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Abstract: Students will walk through a detailed derivation and review of 

basic population models (exponential and logistic) to create and understand 

variations of those models while learning some basic MATLAB functions 

for working with differential equations.  They will also work with other 

utilities such as desmos.com and dfield.jar for visualizing dynamic plots and 

slopefields.  It is assumed that students have had at least some experience 

with interpreting exponential and logistic differential equations.  However, 

there are ample opportunities for review of these ideas if necessary. 

 

 

SCENARIO DESCRIPTION 

 
Instructions:   

(1) You can save all MATLAB input and output as a diary file (in case you need to come 

back to it later).  To do so, simply type diary pickAname before you do anything 

else … at the end of the session, be sure to enter diary off before closing MATLAB 

to close and save the diary.  You can then double-click on the diary file in 

MATLAB’s file explorer to access it as a text file from which you can copy-and-

paste. 

(2) Answer all questions concisely but thoroughly.  Preferably, you should type your 

answers and solutions as you cut and paste code and plots from MATLAB.  However, 

some things take a long time to type, so leave some space in your document so you 

can write or type your conclusions later when you no longer need access to 

MATLAB.  Make sure you do everything that requires access to MATLAB during 

the lab session. 

(3) After copying MATLAB code, please remove any blank lines and error messages to 

make it as reader-friendly as possible. 

(4) Work through problems 1 and 2 until you obtain the expected output and are able to 

answer all of the questions asked – you do NOT have to include any MATLAB code 



or plots in your lab document, but you should include answers to the questions asked 

in problem 2. 

(5) For problems 3 through 9, copy all MATLAB code and any plots (MATLAB or 

DESMOS) you use into a Word document.  Right-click on the picture in Word, select 

the “size” tab, and change the height to 2.25 inches (make sure the “lock aspect ratio” 

box is CHECKED).  This seems to do the trick with being able to fit 2 plots on one 

line if you also set margins at 0.75in.  Be sure to label each plot with the problem 

number to which it corresponds – using a 2x2 table can make centering and labeling a 

little easier than using captions. 

(6) Your final product should be a single document containing all the necessary and 

relevant MATLAB code, plots, and your analysis for each problem, with each 

problem and each part of the problem clearly labeled. 

 

NOTE:  MATLAB commands typically have extensive help available.  For help on the 

“ezplot” command, for example, type help ezplot at the command prompt and press 

“enter.”  MATLAB commands used in this lab include:   
syms dsolve clear solve ezplot diff subs simplify pretty limit 

 

Exponential Model of Population Growth 

• Suppose a population changes only via births and deaths (no migration or other 

external influences), where ( )t  is the number of births per unit of population per 

unit of time at time t and ( )t  is the number of deaths per unit of population per unit 

of time at time t. 

• The numbers of births and deaths would be ( ) ( ) ( ) ( )  and  t P t t t P t t       , 

respectively, and the incremental change in population would be 

    ( ) ( ) ( )births deathsP t t P t t  = −  −     , so in the end, we would have 

( ) ( ) ( )
P

t t P t
t

 


 −  
. 

• If the birth and death rates ( ( )t  and ( )t ) are constant, then as Δ𝑡 → 0, we have  

𝑑𝑃

𝑑𝑡
= (𝛽 − 𝛿)𝑃, or in other words, 

𝑑𝑃

𝑑𝑡
= 𝑘𝑃, where 𝑘 = 𝛽 − 𝛿. 

• This leads to the familiar exponential solution 𝑃(𝑡) = 𝑃(0)𝑒𝑘𝑡, which is often called 

the Malthusian model (after the English clergyman and political economist Thomas 

Malthus (1766-1834)).  Note that if births outpace deaths, i.e. if 𝛽 > 𝛿, then 𝑘 > 0 

and we have exponential population growth, whereas if 𝛽 < 𝛿, then 𝑘 < 0 and we 

have population decline (exponential decay). 

