
Distributed Mandelbrot set & DES Brute-force Algorithm on the

“Cerberus” Beowulf Cluster

 (Case Study)

Jeff Becker, Richard Hayes, Charles Singleton
{j_becker4, r_hayes, c_singleton2}@post.massbay.edu

Department of Computer Science

Massachusetts Bay Community College, Wellesley Hills, MA

Faculty Advisor
Giuseppe Sena

gsena@massbay.edu

Department of Computer Science

Massachusetts Bay Community College, Wellesley Hills, MA

We used the “Cerberus” Beowulf Cluster to develop two applications as a case study:

 Distributed Mandelbrot set [1].

 Distributed DES [2] Brute-Force Algorithm.

Applications follow a Master-Slave paradigm, and are written in C and Open MPI [3].

We analyzed the performance and visualized the output using GUIs developed in

Python.

During the Summer & Fall of 2012, the faculty at MassBay Community College worked

on the design and implementation of the “Cerberus” Beowulf cluster [4]. Cerberus is an

8-node dual-core Linux cluster with CUDA [5] support. This project is based on a

professional development grant [6] with the idea of creating labs and microlabs to

introduce parallelism and distributed systems concepts into the CS curricula. Cerberus is

one of the few Beowulf clusters built at a community college in the US and probably

second in Massachusetts.

Fractals are an example of an “embarrassingly parallel problem”. There is no

dependency between the data. We implemented a distributed Mandelbrot set fractal.

We also developed a distributed DES brute-force algorithm. Once a slave node finishes

its work, it sends the result back to the master. If there is more work to do, the master

sends another group of keys to the slave node.

We developed GUIs for the two MPI applications written in Python using libraries like

TKinter. Communication with the master node (C/MPI) uses the TCP protocol. The UI

tier receives events serialized as JSON [7] objects from the MPI tier. Serializing events

mailto:%7Bj_becker4,%20r_hayes,%20c_singleton2%7D@post.massbay.edu
mailto:gsena@massbay.edu

in JSON was chosen because of Python's support for marshaling Python Dictionaries and

Lists in the standard library. That will allow us to expand the GUIs when a new type of

visualization schema is required.

OPTIONAL REFERENCES

[1] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W.H.Freeman & Co Ltd.

1983.

[2] U.S Department of Commerce, National Bureau of Standards. Data Encryption

Standard. Federal Information Processing Standards Publications, No. 46. January

1977.

[3] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, George

Bosilca, Andrew Lumsdaine. Open MPI: A High-Performance, Heterogeneous

MPI. In Proceedings, Fifth International Workshop on Algorithms, Models & Tools

for Parallel Computing on Heterogeneous Networks. Barcelona, Spain. September

2006.

[4] Robert W. Lucke. Building Clustered Linux Systems. Prentice Hall PTR. 2005.

[5] David B. Kirk, Wen-mei W. Hwu. Programming Massively Parallel Processor: A

Hands-on Approach. Morgan Kaufmann & NVIDEA. Second Edition. 2013.

[6] Giuseppe A. Sena. Developing Labs and Microlabs for Adding Parallelism and

Distributed Computing into Computer Science Curricula. Professional

Development Grants, Massachusetts Bay Community College, Computer Science

Department. September 2012.

[7] tutorialspoint. JSON Tutorial.

http://www.tutorialspoint.com/json/index.htm

