t sin(t) + 2e−3t cos(t) . (23)

However, if we applied Euler’s Identity to JUST ONE of our solutions from y1(t) and y2(t), we

could actually get the two linearly independent solutions - real looking, not complex - we need to

build a general solution; all just from one complex solution. Let us see how this is possible.

(1− 3i)e(3+i)t = (1− 3i)e−3t · eit

= (1− 3i)e−3t(cos(t) + i sin(t)

= 3e−3t sin(t) + e−3t cos(t) + i
(
e−3t sin(t)− 3e−3t cos(t)

)
(24)

From (24) we could extract two candidates for solution:

yr1(t) = 3e−3t sin(t) + e−3t cos(t) and yr2(t) = e−3t sin(t)− 3e−3t cos(t) . (25)
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By simply substituting each of these two solutions, yr1(t) and yr2(t), into the differential equa-

tion (16) we could show that each of these two solutions, yr1(t) and yr2(t), actually solves the

differential equation (16). Thus we can take the real part and the imaginary part (without the i)

of one of our complex solution and form two real solutions. Remember we just need to find two

linearly independent solutions to build a general solution and these will always do the trick.

To compete our analysis we need to build our general solution and find the coefficients c1 and

c2 in our general solution (26)

yrgeneral = c1 · yr1(t) + c2 · yr2(t)

= c1
(
3e−3t sin(t) + e−3t cos(t)

)
+ c2

(
e−3t sin(t)− 3e−3t cos(t)

)
(26)

Now it is a bit of an algebraic mess, but we can now use our initial conditions (Hmmmmm!)

to solve for c1 and c2, although notice that the sine and cosine functions evaluate to 0 and 1,

respectively, for an argument of 0. Somebody is looking out for our algebraic sanity. So let us go

on, but we shall need our derivative of yrgeneral(t) first:

yr′general(t) = 10c2e
−3t cos(t)− 10c1e

−3t sin(t)

Now, finally(!), we use our initial conditions (Hmmmmmm!):

2 = yrgeneral(0) = c1
(
3e−3·0 sin(0) + e−3·0 cos(0)

)
+ c2

(
e−3·0 sin(0)− 3e−3·0 cos(0)

)
= c1 − 3c2 (27)

and

0 = yr′general(0) = 10c2e
−3·0 cos(0)− 10c1e

−3·0 sin(0)

= 10c2 (28)

So from our initial conditions equations we see that c1 = 2 and c2 = 0. Thus our final solution is

y(t) = c1 · yr1(t) + c2r · yr2(t)

= = 0
(
3e−3t sin(t) + e−3t cos(t)

)
+ 2

(
e−3t sin(t)− 3e−3t cos(t)

)
= 2e−3t sin(t)− 6e−3t cos(t) = 2e−3t sin(t) + 6e−3t cos(t) (29)

The latter equality because cosine is an even function and as such − cos(t) = cos(t). Thus (29)

gives the same result as Equation(23). This means that we have shown several ways to solve the

differential equation (16). We review them all in the next activity.

l) Solve the following differential equation (30)

1 · y′′(t) + 6 · y′(t) + 109 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (30)
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in three different ways, (1) using a conjectured solution and dealing with all the complex arithmetic

and finally applying Euler’s Identity to convert the problem into a problem with no i’s in it; (2)

find the real part of one of the solutions, say the real part of y1(t) or the real coefficient of the

imaginary part of y1(t). Now using these two parts alone, build a general solution; and (3) using

Mathematica’s DSolve (this will be our preferred way, don’t you think). In all cases completely

determine the constants c1 and c2 (they will be different in each of (1) and (2)) and plot your

solutions ALL on the same axes to make sure they are all the same.

One final situation we need to examine

So far here is what we have. If our differential equation (10) has conjectured solutions y(t) = eλt

then λ can be of the form:

λ =
−c±

√
c2 − 4 ·m · k
2 ·m

. (31)

We obtain all this from solving the characteristic equation, mλ2 + cλ + k = 0, associated with

differential equation (10). Now three things can happen in this situation and we outline them as

three different Cases:

1. c2 − 4 ·m · k > 0;

2. c2 − 4 ·m · k < 0; or

3. c2 − 4 ·m · k = 0

The term c2 − 4 ·m · k is so discerning or discriminating that we shall call it the discriminant

for it will discriminate among the various types of solutions to the differential equation (10).

