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Abstract: If a tennis ball is thrown through the air it will eventually hit the ground due to gravity. Using

Euler’s method, write a short script (Python, Matlab, R, etc.) to find the trajectory of the ball which will

maximize the distance the ball lands from the thrower taking into account air resistance (drag).

This scenario can be used to introduce students to Euler’s method for higher order ordinary differential

equations. To do this project students should be comfortable with the concept of second order ODE’s,

vectors, and F = ma from elementary physics. A little programming knowledge is a plus. But beyond

that, not much is needed. The student version contains the necessary physics background, including a brief

discussion of drag, as well as a quick introduction to Euler’s method for higher order ODE’s. A Python

script to solve the problem, if we neglect drag, is provided to the students. Their job is to modify the script

to take into account drag. A full script, which solves the problem and includes drag is provided for teachers.

SCENARIO DESCRIPTION

If a tennis ball of mass m is thrown through the air it will eventually hit the ground due to gravity.

If you can throw a tennis ball 12 meters/second (about 26.8 mph) how far can you throw it; meaning

how far away from you can you make it land? Assume that when the ball leaves your hand it is at

a height of 2 meters (about 6 feet). With the help of Euler’s Method, write a short script (Python,

Matlab, R, etc.) to find the ideal launch angle θ to throw the ball, so that it will result in the ball

landing as far as possible from you. Also find that maximal distance and plot that trajectory. Make

sure to include air resistance (drag) in your model. Don’t worry about rotational effects.

Physics Background and Euler’s Method Review. Let x(t) and y(t) represent a ball’s

position at time t, in the x, y plane, with y being height. Vectors will be denoted by a bold font.

The ball’s velocity is:

v =
d

dt
〈x, y〉 = 〈ẋ, ẏ〉 = 〈vx, vy〉. (1)
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The ball’s acceleration is:

a =
d

dt
〈vx, vy〉 = 〈ẍ, ÿ〉 = 〈v̇x, v̇y〉. (2)

From Newton’s Second Law of Motion we know that Force = mass × acceleration:

F = ma (3)

For our models we will approximate the earth as being flat with gravity pointing straight down (in

the negative y direction) and so we will approximate the force of gravity acting on a mass m as:

Fg = 〈0,−mg〉 (4)

with g = 9.8 meters/second2 in the MKS system.

Simple Model for a Thrown Ball (no drag). To start with, we will ignore drag. Once we

understand this simple model, we can make it more realistic by adding drag.

Combining (2), (3), and (4) we get the following second order ODE (which neglects drag):

Fg = 〈0,−mg〉 = m〈ẍ, ÿ〉 = ma (5)

Writing the ẍ and ÿ parts of (5) on separate lines we get the 2nd order system of ODE’s:

mẍ = 0

mÿ = −mg (6)

To apply Euler’s method, we need to convert (6) to a first order system of ODE’s. We do the usual

substitution. As in (1) and (2), we let ẋ = vx, so that ẍ = v̇x; we let ẏ = vy, so that ÿ = v̇y; and we

divide by m. This gives us the first order version of (6):

ẋ = vx

ẏ = vy

v̇x = 0

v̇x = −g (7)

We can rewrite (7) in vector form as:

d

dt


x

y

vx

vy

 =


vx

vy

0

−g

 (8)

We can linearly approximate the state of the system


x

y

vx

vy

 at time t+ ∆t using information about
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the system at time t: 
x

y

vx

vy


at t+∆t

≈


x

y

vx

vy


at t

+
d

dt


x

y

vx

vy


at t

·∆t (9)

It is convenient1 to explicitly include time t in the linear approximation. When we explicitly include

time t (9) becomes: 

x

y

vx

vy

t


at t+∆t

≈



x

y

vx

vy

t


at t

+
d

dt



x

y

vx

vy

t


at t

·∆t (10)

We rewrite (10) using (8): 

x

y

vx

vy

t


at t+∆t

≈



x

y

vx

vy

t


at t

+



vx

vy

0

−g
1


at t

·∆t (11)

Note, the “1” appearing in the bottom of the third vector in (11) is because
dt

dt
= 1.

Recall Euler’s method produces a sequence of Euler points (or vectors)

x

y

vx

vy

t


0

,



x

y

vx

vy

t


1

,



x

y

vx

vy

t


2

, . . .

which approximate the state of the system (and the solution) at times t = 0, ∆t, 2∆t . . ..

So, for example,



x

y

vx

vy

t


2

is the Euler approximation of the solution at t = 2∆t.

