www.simiode.org

STUDENT VERSION Euler and How Far Can You Throw a Ball?

Chris McCarthy
BMCC City University of New York
New York NY 10007 USA
cmccarthy@bmcc.cuny.edu

Abstract

If a tennis ball is thrown through the air it will eventually hit the ground due to gravity. Using Euler's method, write a short script (Python, Matlab, R, etc.) to find the trajectory of the ball which will maximize the distance the ball lands from the thrower taking into account air resistance (drag).

This scenario can be used to introduce students to Euler's method for higher order ordinary differential equations. To do this project students should be comfortable with the concept of second order ODE's, vectors, and $F=m a$ from elementary physics. A little programming knowledge is a plus. But beyond that, not much is needed. The student version contains the necessary physics background, including a brief discussion of drag, as well as a quick introduction to Euler's method for higher order ODE's. A Python script to solve the problem, if we neglect drag, is provided to the students. Their job is to modify the script to take into account drag. A full script, which solves the problem and includes drag is provided for teachers.

SCENARIO DESCRIPTION

If a tennis ball of mass m is thrown through the air it will eventually hit the ground due to gravity. If you can throw a tennis ball 12 meters/second (about 26.8 mph) how far can you throw it; meaning how far away from you can you make it land? Assume that when the ball leaves your hand it is at a height of 2 meters (about 6 feet). With the help of Euler's Method, write a short script (Python, Matlab, R, etc.) to find the ideal launch angle θ to throw the ball, so that it will result in the ball landing as far as possible from you. Also find that maximal distance and plot that trajectory. Make sure to include air resistance (drag) in your model. Don't worry about rotational effects.

Physics Background and Euler's Method Review. Let $x(t)$ and $y(t)$ represent a ball's position at time t, in the x, y plane, with y being height. Vectors will be denoted by a bold font. The ball's velocity is:

$$
\begin{equation*}
\mathbf{v}=\frac{d}{d t}\langle x, y\rangle=\langle\dot{x}, \dot{y}\rangle=\left\langle v_{x}, v_{y}\right\rangle \tag{1}
\end{equation*}
$$

The ball's acceleration is:

$$
\begin{equation*}
\mathbf{a}=\frac{d}{d t}\left\langle v_{x}, v_{y}\right\rangle=\langle\ddot{x}, \ddot{y}\rangle=\left\langle\dot{v}_{x}, \dot{v}_{y}\right\rangle \tag{2}
\end{equation*}
$$

From Newton's Second Law of Motion we know that Force $=$ mass \times acceleration:

$$
\begin{equation*}
\mathbf{F}=m \mathbf{a} \tag{3}
\end{equation*}
$$

For our models we will approximate the earth as being flat with gravity pointing straight down (in the negative y direction) and so we will approximate the force of gravity acting on a mass m as:

$$
\begin{equation*}
\mathbf{F}_{\mathbf{g}}=\langle 0,-m g\rangle \tag{4}
\end{equation*}
$$

with $g=9.8$ meters $/$ second 2 in the MKS system.
Simple Model for a Thrown Ball (no drag). To start with, we will ignore drag. Once we understand this simple model, we can make it more realistic by adding drag.

Combining (2), (3), and (4) we get the following second order ODE (which neglects drag):

$$
\begin{equation*}
\mathbf{F}_{\mathbf{g}}=\langle 0,-m g\rangle=m\langle\ddot{x}, \ddot{y}\rangle=m \mathbf{a} \tag{5}
\end{equation*}
$$

Writing the \ddot{x} and \ddot{y} parts of (5) on separate lines we get the 2 nd order system of ODE's:

$$
\begin{align*}
& m \ddot{x}=0 \\
& m \ddot{y}=-m g \tag{6}
\end{align*}
$$

To apply Euler's method, we need to convert (6) to a first order system of ODE's. We do the usual substitution. As in (1) and (2), we let $\dot{x}=v_{x}$, so that $\ddot{x}=\dot{v}_{x}$; we let $\dot{y}=v_{y}$, so that $\ddot{y}=\dot{v}_{y}$; and we divide by m. This gives us the first order version of (6):

$$
\begin{align*}
\dot{x} & =v_{x} \\
\dot{y} & =v_{y} \\
\dot{v}_{x} & =0 \\
\dot{v}_{x} & =-g \tag{7}
\end{align*}
$$

We can rewrite (7) in vector form as:

$$
\frac{d}{d t}\left(\begin{array}{c}
x \tag{8}\\
y \\
v_{x} \\
v_{y}
\end{array}\right)=\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0 \\
-g
\end{array}\right)
$$