We have already discussed in some detail Cases (1) and (2). Indeed, in Case (1) we get real

roots and our solution just dampens to 0 while in Case (2) we get complex roots, causing us to get

(through Euler’s Identity) oscillations, in real applications, damped oscillations. What of Case (3)?

Each of these cases is referred to with a special name: Case (1) is called overdamped; Case (2) is

called underdamped; and Case(3) is called critically damped.

m) Consider these differential equations all from Case (3). Use Mathematica’s DSolve command

to solve them and then make some inferences about what the two solutions for differential

equation (10) must look like in Case (3) situation. State your result as a general rule for

differential equations of the type of (10). While there is theory to confirm this, we shall no

doubt concur with your conclusions and march on!

i) y′′(t) + 10y′(t) + 25y[t] = 0 , y(0) = 3 and y′(0) = 0 .

ii) y′′(t) + 6y′(t) + 9y[t] = 0 , y(0) = 5 and y′(0) = 0 .

iii) y′′(t) + 4y′(t) + 4y[t] = 0 , y(0) = 5 and y′(0) = 0 .

iv) 2y′′(t) + 16y′(t) + 32y[t] = 0 , y(0) = 5 and y′(0) = 0 .
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Bookkeeping and Rearrangements

In our solutions for the second order differential equation (32),

a · y′′(t) + b · y′(t) + c · y(t) = 0 , y(0) = y0 and y′(0) = 0 , (32)

which we have found to be so useful, the case where the discriminant, b2 − 4 · a · c, is negative gives

rise to complex roots to the characteristic equation and the general solution looks like (33)

y(t) = Ae(
−b
2a t) sin

(√
4ac− b2

2a
t

)
+Be(

−b
2a t) cos

(√
4ac− b2

2a
t

)

= e(
−b
2a t)

(
A sin

(√
4ac− b2

2a
t

)
+B cos

(√
4ac− b2

2a
t

))
(33)

If we let
(√

4ac−b2
2a

)
= ω (33) simplifies to (34)

y(t) = e(
−b
2a t) (A sin(ωt) +B cos(ωt)) . (34)

We wish to combine the sine and cosine terms in (34) into one sine function with a phase angle.

We can do this because of the trigonometric identity:

sin(x+ y) = sin(x) · cos(y) + cos(x) · sin(y) ,

and the diagram in Figure 3. Identifying x = ωt and y = θ and multiplying and dividing each

expression by
√
A2 +B2 we can convert the expression A sin(ωt) +B cos(ωt) to

√
A2 +B2

(
A√

A2 +B2
sin(ωt) +

B√
A2 +B2

cos(ωt)

)
=
√
A2 +B2 (cos(θ) sin(ωt) + sin(θ) cos(ωt))

=
√
A2 +B2 (sin(ωt+ θ)) (35)

where θ = Arctan
(
B
A

)
is called the phase shift.

From (35) we can write our solution (34) as (36)

y(t) =
√
A2 +B2 · e(

−b
2a t) · sin(ωt+ θ) . (36)

The phase angle, θ permits us to see the solution as a sin(ωt) type function, but out of phase by θ

radians. More precisely, we can write

sin(ωt+ θ) = sin(ω

(
t+

θ

ω

)
) , (37)

and refer to θ
ω as the phase angle. Phase angles will be important to engineers and scientists.
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R = A
2
+ B

2

Θ

B

A

Figure 3. Useful triangle diagram in rearranging an oscillating solution to a second-

order differential equation which results in a single phase shifted solution from the sum

of sine and cosine terms in solution.