Euler’s Method Example. Suppose the ball is thrown at time t = 0 seconds from 〈x, y〉 = 〈5, 10〉
meters with initial velocity 〈vx, vy〉 = 〈1, 2〉 meters/second. Using a step size of ∆t = 0.1 seconds,

approximate the location of the ball at time t = 0.2 seconds using the Euler method. Ignore air

1Explicitly including time allows us to easily keep track of time while doing Euler’s method calculations in vector

form. It is especially convenient for when we have to deal with non-autonomous ODE’s. The ODE model discussed

in this paper is autonomous.
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resistance (drag).

Answer. The 0th Euler point is the initial conditions.



x

y

vx

vy

t


0

=



5

10

1

2

0


(12)

The 1st Euler point approximates the state of the system after 0.1 seconds. By (11) and (12) it is

given by:



x

y

vx

vy

t


1

=



x

y

vx

vy

t


0

+



vx

vy

0

−g
1


0

∆t

=



5

10

1

2

0


+



1

2

0

−9.8

1


(.1)

=



5.1

10.2

1.0

1.02

.1


(13)

The 2nd Euler point approximates the state of the system after 0.2 seconds. By (11) and (13) it is
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given by: 

x

y

vx

vy

t


2

=



x

y

vx

vy

t


1

+



vx

vy

0

−g
1


1

∆t

=



5.1

10.2

1.0

1.02

.1


+



1.0

1.02

0

−9.8

1


(.1)

=



5.2

10.302

1.0

0.04

.2


(14)

So, at time t = 0.2 seconds the ball’s position is 〈x(0.2), y(0.2)〉 ≈ 〈5.2, 10.302〉 meters and the

ball’s velocity is 〈vx(0.2), vy(0.2)〉 ≈ 〈1.0, 0.04〉 meters/second.

Including Air Resistance. The standard formula [3, 2] for the magnitude of the drag force

FD on a ball is given by

FD =
CD d A ||v||2

2
(15)

where CD is the drag coefficient, for a tennis ball CD = 0.5; d is the density of air, which at 20

degrees Centigrade (68◦ F) is 1.21 kg/meter
3
; A is the cross sectional area of the ball, which for a ball

of radius r is πr2, a tennis ball’s radius is r = 0.0265 meters; the velocity squared ||v||2 = v2
x + v2

y.

The mass of a tennis ball is 0.058 kg. However, it is important to note that drag force does not

depend on the mass of the ball.

The drag force vector FD points in the opposite direction of the ball’s motion. So:

FD = −FD
v

||v||
= −CD d A ||v||2

2

v

||v||
= −CD d πr2 ||v||

2
v = −c ||v|| v (16)

is the drag force vector on the ball due to air resistance. Note, we let c =
CD d πr2

2
.

Forces are vectors so they add together. So, to include the drag force in your model you just

Equation (5):

Fg = ma

to

Fg + FD = ma (17)
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At this point you have everything you need to solve the problem and find the launch angle θ

which will maximize how far the ball will land from you.

Python Script

Accompanying this modeling scenario is a Python script called ThrownBallEulerStudent.py.

It solves the above problem, but assumes there is no air resistance. You can “easily” modify this

script to include drag.

Details. The accompanying Python script, ThrownBallEulerStudent.py, computes the tennis

ball’s trajectories from launch to hitting the ground, for launch angles θ = 0, 1, 2, . . . , 90 degrees

using Euler’s method. It stores the x coordinate for where each trajectory hits the ground, along

with the corresponding launch angle θ, as well as outputting this to the console. It then applies

Euler’s method to that launch angle θ which gave the “best (maximal)” result to recalculate the

optimal (best) trajectory. It outputs and saves a plot of the best trajectory, see below, and prints

to the console a paragraph that gives some information about the scenario, including the optimal

launch angle and maximum x distance.

From Output of ThrownBallEulerStudent.py:

Assuming drag = 0. If when you throw a tennis ball you release it at a height of 2

meters and a speed of 12 meters/second, and you want it to land furthest from you, you

should throw the ball at an angle of 42 degrees: it will land about 16.6 meters away.

Notes about Python

1. You don’t have to download Python to run or edit Python scripts. There are free, online Python

compilers. A good one is at https://repl.it/languages/python3. You just copy and paste

your script into the online compiler window and hit RUN.

2. The fastest and best way to run Python is to install it on you computer. A free and widely

used Python IDE, especially in the sciences and engineering, is called Anaconda [1].

ThrownBallEulerStudent.py
https://repl.it/languages/python3
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3. ThrownBallEulerStudent.py is written for Python 3. There are two versions of Python:

Python 2 and the newer Python 3. They are almost exactly the same. Unfortunately, they are

not 100% the same. So, sometimes a script written for one version of Python can’t be compiled

by the other version of Python.

4. To do 52 in Python use 5 ∗ ∗2.

5. To do
√

7 in Python use np.sqrt(7).

Possible Scenario Extensions

1. Wind.

2. After the ball hits the ground, model how it bounces.

3. Instead of level ground, suppose the ground is an inclined plane [4].
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