We can linearly approximate the state of the system $\left(\begin{array}{c}x \\ y \\ v_{x} \\ v_{y}\end{array}\right)$ at time $t+\Delta t$ using information about
the system at time t :

$$
\left(\begin{array}{c}
x \tag{9}\\
y \\
v_{x} \\
v_{y}
\end{array}\right)_{\text {at } t+\Delta t} \approx\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right)_{\text {at } t}+\frac{d}{d t}\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y}
\end{array}\right)_{\text {at } t} \cdot \Delta t
$$

It is convenient ${ }^{1}$ to explicitly include time t in the linear approximation. When we explicitly include time $t(9)$ becomes:

$$
\left(\begin{array}{c}
x \tag{10}\\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{\text {at } t+\Delta t} \approx\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{\text {at } t}+\frac{d}{d t}\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{\text {at } t} \cdot \Delta t
$$

We rewrite (10) using (8):

$$
\left(\begin{array}{c}
x \tag{11}\\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{\text {at } t+\Delta t} \approx\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{\text {at } t}+\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0 \\
-g \\
1
\end{array}\right)_{\text {at } t} \cdot \Delta t
$$

Note, the " 1 " appearing in the bottom of the third vector in 11 is because $\frac{d t}{d t}=1$. Recall Euler's method produces a sequence of Euler points (or vectors)

$$
\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{0},\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{1},\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{2}, \ldots
$$

which approximate the state of the system (and the solution) at times $t=0, \Delta t, 2 \Delta t \ldots$.
So, for example, $\left(\begin{array}{c}x \\ y \\ v_{x} \\ v_{y} \\ t\end{array}\right)_{2}$ is the Euler approximation of the solution at $t=2 \Delta t$.
Euler's Method Example. Suppose the ball is thrown at time $t=0$ seconds from $\langle x, y\rangle=\langle 5,10\rangle$ meters with initial velocity $\left\langle v_{x}, v_{y}\right\rangle=\langle 1,2\rangle$ meters/second. Using a step size of $\Delta t=0.1$ seconds, approximate the location of the ball at time $t=0.2$ seconds using the Euler method. Ignore air

[^0]resistance (drag).
Answer. The $0^{t h}$ Euler point is the initial conditions.
\[

\left($$
\begin{array}{c}
x \tag{12}\\
y \\
v_{x} \\
v_{y} \\
t
\end{array}
$$\right)_{0}=\left($$
\begin{array}{c}
5 \\
10 \\
1 \\
2 \\
0
\end{array}
$$\right)
\]

The $1^{\text {st }}$ Euler point approximates the state of the system after 0.1 seconds. By 11 and 12 it is given by:

$$
\begin{align*}
\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{1} & =\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{0}+\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0 \\
-g \\
1
\end{array}\right)_{0} \Delta t \\
& =\left(\begin{array}{c}
5 \\
10 \\
1 \\
2 \\
0
\end{array}\right)+\left(\begin{array}{c}
1 \\
2 \\
0 \\
-9.8 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
5.1 \\
10.2 \\
1.0 \\
1.02 \\
.1
\end{array}\right) \tag{13}
\end{align*}
$$

The $2^{\text {nd }}$ Euler point approximates the state of the system after 0.2 seconds. By 11 and 13 it is
given by:

$$
\begin{align*}
\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{2} & =\left(\begin{array}{c}
x \\
y \\
v_{x} \\
v_{y} \\
t
\end{array}\right)_{1}+\left(\begin{array}{c}
v_{x} \\
v_{y} \\
0 \\
-g \\
1
\end{array}\right)_{1} \Delta t \\
& =\left(\begin{array}{c}
5.1 \\
10.2 \\
1.0 \\
1.02 \\
.1
\end{array}\right)+\left(\begin{array}{c}
1.0 \\
1.02 \\
0 \\
-9.8 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
5.1) \\
10.302 \\
1.0 \\
0.04 \\
.2
\end{array}\right) \tag{14}
\end{align*}
$$

So, at time $t=0.2$ seconds the ball's position is $\langle x(0.2), y(0.2)\rangle \approx\langle 5.2,10.302\rangle$ meters and the ball's velocity is $\left\langle v_{x}(0.2), v_{y}(0.2)\right\rangle \approx\langle 1.0,0.04\rangle$ meters/second.