Consider the differential equation (38)

1 · y′′(t) + 6 · y′(t) + 25 · y(t) = 0 y(0) = 1 and y′(0) = 0 (38)

whose solution is

ysol(t) =
1

4
e−3t(3 sin(4t) + 4 cos(4t)) .

while the phase shifted form of the solution is

ysol(t) =
5

4
e−3t sin

(
4t+ tan−1

(
4

3

))
=

5

4
e−3t sin

(
4

(
t+

tan−1
(
4
3

)
4

))

=
5

4
e−3t sin (4 (t+ 0.231824)) (39)

In (39) we note that ω = 4 and θ = arctan
(
4
3

)
= 0.231824 radians.

We see in Figure 4 the meaning of phase angle geometrically.

i) Solve the differential equation (40),

1 · y′′(t) + 10 · y′(t) + 19 · y(t) = 0 , y(0) = 1 and y′(0) = 0 . (40)

ii) Convert the solution to phase angle format and compute the phase angle θ in radians.

iii) Plot both solutions in (i) and (ii) on the same axis to confirm your analyses. What should you

see?
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0.2318
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sinH4tL-thick and ysolHtL-thin

Figure 4. A plot of the oscillating portion (not damped), 3 sin(4t) + 4 cos(4t), of the

solution (thin) to a second-order differential equation (36) with its simple frequency

curve sin(ωt) (thick). Notice the phase angle here of 0.2318 radians from bottom to

bottom illustrating what we mean by out of phase by a phase angle of 0.2318 radians.

Activity 1 - Three Types of Damped

It is known that for the liquid and shape of the mass in a certain spring mass dashpot configuration

the differential equation (41) models this situation quite well:

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = 0 . (41)

where the coefficient of resistance is c = 7 N/(m/s) and the mass is m = 4 kg.

For what range of values of the spring constant k N/m will the spring system be

i) underdamped;

ii) critically damped; or

iii) overdamped?

iv) Pick a value from each of the three regions you determine, solve the corresponding differential

equation, and plot its solution to confirm your claim.

Activity 2 - Design with First Passage Times

Consider the spring mass dashpot system described by the differential equation (42)

2 · y′′(t) + 4 · y′(t) + k · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (42)

i) For what values of k will the system described in differential equation (42) be underdamped?

ii) For several values of k in (i) find the time the mass first has a displacement of 0. For each value

of k call this first passage time, FP (k).

iii) Plot FP (k) vs. k for k ∈ [0, 20]. What is happening for the value of k = 0 to this function?
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iv) For design purposes it may be required to offer up a spring with the lowest k value but still

have a first passage time of 0.5 s. Find the smallest k for which FP (k) = 0.5.

Now consider the spring mass dashpot system described by the differential equation (43)

2 · y′′(t) + c · y′(t) + 9.4 · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (43)

v) For what values of c will the system described in differential equation (43) be underdamped?

vi) For several values of c in this range of values in (i) find the time the mass first has a displacement

of 0. For each value of c call this first passage time, FP (c). What is happening for the value of

c = 0 to this function?

vii) Plot FP (c) vs. c for c ∈ [0, 20].

viii) For design purposes it may be required to offer up a spring with the lowest c value but still

have a first passage time of 0.5 s. Find the smallest c for which FP (c) = 0.5.

Here is a rather interesting result that seems to imply initial position has nothing to do with

first passage time when all other values m, c, k, and v0 are fixed!

ix) For the motion described by differential equation (43) show that for a given value of c no matter

what initial position y0 given the first passage time FP (c) is ALWAYS the same.

x) Also show the same is true in the case of the motion described by differential equation (43),

i.e. that for a given value of k no matter what initial position y0 given the first passage time

FP (k) is ALWAYS the same.

xi) Incidentally, this last result does not apply to initial velocity, i.e. the first passage time varies

as we change y′(0) = v0 if every other parameter stays fixed. Prove this result.

xii) Neither does this last result hold true for mass m, i.e. the first passage time varies as we change

m if every other parameter stays fixed. Prove this result.

Activity 3 - Modeling Parachuting

In modeling the descent of a parachutist there are two stages to the descent: (1) with the chute

unopened, commonly referred to as skydiving and (2) with the chute open, hopefully referred to as

the gentle descent.

