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Abstract: In this modeling scenario, we investigate the Earth’s climate using a zero-dimensional energy

balance model. Energy balance models are climate models that try to predict the average surface tempera-

ture of the Earth from solar radiation, emission of radiation to outer space, and Earth’s energy absorption

and greenhouse effects. Via an iterative process, we construct a first order nonlinear differential equation

which models the global mean temperature of Earth. A phase line analysis is conducted to characterize the

solutions for which Earth is in thermal equilibrium.

SCENARIO DESCRIPTION

Earth’s Climate System

How can we use mathematics to help us understand Earth’s climate? Better yet, what do we even

mean by climate, and how is it different than weather? Weather can be thought of as a mix of events

that happen each day in our atmosphere . On the other hand, climate can be thought of as the long

term atmospheric conditions in a region. That is, “climate is what we expect, weather is what we

get.” Earth’s climate includes interactions among the atmosphere, hydrosphere (oceans, lakes and

other bodies of water), geosphere (land surface), biosphere (all living things), and the cryosphere

(snow and ice). The climate system is the exchange of energies and moisture between these spheres

(see Figure ??).

A climate model is a description of this system in mathematical terms. Climate models are used

in computational simulations to explore the behavior of the system under various forcing scenarios.

In particular, these models can be used to determine causes of Earth’s climate change. Climate can

be best described as the statistics of weather. Accordingly, climate change refers to changes in the

statistics of weather over time.
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In this activity, we introduce a way to approach Earth’s “climate system” mathematically

through a global energy balance model (EBM). Energy balance models are climate models that try

to predict the average surface temperature of the Earth from solar radiation, emission of radiation

to outer space, and Earth’s energy absorption and greenhouse effects. A global EBM summarizes

the state of the Earth’s climate system in a single variable–the temperature at the Earth’s surface

averaged over the entire globe. We begin with the simplest model and assume that Earth is a

homogeneous solid sphere. That is, we ignore differences in topography (altitude), differences in

the atmosphere’s composition (such as clouds), differences among continents and oceans, and so on.

Because we are not considering any spatial variations, these models are sometimes referred to as

zero-dimensional energy balance models.

Observation

The climate system is powered by the sun, which emits radiation in the ultraviolent (UV) regime

(wavelength less than 0.4 µm). This energy reaches the Earth’s surface, where it is converted by

physical, chemical, and biological processes to radiation in the infrared (IR) regime (wavelength

greater than 5 µm). This IR radiation is then re-emitted into space. If the Earth’s climate is in

equilibrium, the average temperature of Earth’s surface does not change, so the amount of energy

received must equal the amount of energy re-emitted.

To build the model, we need to introduce the following units, variables and physical parameters.

Units

� Length: meter (m), a µm is a micrometer = 0.001 mm.

� Energy: watt (W). 1 watt = 1 joule per second = 1kg·m2

sec3 . A joule is the unit of energy used

by the International Standard of Units (SI). It is defined as the amount of work done on a

body over a distance of one meter.

� Temperature: kelvin (K). An object whose temperature is 0 K has no thermal energy, i.e. 0

K is absolute zero. The Kelvin scale is closely related to the Celsius scale. The magnitude of

a degree in the Celsius scale is the same as the magnitude of a kelvin in the Kelvin scale, but

the zero point is different. Water freezes at the zero point in Celsius and at 273.15 K. Thus,

the Kelvin scale is the Celsius scale plus 273.15.

Variable

� T , the temperature of the Earth’s surface average over the entire globe.

Physical parameters

� R, the radius of the Earth.
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� S, the energy flux density–the rate of transfer of energy through a surface or rate of energy

transfer per unit area. Through satellite observations, S = 1367.6 Wm−2.

� σ (sigma), Stefan-Boltzmann constant; its value is given by σ = 5.67 · 10−8Wm−2K−4. The

Stefan-Boltzmann constant is the constant of proportionality in the Stefan-Boltzmann law:

“the total energy radiated per unit surface area of a black body across all wavelengths per

unit time is directly proportional to the fourth power of the black body’s thermodynamic tem-

perature T”. By black body we mean a physical body that absorbs all incident electromagnetic

radiation.