Including Air Resistance. The standard formula [3, 2] for the magnitude of the drag force F_{D} on a ball is given by

$$
\begin{equation*}
F_{D}=\frac{C_{D} d A\|\mathbf{v}\|^{2}}{2} \tag{15}
\end{equation*}
$$

where C_{D} is the drag coefficient, for a tennis ball $C_{D}=0.5 ; d$ is the density of air, which at 20 degrees Centigrade $\left(68^{\circ} \mathrm{F}\right)$ is $1.21 \mathrm{~kg} /$ meter $^{3} ; A$ is the cross sectional area of the ball, which for a ball of radius r is πr^{2}, a tennis ball's radius is $r=0.0265$ meters; the velocity squared $\|\mathbf{v}\|^{2}=v_{x}^{2}+v_{y}^{2}$. The mass of a tennis ball is 0.058 kg . However, it is important to note that drag force does not depend on the mass of the ball.

The drag force vector $\mathbf{F}_{\mathbf{D}}$ points in the opposite direction of the ball's motion. So:

$$
\begin{equation*}
\mathbf{F}_{\mathbf{D}}=-F_{D} \frac{\mathbf{v}}{\|\mathbf{v}\|}=-\frac{C_{D} d A\|\mathbf{v}\|^{2}}{2} \frac{\mathbf{v}}{\|\mathbf{v}\|}=-\frac{C_{D} d \pi r^{2}\|\mathbf{v}\|}{2} \mathbf{v}=-c\|\mathbf{v}\| \mathbf{v} \tag{16}
\end{equation*}
$$

is the drag force vector on the ball due to air resistance. Note, we let $c=\frac{C_{D} d \pi r^{2}}{2}$.
Forces are vectors so they add together. So, to include the drag force in your model you just Equation (5):

$$
\mathbf{F}_{\mathbf{g}}=m \mathbf{a}
$$

to

$$
\begin{equation*}
\mathbf{F}_{\mathbf{g}}+\mathbf{F}_{\mathbf{D}}=m \mathbf{a} \tag{17}
\end{equation*}
$$

At this point you have everything you need to solve the problem and find the launch angle θ which will maximize how far the ball will land from you.

Python Script

Accompanying this modeling scenario is a Python script called ThrownBallEulerStudent.py It solves the above problem, but assumes there is no air resistance. You can "easily" modify this script to include drag.

Details. The accompanying Python script, ThrownBallEulerStudent.py, computes the tennis ball's trajectories from launch to hitting the ground, for launch angles $\theta=0,1,2, \ldots, 90$ degrees using Euler's method. It stores the x coordinate for where each trajectory hits the ground, along with the corresponding launch angle θ, as well as outputting this to the console. It then applies Euler's method to that launch angle θ which gave the "best (maximal)" result to recalculate the optimal (best) trajectory. It outputs and saves a plot of the best trajectory, see below, and prints to the console a paragraph that gives some information about the scenario, including the optimal launch angle and maximum x distance.

From Output of ThrownBallEulerStudent.py:


```
Assuming drag = 0. If when you throw a tennis ball you release it at a height of 2
meters and a speed of 12 meters/second, and you want it to land furthest from you, you
should throw the ball at an angle of 42 degrees: it will land about 16.6 meters away.
```


Notes about Python

1. You don't have to download Python to run or edit Python scripts. There are free, online Python compilers. A good one is at https://repl.it/languages/python3. You just copy and paste your script into the online compiler window and hit RUN.
2. The fastest and best way to run Python is to install it on you computer. A free and widely used Python IDE, especially in the sciences and engineering, is called Anaconda [1].
3. ThrownBallEulerStudent.py is written for Python 3. There are two versions of Python: Python 2 and the newer Python 3. They are almost exactly the same. Unfortunately, they are not 100% the same. So, sometimes a script written for one version of Python can't be compiled by the other version of Python.
4. To do 5^{2} in Python use $5 * * 2$.
5. To do $\sqrt{7}$ in Python use np.sqrt(7).

Possible Scenario Extensions

1. Wind.
2. After the ball hits the ground, model how it bounces.
3. Instead of level ground, suppose the ground is an inclined plane [4].

REFERENCES

[1] Anaconda. 2019. Anaconda Distribution. https://www.anaconda.com/distribution/, Accessed 18 August 2019.
[2] Brody, H. and R. Cross, and C. Lindsey. 2002. The Physics and Technology of Tennis. Suwanee GA: Racquet Tech Publishing.
[3] Cross, R. 2011. Ball Trajectories.http://www.physics.usyd.edu.au/ cross/TRAJECTORIES/Trajectories.html. Accessed 18 August 2019.
[4] Winkel, B. 2015. 3-045-T-BallBounce.

[^0]: ${ }^{1}$ Explicitly including time allows us to easily keep track of time while doing Euler's method calculations in vector form. It is especially convenient for when we have to deal with non-autonomous ODE's. The ODE model discussed in this paper is autonomous.