In setting up a Free Body Diagram of the External Forces on the sky diver there is laboratory

and theoretical support for a resistance term NOT of the form c · y′(t), but rather of the form

c · (y′(t))2. Of course, there is still the force (m · g) due to the weight of the sky diver and gear,

where m is the mass in kg and g is the acceleration due to gravity, usually 9.8 m/s2.

i) Verify that differential equation (44) is a reasonable model for a sky diver by using a Free Body

Diagram. Assume we measure distance and velocity positive downward from the altitude of the

plane upon the start of the jump. Identify each of the terms and units in (44).
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m · y′′(t) + c · y′(t)2 = m · g , y(0) = 0 , y′(0) = 0 . (44)

ii) Indeed, the units for the resistance coefficient, c, must be kg
m so that the units on c · (y′(t))2 can

be in Newtons or kg · ms2 .

iii) Suppose we make our first jump (our mass is 100 kg) out of a plane at an altitude of 3,500

m for a vertical descent first without a parachute and then with a parachute. We are quite

conservative and are a bit frightened of just how long we want to free fall.

Ascertain the size of an appropriate resistance coefficient, c kg
m , of the human body in flat

or layout position, perhaps with added loose material in a jump suit. You might want to look

on the web for such data and then document it in your report. What we want so that before

the parachute opens we reach terminal velocity of 65 m/s (not too fast, not too slow). Let the

sky diver fall some 2,500 m to an altitude of 1,000 m and at that altitude pull the parachute

open and glide to earth. Now determine the size of the resistance coefficient, c, for an opened

chute so that we land with a slow to medium hit-the-ground velocity of 3.0 m/s.

iv) Implement the second stage (using your parachute) model and plot both altitude and velocity

from when we pull the chute open to landing.

iv) How long was our total jump from plane to ground? How much time did we spend in each of

the two stages, free fall and parachute fall?

v) Can we expect to design for these two values of c, the one in free fall stage and the one in chute

fall stage? If so, then we are good to go? If not, then what might we advise our parachutist to

do so as to have a good flight and a safe landing?

Here is some information that you should know. Reasonable terminal velocity for a parachutist

hitting the ground would be slow 2.1 m/s2, medium 3.3 m/s2, and fast 4.6 m/s2 [5]. Terminal

velocity for a sky diver is about 53 m/s to 76 m/s [2].

Activity 4 - Frequency of Spring Mass Dashpot

Consider a spring mass dashpot system whose vertical displacement of the mass attached to the

spring is given by the differential equation (45) with mass displacement y(t) in m, m in kg, and

spring constant k in N/m:

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = 0 . (45)

First, let us suppose that there is no resistance, i.e. c = 0. This means we are examining the

following differential equation (46):

m · y′′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = 0 . (46)

i) For the differential equation (46) determine its oscillation frequency in Hz (i.e. cycles per

second). From the characteristic equation and its roots in this case you should know that it is

underdamped and has oscillation. Explain why.
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iii) For the differential equation (45) find criteria on the coefficients m, c, and k so that this system

will oscillate and be damped. In that case determine its “oscillation” frequency in Hz (i.e. cycles

per second). We write “oscillation” because while the system is damped the mass will go from

a high to a low and back to high again in a constant length interval of time and that will help

you determine the frequency.

Activity 5 - Logarithmic Decrement

Consider the underdamped oscillator (discriminant, c2 − 4mk < 0) in differential equation (47):

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 , (47)

i) Determine the frequency of the oscillator described in (47). This is called the quasi frequency

(µ) in light of the fact that the motion is not truly periodic due to damping.

ii) Determine the frequency of the oscillator described in (47), only this time let c = 0, i.e. we have

a true pure oscillator. This is called the natural frequency (ω0) of this system.

iii) Now the ratio of µ over ω0 will permit us to see that the result of damping c > 0 is to reduce

the natural frequency of the system. Explain this statement.

iv) The period of the undamped system is T = 2π
ω0

while the quasi period of the damped system

can be defined as Td = 2π
µ and hence the ratio of Td to T is yet another way to compare the

two systems, damped with undamped. Find this ratio and verify that damping increases the

quasi period when compared to the period.