Next, we make use of the following assumptions:

Assumptions

� Viewed from the sun, the Earth is a disk.

� The area of the disk as seen by the sun is πR2.

� Recalling that the energy flux density is S, the amount of energy flowing through the disk (i.e.

reaching the Earth) is

Incoming energy (W) : Ein = πR2S. (1)

� All bodies radiate energy in the form of electromagnetic radiation.

� In physics, it is shown that for “black-body radiation” the temperature dependence is given

by the Stefan–Boltzmann law (see above, in units of Wm−2),

FSB(T ) = σT 4. (2)

� The area of the Earth’s surface is 4πR2.

� The amount of energy radiated out by the Earth is

Outgoing energy (W) : Eout = 4πR2σT 4. (3)

Problem 1

Recalling that energy is measured in watts, verify that the units of Ein and Eout are in watts

(W). Note that if the incoming energy is greater than the outgoing energy, the Earth’s temperature

will increase. Likewise, if the outgoing energy is greater than the incoming energy, the Earth’s

temperature will decrease. We are interested in the case where the Earth’s temperature remains

constant. That is, Earth is in thermal equilibrium. Determine the temperature T for which Earth



4 Energy Balance Models

Figure 1. A Conceptual model of Earth’s climate system: incoming sunlight and outgoing heat.

is in thermal equilibrium, i.e. Ein = Eout (energy balance equation, see (1) and (3)). The known

average temperature of the Earth is about 16 degrees Celsius (or 287.7K). How well does your answer

compare with the known average temperature?

Problem 2

You probably noticed that your answer in Problem 1 was pretty far off from 16 degrees Celsius. It

turns out that the model posed in Problem 1 was too simple and omitted too many different factors.

For instance, we did not consider the fact that snow, ice, and clouds can reflect a significant amount

of incoming energy from the Sun. This fraction of energy that is reflected back into space before

it reaches the Earth’s surface is called the (planetary) albedo. Let α denote the albedo, so that the

remaining fraction 1−α (sometimes called the co-albedo) of the incoming solar radiation will reach

the Earth’s surface. Adding the effects of albedo to Ein, adjust the energy balance equation and

determine the temperature T for which Earth is in thermal equilibrium. A typical value for Earth’s

average albedo is α = 0.30. This means that about 70% of the incoming energy is absorbed by the

Earth’s surface. How well does your answer compare with the known average temperature? Would

you say that this new model is an improvement over the previous model? Why/Why not?

Problem 3

You might have noticed that your answer in Problem 2 is even worse than the solution in Problem

1–even though this new model is more physically relevant! Reminding ourselves that modeling is

an iterative process, rather than throw away the albedo introduced in Problem 2, we add another

factor which has a significant effect on the global equilibrium temperature. A good portion of the

difference between your answer in Problem 2 and the average global temperature can be attributed

to the greenhouse effect of Earth’s atmosphere. That is, we include the effects of greenhouse gases
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(like carbon dioxide and methane), water, dust, and aerosols on the atmosphere. The chemical

properties of these greenhouse gases have a significant effect on the atmosphere by reducing the

Stefan-Boltzmann law by some factor. This, in turn, affects the outgoing energy.

Let ε denote the greenhouse factor which is an artificial parameter used to model the effect of

greenhouse gases on the permittivity of the atmosphere. While the value of ε is unknown, we will

assume that 0 < ε < 1.

(a) Write a new energy balance equation which incorporates albedo and the greenhouse effect.

(b) Because the value of ε is unknown, it is not possible to determine the equilibrium tempera-

ture T . However, we can work backwards to determine the value ε∗ so that the equilibrium

temperature is T = 287.7K. Determine this value ε∗.

(c) Suppose that the combined effects of greenhouse gases, dust, and aerosols reduces the parame-

ter ε so that ε < ε∗. What happens to the equilibrium temperature? Is this what you expected

to have happen? Remark: It may be helpful to read up on the Greenhouse Effect. See [3] for

instance.

Problem 4–A Differential Equation is Born!