 

PROBLEM 1 – Use the “dsolve” command in MATLAB to confirm the general 

solution to the above differential equation.  To do so, enter the following commands. 

 
syms P(t) k Po  

% defines k and Po as symbolic constants and P(t) as a symbolic 

function 

P(t)=dsolve(diff(P)==k*P,P(0)==Po) 

% solves the differential equation P’=kP with initial condition 

P(0)=Po and assigns the solution to the symbolic function P(t).   

 

The expression “diff(P)” represents the derivative of P(t).  (Note 



the double == represents equality and NOT assignment, and note the 

use of an explicit multiplication symbol *.)  Also, since P(t) was 

defined as a symbolic function, once MATLAB solves the differential 

equation, we can evaluate the function P at specific values of t.  

If the above commands worked without errors, enter a command such as 

P(3) and see if you get what you would expect. 

 

PROBLEM 2 – Suppose an alligator population consisted of 12 alligators in 2008 and 

two dozen in 2018.  Also suppose that the population grows as in the exponential model 

above, except that the birth rate actually increases by a factor of 𝑘 > 0 as the population 

increases (i.e. the birth rate is proportional to the population and is not constant).  In 

addition, without any natural predators and a typically long lifespan, we’ll consider the 

death rate to be zero.  Hence the model we end up with in this case is 

( ) ( ) ( )20 ,   with  0 12
dP

P kP P kP P
dt

 = − = − = = . 

MATLAB usually assigns output to the variable “ans,” and each subsequent command 

overwrites what used to be defined as “ans.”  So a useful practice is to name your 

variables with convenient names so that you can easily recall them later.  With that in 

mind, perform the following steps in MATLAB to solve this initial value problem. 

 
clear all 

% clears all variable definitions used previously – this is a good 

practice when doing multiple problems in the same session – you can 

also clear specific values by entering a command such as clear k,Po 

syms P(t) k 

% defines k as a symbolic constant and P(t) as a function 

DP=diff(P) 

% defines DP as the derivative of the function P(t) (or we can just 

use “diff(P)” in the dsolve command as in Problem 1) 

P(t)=dsolve(DP==k*P^2,P(0)==12) 

% solves the differential equation with initial condition P(0)=12, 

and assigns the solution to the function P(t).  You should get a 

result equivalent to P(t)=12/(1-12kt). 

simplify(P) or simplify(P(t)) 

% Used to further simplify expressions (optional) 

pretty(P) or pretty(P(t)) 

% Attempts to express output in a more human-readable format 

(optional) 

 

Now that we have an expression for ( )P t , we want to use the initial condition to solve for 

k.  To do this, we would substitute 10 in for 𝑡 and solve for 𝑘.  There are a number of 

ways to do this in MATLAB: 

 
K=solve(12/(1-12*k*10)==24,k) 

% OPTION 1 – retype the entire equation with 10 in place of t, then 

use the “solve” command to solve for k (and assign the value to K.  

Note that I used “K” instead of “k” so I can redo the problem later 

without having to retype the original “k”) 

K=solve(subs(P(t),t,10)==24,k) 

% OPTION 2 – use the solve AND subs commands simultaneously to have 

MATLAB do all the work.  The “subs” command shown replaces all 

instances of “t” in the expression “P(t)” with 10, then solves the 

resulting equation for k and assigns the result to K. 

K=solve(P(10)==24,k) 

% OPTION 3 – solve P(t)=24 with t=10 for k 



P(t)=subs(P(t),k,K) 

% Redefines P(t) but replaces the k with K=1/240 found above. 

pretty(simplify(P(t))) 

% See what happens 

 

Regardless of the method, this should give you a value of 1
240

 for k.  Thus we know that 

the solution to this differential equation is ( )
1
20

12 240

1 20
P t

t t
= =

− −
. 

(a) Use solve to determine when the alligator population will first reach (or perhaps 

when it did reach) four dozen (i.e.  48). 