The natural logarithm of the decrement defined in (v) below is called the logarithmic decrement

(∆) and can be shown to equal πc
mµ . Since all the quantities k, m, µ, and Td can be measured

and since c is embedded in the expression for ∆ = πc
mµ then we can use ∆ to determine c from

observations.

v) We can show the ratio of the displacements of two successive maxima of the system’s motion

(call this ratio the system’s decrement) in the case of the damped system is e
cTd
2m . If you can

determine this fact in general then do so. Otherwise, use this set of parameters, m = 4, c = 0.1,

k = 2.5, with y0 = 1 and y′(0) = 0, and show that the this system’s decrement is 0.905418.

vi) In Figure 5 we have the graphical output of a underdamped oscillator whose governing equation

is differential equation (47) with the following values of parameters and initial conditions: m = 1

kg, k = 20 N/m, y(0) = 3 m, and y′(0) = 0 m/s. Use your approach from (v) and information

from (iv) to determine the parameter c N/(m/s). Once you have ascertained c then solve your

differential equation (47) model using that value and compare your solution to the data through

a plot of your solution. How well are you able to estimate c? Note: In Activity 9 - Inverse

Problems we shall attempt to determine c in another manner.
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Figure 5. Plot of solution to differential Equation (47) with the following values of

parameters and initial conditions: m = 1 kg, k = 20 N/m, y(0) = 3 m, and y′(0) = 0

m/s in which we seek a value for c.

Activity 6 - Buoyancy Force

Archimedes’ Principle on buoyancy says that if you place an object or portion of an object in a

liquid that there is an upward force on the object equal to the weight of the displaced liquid. It is

known that the mass density of water at 20◦ C is 992 kg/m3 and the acceleration due to gravity

is 9.8 m/s2. Consider a right circular cylinder of radius r = 2 m and length L = 5 m which is

submerged in water with its flat circular base some 4 m below the surface. Most of us know this

intuitively if we have ever tried to put a beach ball under water in the summer pool, it is easy to

put it in a ways, but hard to really submerge it totally.

a) Compute the vertical force on the cylinder due to Archimedes’ Principle in the above case.

b) Compute the vertical force on the cylinder due to Archimedes’ Principle if the cylinder is
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submerged in water with its flat circular base some s m below the surface.

We would like to model the motion of a buoy made of American redwood in the shape right

circular cylinder. The mass density of the redwood is 450 kg/m3 [4] and the cylinder has dimensions

of radius r = 2 m and length L = 5 m. We shall presume the cylinder stays in the configuration of

its flat circular base downward and parallel to the surface of the water, i.e. no tipping.

The cylinder will float at an equilibrium depth, dEq m, measured from the bottom of the cylinder,

when the upward force due to Archimedes’ Principle and the force due to the weigh of the object

are equal (and opposite) to each other.

c) Show that one can find the equilibrium depth, dEq, when the upward force due to Archimedes’

Principle and the force due to the weigh of the object are equal (and opposite) to each other.

Do this by justifying and then solving (48), where h is the depth of the cylinder in the water.

Show how the equation is built first and then solve it for depth h = dEq, the equilibrium depth.

Call the height on the cylinder of the equilibrium depth the equilibrium point or level.

π · r2 · h · ρMassDensityWater · g = π · r2 · L · ρMassDensity Redwood · g (48)

d) Let x(t) be the height at which the equilibrium point (recall the equilibrium point is dEq m,

measured from the bottom of the cylinder) is above the water level. We suggest you draw a

diagram at this point to keep track of “Who’s on first” and ”What’s on second!” Incidentally if

you need a study break then we suggest you go to a web site which features the great comedians

Abbot and Costello routine [1], “Who’s on first, what’s on second!”

Back on track now? Then let us build a differential equation for the height of the equilibrium

point above and below the water as the buoy bobs vertically. (We will presume, again, that the

buoy stays vertical and does not tilt - that is a harder problem!)

Recall Newton’s Second Law which says

m · x′′(t) =

n∑
i=1

(External Force)i =

where m is the mass in kg of the buoy and x(t) is the height in m of the equilibrium point

above the water level. As a convention let us measure x(t) > 0 when the equilibrium is higher

than the water level and x(t) < 0 when the equilibrium is below the water level. Then x′(t) > 0

means the buoy is moving upward while x′(t) < 0 means the buoy is moving downward.