Earlier we mentioned that if the incoming energy is greater than the outgoing energy, the Earth’s

temperature will increase. Likewise, if the outgoing energy is greater than the incoming energy, the

Earth’s temperature will decrease. Suppose the temperature is increasing. Will the temperature

continue to increase, or will the temperature eventually level off? How fast will the temperature

change? To answer these types of questions, we must adjust our model so that it allows the temper-

ature to change over time. Perhaps the simplest model is one that assumes that the temperature

changes at a rate proportional to the energy imbalance. Rewrite the last sentence as a mathematical

equation using Ein and Eout.

Problem 5

It is traditional to formulate the differential equation of temperature evolution in terms of energy

densities (Wm−2). Right now, the right hand side of your differential equation is given in terms of

Ein and Eout which are energies measured in watts (W). To convert these values to energy densities,

we can divide by the Earth’s surface area (πR2). In terms of energy densities, the temperature

evolution equation becomes

C
dT

dt
=

1

4
(1 − α)S − εσT 4, (4)

where C is the planetary heat capacity which connects the rate of change of the temperature to

energy densities and is the amount of energy needed to raise the temperature of the planet by 1 K.

Note that even in this new scenario, if Ein = Eout, the derivative is zero indicating that Earth is in

thermal equilibrium. With this differential equation (and taking α = .3, ε = 0.66,C = 1):
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(a) Determine the effect of Ein > Eout on the global average temperature T . Does your answer

make sense physically?

(b) Determine the effect of Ein < Eout on the global average temperature T . Does your answer

make sense physically?

(c) Suppose that the current temperature is 350 K. Do you expect the temperature to increase,

decrease, or remain the same?

(d) Suppose that the current temperature is 250 K. Do you expect the temperature to increase,

decrease, or remain the same?

(e) What does this suggest about the stability of the equilibrium point? Defend your answer by

performing a phase line analysis. Assume that a reasonable domain for T is [200, 400].

(f) Now suppose that ε = 0.5. Determine the stability of the equilibrium point by performing a

phase line analysis. How does this analysis compare to the previous problem?

Problem 6

So far, we have assumed that the albedo is constant and independent of the surface temperature.

However, this assumption does not account for the fact that when the surface temperature is suf-

ficiently low, water turns to ice and increases the ability for Earth to reflect incoming energy from

the Sun. Thus, we should consider a temperature-dependent albedo with the following constraint:

α(T ) ≈

{
0.7 T < 250,

0.3 T > 280.
(5)

This allows us to incorporate the assumption that when T is low enough, water turns to ice and

increases the albedo. We are now in a position to adjust our temperature evolution equation (4) by

replacing α with a monotonically decreasing function α(T ) that connects the value 0.7 at T ≈ 250K

with the value 0.3 if T > 280K. There are several ways of accomplishing this. One such way is

show in Figure 2.

α(T ) = 0.5 − 0.2 · tanh

(
T − 265

10

)
, (6)

where the hyperbolic tangent function, tanh(x) =
e2x − 1

e2x + 1
.

Our temperature evolution equation now becomes

C
dT

dt
=

1

4
(1 − α(T ))S − εσT 4, (7)

with α(T ) given by (6). We would like to perform a similar phase line analysis as in the previous

problem. Since this is a new ODE, we begin by finding the equilibrium points. Noticing that the

right-hand side of the differential equation is a complicated nonlinear function (of T–all other values
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Figure 2. Graph of (6).

are known), we must estimate the equilibrium points using a root finding method. The equilibrium

points for (7) occur when Ein = Eout (Why?). Since Ein and Eout are both functions of time, we

can plot Ein and Eout to see that (7) has three equilibrium points. (See Figure 3.) We will use the

“Solver” add-in in Excel to find the values of T so that f(T ) = 1
4 (1 − α(T ))S − εσT 4 = 0. Before

we access Solver, we must first input f(T ) into Excel. See Figure 4.

In Figure 4, A1 = f(200).