(b) What happens thereafter (i.e. at some point in time, our mathematical solution 𝑃(𝑡) 
has an issue – when and why)?  What does this imply in terms of the alligator 

population?  Why, given the initial parameters   and   , would this make sense?  

You might find it useful that MATLAB will calculate limits.  As an example, use the 

command syms x; limit(exp(-x),x,inf) to find the limit of xe−  as x →  (note 

that we can put multiple commands on one line if we separate them by a semi-colon 

(suppressing output) or a comma (not suppressing output)).  If the limit of your 

expression is approaching infinity, MATLAB will return the result “NaN,” which 

means “Not a Number.”  Of course, we are not using x and our time variable is not 

quite heading to inf, so adjust the command accordingly to fit our alligator 

population context. 

(c) MATLAB has two plotting commands, ezplot() and plot().  The ezplot 

command is used to plot symbolic functions like P(t) in this lab, while the plot 

command plots x and y vectors (like we did in the M&M lab).  Type P and press 

enter to confirm that the variable P is still defined as P(t)=-1/(t/240 - 1/12).  If 

not, define it as such.  Then type ezplot(P).  The ezplot command tries its best at 

coming up with a reasonable domain over which to plot, but in this case, it is not the 

domain we want.  We can adjust the plot by including axes settings such as 

ezplot(P,[xmin,xmax,ymin,ymax]) (but replace xmin, xmax, etc. with reasonable 

values based on your answers to parts (a) and (b)). 

(d) Now use dfield.jar (you should have downloaded that from 

https://math.rice.edu/~dfield/dfpp.html in a previous lab) to plot the original 

differential equation (with the value of k substituted in), keeping in mind that you 

need to set your window settings appropriately.  Finally, select “Keyboard input” 

from the “solutions” menu of the dfield Display window, and enter the initial 

condition (0, 12) and press “Solve” to confirm your observation from part (c) above. 

 

PROBLEM 3 - (Doomsday vs. Extinction) – Consider a population of rabbits in which 

both the birth and death rates are proportional to the current population, i.e. 

1 2 and k P k P = = .  Then the equation from the second and third points of the 

“exponential model” discussion above would become 

   ( ) ( ) ( )2

1 2 1 2 0P ,  where  0 .
dP

k P k P P k k P P
dt

= − = − =  

(a) For the sake of simplicity, you might set 1 2k k k− =  since we are not really 

concerned with the individual values of the two constants.  Then, with P0 = 6, use 

MATLAB’s dsolve command to solve this differential equation (your solution will 

be in terms of 𝑘).  In addition, you might want to use the pretty(ans) or 

https://math.rice.edu/~dfield/dfpp.html


simplify(ans) commands to format your output in a way that might be a little 

easier to read. 

(b) If the birth rate is greater than the death rate, you should notice an “issue” with the 

resulting population function.  (Specifically, focus on what happens to the population 

as time moves forward from the initial condition (0,6).)  Explain what impact this has 

on the solution you found in part (a), and at what time (in terms of 𝑘) does the 

“issue” with the population function occur?  Why do you think this is called the 

“doomsday” scenario?  Plot the solution using Desmos (accessed via 

https://www.desmos.com) and include a slider for 𝑘 (you have to use 𝑥 instead of 𝑡 as 

the independent variable) and see if your analysis was correct (just type in the 

solution as it is reported from MATLAB’s dsolve command and desmos will 

automatically ask if you want to create a slider for 𝑘).  You can use a scroll wheel on 

your mouse to zoom the graph in/out, and you can zoom each axis independently if 

you hold the SHIFT key as you drag the appropriate axis.  You can fine-tune the 

slider by clicking on its definition and setting the min, max, and step size – A good 

range for 𝑘, as a combination of constants of proportionality, would be between 0 and 

2 with a small step size such as 0.005. 

(c) Now set the slider in desmos to values of 𝑘 for which 1 2k k  and describe what 

happens to the population as time moves forward from the initial population.  Why 

do you think this is called the “extinction” scenario?  Why, in the context of this 

problem and in terms of what 𝑘1 and 𝑘2 represent, does this make sense? 