We need to find these External Forces. At first glance these will be (1) the buoyant force

due to Archimedes’ Principle in which the cylinder is dEq − x(t) m deep in the water, the

equilibrium point dEq having risen x(t) out of the water and (2) the weight of the cylinder.

Use (1) and (2) to build a more fleshed out differential equation than offered in (49).

e) Solve your differential equation built in (d) and plot your solution over the time interval t ∈
[0, 50] s. Describe what happens physically and mathematically as completely as you can.
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f) Now there is something unrealistic about your plot in (e). If you have not already commented

on it in your response to (e), then do so here. We shall need to make a better model to rid

ourselves of this problem. To do this we will have to introduce some resistance term(s) so that

the system loses energy and does not bob forever to the same height.

There will be two kinds of resistance we want to consider (1) resistance due to the bottom

of the cylinder plunging into the water as the cylinder goes deeper into the liquid (it does not

“plunge” into the liquid as the cylinder rises) and (2) resistance due to the rough edges of the

vertical surface of the cylinder “rubbing” in the water.

Attempt to model both these forces and you put constants of proportionality in place (as

we have no data on the motion of a buoy here) for each form of resistance (1) and (2). Hint:

We need to keep track of which direction the resistance will apply and for that we may need

to know where we are, i.e. x(t), and how fast we are moving and in which direction, i.e, x′(t).

Since we shall have changes in sign you might want to use Mathematica’s Sign function, e.g.,

Sign[x’[t] will tell you the sign, either +1, 0, or -1, of the velocity and so the quantity (1-

Sign[x’[t]])/2 will be 1 if x′(t) < 0 and 0 if x′(t) > 0. This might help you in modeling (2).

g) Plot your solution in (f) over the time interval t ∈ [0, 50] s and compare it with your no

resistance modeling of (e). Explain what you see and what the differences are. Does this make

sense? You might have to tweak your constants of proportionality for each term due to (1) and

(2) above. Be sure to push your model to extremes, e.g., consider balsa wood, teak wood, or

ranges of your parameters due to (1) and (2). Write up your conclusions.

Here is some Mathematica code which will permit you to animate your cylindrical tank in

all situations, Here xsR[t] is the solution of your differential equation model.

plane = Plot3D[0, {x, -3, 3}, {y, -3, 3}, Mesh -> False]

cy[t_] := Graphics3D[

Cylinder[{{0, 0, xsR[t] - dEq}, {0, 0, xsR[t] + L - dEq}}, 2]]

Animate[Show[{plane, cy[t]},

PlotRange -> {{-3, 3}, {-3, 3}, {-10, 10}},

Axes -> True, AxesLabel -> {"", "", "height"}, Boxed -> False,

ViewPoint -> {0, 1, 0}, ImageSize -> 800], {t, 0, 100, .01}]

Here plane is the plane of the water surface and cy[t ] is the graphic object of a cylinder of height

L whose base is at height xsR[t] - dEq and whose top is at height xsR[t] - dEq+L.

Activity 7 - Bad News If Positive Real Number in Exponential Function

Consider the general case for the spring mass dashpot device with mass m (> 0) kg, resistance

coefficient c (> 0) N/(m/s), spring constant k (> 0) N/m, initial position y(0) = y0 m, and initial

velocity y′(0) = v0 m/s.
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m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = y0 , y′(0) = v0 . (49)

Explain why, in our solution for y(t), there will never be exponential functions with positive

real part. Why is this good and what would you say about such a model if it did have exponential

functions with positive real part in the solution.