Using Excel’s Solver

The procedure for using Excel’s Solver is as follows:

1. You can access Solver in one of two ways, depending on which version of Excel is being used.

Under the “Tools” menu select “Solver”. A new pop-up window will appear. Remark : If you

do not see this as an option, the add-in will need to be installed. To access Solver, select

“Add-Ins” under the “Tools” menu and check the solver add-in.

Otherwise, you can access Solver in the Analysis group under the “Data” tab. Remark : If you

do not see this as an option, the add-in will need to be installed. To access Solver, go to File

> Options. Click Add-Ins, and then in the Manage box, select Excel Add-ins. Click go. In

the Add-Ins available box, select the Solver Add-in check box, and then click OK. After you

load the Solver Add-in, the Solver command is available in the Analysis group on the Data

tab. See Figure 5.
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Figure 3. Ein vs. Eout.

Figure 4. Inputting f(T ) into Excel

2. In the box labeled “Set Objective:” enter the reference of the cell into which you typed the

formula. In our example, we would type A1.

3. Click the “Value of:” button. Enter your target value in the “Value Of:” box. In our example,

we would type 0. (This is the right hand side of the nonlinear equation that we are trying to

solve.)

4. In the “By Changing Variable Cells:” box type the formula’s reference cell. In our example,

we would type B1.

5. Click “Solve.” Excel will change both cells accordingly.

Remark: To identify all three equilibrium points, you must select a value for A1 that is fairly close

to the equilibrium point you wish to find. Use Figure 3 to identify a good guess for A1 for each

equilibrium point. Once you have determined the three equilibrium points, perform a phase line

analysis for each equilibrium point and classify each point as a source, sink, or node. Explain the

physical relevancy of your results being sure to describe the kind of climate each equilibrium point

dictates. What would it have been like to live on Earth in each case?



Energy Balance Models 9

Figure 5. Excel’s Solver Tool.

Problem 7

Finally, we consider a possible improvement of our model by incorporating data collected by satellites

about the energy radiated out by the Earth. While we have been assuming that Earth radiates like

a black body (so that the outgoing radiation follows the Stefan-Boltzmann law), Mikhail Budyko

and William Sellers [2] proposed a different expression for the outgoing radiation. They proposed

the following model for outgoing energy:

Eout(T ) = A+BT, (8)
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where A and B are constants. North and Coakley [1] were able to validate this model using this ob-

servational data; in particular, it was estimated that A = 203.3 Wm−2 and B = 2.09 Wm−2deg−1.

Here, temperatures are measured in Celsius. Thus, when we incorporate this result into our tem-

perature evolution equation, we use T − 273.15 instead of just T . (Why?)

(a) Repeat Problem 6 with the new temperature evolution model:

C
dT

dt
=

1

4
(1 − α(T ))S − (A+B(T − 273.15)), (9)

where α(T ) is given in (6) and A and B are given above. Compare your results with those

obtained in Problem 6.

(b) One way of directly comparing (7) with (9) is by computing a linear expansion of E∗
out(T ) =

σ(273.15 + T )4 about T = 0 (accounting for the fact that A and B were obtained with

temperatures measured in Celsius). Compute the linearization of E∗
out(T ) and determine

constants A∗ and B∗ so that E∗
out(T ) ≈ A∗ +B∗T . Compare your results with (8).

Wrap Up

Starting with the simple observation that the global average temperature at the Earth’s surface

increases if the amount of energy reaching the Earth exceeds the amount of energy emitted by

the Earth and released into the stratosphere (and vice versa), you were able to develop models

which predict the global mean temperature of Earth. More than that, you observed three different

equilibrium states for the global mean temperature. How does this relate to Earth’s current climate?

One of the states corresponds to the current climate, while another equilibrium state was found to be

unstable. The third stable equilibrium state corresponds to a deep-freeze climate, where the Earth

would have been completely covered with snow and ice. In fact, this equilibrium state corresponds

to a complete glaciation of the Earth, with all oceans frozen to a depth of several kilometers and

almost the entire planet is covered in ice. This dramatically different Earth, for which no life could

have existed, is sometimes referred to as Snowball Earth. There is some debate about whether Earth

was completely covered with snow and ice or if there were still some “slushy” spots that could have

allowed for some organisms to survive.
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