(d) Do the same as in part (c) and answer the same questions for 1 2k k= . 

 

Logistic Growth  In environments with limited resources, it is reasonable to assume that 

the birth rate actually decreases as the population increases.  If we assume the birth rate 

is a decreasing linear function of the population and the death rate remains constant, we 

have ( )( )1

dP
P P

dt
  = − − .  To make this more familiar to us, note that this is a 

“logistic differential equation” ( )
dP

kP M P
dt

= −  with 1k =  and 
1

M
 



−
= .  From 

previous study, we know a number of things about this particular model: 

• If 𝑃0 = 0, then 𝑃′(𝑡) = 0 and the population does not grow.   

• If 𝑃0 > 𝑀, then 𝑃′(𝑡) < 0, and the population shrinks down towards the carrying 

capacity.   

• If 0 < 𝑃0 < 𝑀, then 𝑃′(𝑡) > 0, and the population grows towards the carrying 

capacity.   

• Finally, if 𝑃0 = 𝑀, then 𝑃′(𝑡) = 0 and the  population remains at 𝑀. (Note that 

𝑃(𝑡) = 𝑀 and 𝑃(𝑡) = 0 are called equilibrium solutions of the differential 

equation.  Specifically, 𝑃(𝑡) = 𝑀 is called a stable equilibrium because solutions 

from above and below both approach 𝑀 over time, while 𝑃(𝑡) = 0 is called an 

unstable equilibrium because solutions from above (and below if that made 

practical sense) both move away from 𝑃(𝑡) = 0.) 

• The solution curves cannot intersect (cross) the carrying capacity 𝑃(𝑡) = 𝑀 (this 

is “uniqueness” in theory, but in reality, populations can of course fluctuate above 

and below the carrying capacity).   

• M is the “carrying capacity” of this particular environment, or the maximum 

population that the environment can support over the long run.  The population is 

https://www.desmos.com/


growing fastest (i.e. 𝑃′(𝑡) reaches its maximum) when 𝑃(𝑡) = 𝑀/2, or half of its 

carrying capacity. 

 

Because the logistic model is so much more realistic than the exponential model, there 

are numerous variations in use.  The following problems explore some of those 

variations. 

 

 

PROBLEM 4  Suppose we have a population of unsophisticated animals in which 

females rely solely on chance encounters with males for reproductive purposes.  It is 

reasonable to assume that such encounters occur at a rate that is proportional to the 

product of the number of males and the number of females (if equally sized, then each 

would be 0.5𝑃 and the product would be 0.25𝑃2).  We might therefore assume that births 

occur at a rate proportional to P2 (births/unit time), which in turn means the actual birth 

rate (births/time/population) is proportional to P (i.e.  we have divided “births/unit time” 

by “population,” so we lose a factor of P).  If the death rate   is constant, the differential 

equation governing this model is 

( ) ( )2dP
kP P kP P kP P M

dt
 = − = − = − . 

Note that P M−  is the negation of the M P−  factor present in the logistic equation and 

that Mk = .  If we use MATLAB to solve the differential equation 

( )0.0004 150
dP

P P
dt

= −  with 0(0)P P= , we obtain a solution that can be expressed as  

( )
( )

0

0 0 0.06

0 0

150

150
1 1 1 1

Mkt

Mkt t

MP M
P t

P M P e M
e e

P P

= = =
+ −    

+ − + −   
   

. 

(a) Notice, as in the logistic equation, the behavior of this population will depend on the 

following possible cases: 0 0 0 0 00,   0 ,   ,   or  P P M M P P M=   =  .  Based on this 

observation and the solution above, and without really doing any labor-intensive 

calculations, determine what would eventually happen to the population in each of 

the four possible cases given for 0P .  Give sufficient justification for each of your 

answers using (1) the differential equation and (2) the solution ( )P t . 