Activity 8 - Rocket Thrust Modeling

Suppose we have a small rocket with a full 100 liter fuel tank. Fuel (with a mass density of .98 kg/l)

is burned at a steady rate of 3 liters per second and can provide a constant thrust force of 5900

Newtons as it burns. The rocket and fuel tank has a mass of 400 kg with no fuel in it. The shape

design of the rocket causes a resistance proportional to its velocity during flight of 2 v(t) where v(t)

is in m/s and the constant 2 is that of resistance and is really 2 N/(m/s). We aim the rocket straight

up and launch it . . . 5 . . . 4 . . . 3 . . . 2 . . . 1 . . . Launch . . . We have lift off!!!

i) How long will the rocket burn and hence provide thrust? We call this time interval the burn

period .

ii) Build a differential equation model based on all the External Forces and Newton’s Second Laws.

Here are some issues to consider. Construct a Free Body Diagram - very important.

What are reasonable initial conditions? The mass m(t) is now a function of time;

what is that function. There is an external constant force due to thrust during the

burn and the weight of the rocket.

iii) Solve the differential equation from (ii) (probably best to use Mathematica’s NDSolve command)

and plot the rocket’s altitude over the burn period. Also plot the velocity over the burn period.

iv) Determine maximum height and velocity of this rocket?

v) Model what happens to the rocket after the burn period? Plot the rocket’s altitude over the

free falling period. Also plot the velocity over the free falling period.

vi) How long before it strikes the earth? That is, how long is the total flight? We may assume this

is a vertical flight only.

vii) With what velocity does it strike the ground? Ouch!

In the above model we have moved away from constant coefficient differential equations. More-

over, we have introduced additional, important external forces (thrust and weight) to the model

of the rocket. These forces will make our differential equation into what is called nonhomogeneous

differential equation. We shall see more of these. Furthermore, there is no spring constant term

here as the rocket is not on a tether of any sort!

Activity 9 - Inverse Problem

This is an example of an inverse problem in which we are given data and we seek to estimate a

parameter in the model so as to fit this data with a model.
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Suppose we have observations (Table 1) on position, y(t), in cm, vs. time t in s of a small spring

in a dashpot. We know the mass is m = 1 g and the spring constant is k = 20 dyne/cm. We can

measure those.

t s 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y(t) cm 2.16 1.77 1.40 1.08 0.71 0.39 0.18 0.03 -0.06 - 0.01 -0.10

Table 1. Data on the displacement of a mass on the end of a spring.

m · y′′(t) + c · y′(t) + k · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (50)

We seek to find the resistance coefficient c in dyne/(m/s) where these parameters are in a

differential equation (50)

Discuss how you would determine c. Offer up several ideas. Carry out one approach at least.

Confirm your estimate for c in some manner. If you have offered up several approaches compare

your results. How does your model with your c value compare to the data?

Activity 10 - Keeping Costs Down

Stiffness in a spring (i.e. the restoration constant’s k N/m) value costs money. The more the

stiffness the more expensive the spring. Let us assume a cost, in dollars, for a 0.2 m long spring of

Cost(k) = 13.70 + .01k2.

Now suppose we are designing the following spring mass dashpot system:

1.2 · y′′(t) + 46.4 · y′(t) + k · y(t) = 0 , y(0) = 2 , y′(0) = 0 . (51)

i) Find the value(s) of k which make the system overdamped. Do the same for critically damped.

ii) Suppose in the case of the overdamped configuration we wish to bring the mass to within 0.1

m of the static equilibrium in the first 0.5 s of motion. What k value would we use to do this?

How much would such a spring cost us?

Incidentally, the engineers who work for luxury car manufacturers are VERY interested in

reducing the oscillations in the vehicles they design as quickly as possible for luxury comfort.

The devices in cars which do this are called shock absorbers and they are essentially a spring

dashpot. Think about the ride when you ride in your friend’s 13 year old beat-up VW compared

to that in your Uncle Jack’s new Cadillac.

iii) What kind of spring performance can we get if we are willing to spend $600 on the spring?

iv) It is conjectured that for an x% reduction in the tolerance, i.e. x% less than the 0.1 m close to

the static equilibrium, there is an x% increase in price. This means that when x = 80 we are

comparing costs of a spring which will get us to within 0.1 m of the static equilibrium in 0.5 s
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to a spring that will get us to within .8 ∗ .1 = .08 m of the static equilibrium in 0.5 s. Prove or

disprove this conjecture.
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