(b) Using dfield, plot a slope field for 
𝑑𝑃

𝑑𝑡
= 0.0004𝑃(𝑃 − 150).  Were your analyses 

from part (a) correct?  If not, revise them and explain any errors in your thinking. 

(c) What do you suppose the equilibrium solution(s) is/are in this case (if there are 

any)?  How is it (or are they) different from the equilibrium solutions in the logistic 

equation (consider what happens to a solution slightly above or slightly below the 

equilibrium)?  Would you consider them stable?  Why or why not? 

 

 

More Logistic Variations 

We might consider the differential equation ( )
dP

kP M P h
dt

= − −  in which h represents 

either a “harvesting” (if 0h  ) or a “restocking” (if 0h  ) of the population.  The value of 

h could be constant, time-dependent, or population-dependent. 

 



PROBLEM 5 – Assume the following logistic differential equation with harvesting 

holds for a population: 

 ( ) ( ) 0,   0
dP

P a bP h P P
dt

= − − = . 

(a) First, identify the long-term behavior of this population if we were to ignore the effect 

of the harvesting term h− .  Specifically, what is the carrying capacity without any 

harvesting? 

(b) Now, with a = 5, b = 1, and h = 4 (i.e. including harvesting), use dfield with the 

window    2,6 , 2,6
x y

− −  to determine the long-term behavior of solutions for which 

00 1P  , 01 4P  , and 0 4P  .  (I would recommend that you make use of the 

“parameters” feature of dfield so it is easier to change the values of a, b, or h without 

having to retype the entire equation with each adjustment.)  What impact, if any, has 

harvesting had on the carrying capacity? 

(c) Identify equilibrium solutions and classify each as stable, unstable, or semi-stable 

(can you guess what the latter means?) 

(d) With this level of harvesting, is it possible for a non-zero initial population to become 

extinct in finite time?  Under what conditions, if any, does this occur?  Keep in mind 

we are using small numbers to make life easier on us, but 𝑃 = 1 could mean that the 

population is one hundred, or one thousand, or one million, etc.  Also, is it possible 

for the population to grow without bound? 

 

PROBLEM 6 – Repeat parts (b) through (d) of PROBLEM 5, but with h = 6.25.  The 

equilibrium solutions have changed.  Has their overall nature changed as well (in 

particular, has their stability changed)? 

 

PROBLEM 7 – Repeat parts (b) through (d) of PROBLEM 5, but with h = 7.  Now 

consider the lack of an equilibrium solution.  What happens to the population, regardless 

of 𝑃0, in this case?  How does this make sense when you consider what h represents?1 

 

PROBLEM 8 – Consider stocking instead of harvesting.  Change the equation to  

    ( ) ( ) 0,   0
dP

P a bP h P P
dt

= − + = . 

(a) Recall the equilibrium solutions without harvesting or restocking as found in part (a) 

of PROBLEM 5.   

(b) Start with 0.1h =  (and a and b as defined in PROBLEM 5) and use dfield to 

determine the long-term behavior of solutions as you did in PROBLEM 5.  Have the 

equilibria changed significantly in location or stability? 

(c) Incrementally increase the value of h, using dfield to plot a new slope field each time, 

and note any changes to the equilibria in terms of location or stability.  Are you able 

to create another bifurcation (where the overall behaviors of the equilibria change 

significantly)? 

(d) Roughly what level of restocking is necessary to achieve a stable population of 

( ) 10P t = ? 

 
1 Problems 5, 6, and 7 demonstrate a concept known as bifurcation.  In changing the value of h ever so 

slightly, we have fundamentally changed the nature of the solutions to the differential equation.  Clearly a 

fisheries expert, for example, would want to avoid these bifurcation points in order to avoid catastrophe 

(extinction scenario) or unmanageable or unwanted situations (over-population and “doomsday” scenario). 



 

PROBLEM 9 – Taking the results of PROBLEMS 5 through 8 into consideration, what 

appears to be easier to do, overharvest, or overstock?2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Perhaps this can help us understand why conservation efforts can be so important! 


