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Abstract: The goal of this activity is to show students how population models can be used to examine

social issues. The students will examine three different population models and will use numerical methods

to apply each model to demographic data for the percentage of engineering degrees awarded to women in the

United States. Finally, the students will discuss possible implications and weaknesses of the three models

in predicting the percentage of engineering degrees awarded to women over the next ten years.

SCENARIO DESCRIPTION

In 1966, fewer than 1% of the 35,826 bachelor’s degrees in engineering awarded in the United States

were earned by women [1]. This percentage showed rapid growth over the following ten years, but

undergraduate women in the United States still remain underrepresented in engineering some fifty

years later, despite comprising the majority of the undergraduate student body. In fact, women

comprised 57% of the undergraduate student body in 2017 while earning just 22% of the bachelor’s

degrees in engineering awarded that year [2, 1]. This project makes no attempt to explain why

women remain underrepresented in undergraduate engineering programs; however, students are

encouraged to learn more about this issue by visiting the Society of Women Engineers website

(https://swe.org/) or reading about the history of this organization [3]. Rather, the goal of this

project is to use historical data to examine the following question:

Does the growth in the percentage of women in undergraduate engineering programs over the

last fifty years appear to be on track to achieve a gender balance mirroring that of the entire

undergraduate population?

Towards this end, a mathematical model will be developed for the percentage of bachelor’s degrees

in engineering earned by women in the United States as a function of time, based on real data. The

data comes from the American Physical Society (https://www.aps.org/) and includes the percentage

of bachelor’s degrees in engineering earned by women in the United States for each year between

1966 and 2018 [1]. The time history is shown in Figure 1.

https://swe.org/
https://www.aps.org/
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Figure 1. Percentage of Bachelor’s degrees in engineering earned by women in the United States [1].

Let P (t) represent the percentage of bachelor’s degrees in engineering that are awarded to women

in year t. It will be assumed that P (t) obeys a differential equation of the form

dP

dt
= f(P ), (1)

where f is a continuous function. As a percentage, the function P (t) is confined to the range

0 ≤ P (t) ≤ 100 and thus it is reasonable to employ a population model that accounts for lim-

ited resources. The growth function f(P ) for such models usually satisfies the following general

properties:

� f(0) should be zero;

� f(P ) should be positive for small positive values of P ;

� f(P ) should be negative for sufficiently large values of P .

These assumptions reflect the fact that a small population grows steadily due to an abundance of

resources, but growth will slow and possibly recede as the resources are exhausted. Although the

above criteria could be met by countless varieties of growth functions, two choices tend to receive

the most attention. The first of these is the so called logistic growth function,

f(P ) = kP

(
1 − P

N

)
, k, N > 0. (2)
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The second is called the Gompertz growth function and is given by

f(P ) = kP ln

(
N

P

)
, k, N > 0. (3)

One further growth function will be introduced for consideration. This growth function will be

referred to as the cubic growth function and is described by

f(P ) = kP

(
1 − P

N

)3

, k, N > 0. (4)

Figure 2 offers a graphical comparison of the three different types of growth functions, each with

N = 50. (The choice N = 50 is used to reflect a population that is divided evenly between men

and women.) Do these functions satisfy the three general properties described above? How will the

differences in the shapes of curves influence the corresponding models?
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Figure 2. Comparison of the Logistic, Gompertz, and Cubic Population Models.

Ultimately, these models will be used in an attempt to forecast the growth of the actual per-

centage of undergraduate engineering degrees awarded to women in the United States over the next

five to ten years. To accomplish this, it will be important to understand how the constants k and

N affect the shape of the graph for P (t). It will also be important to recognize differences between

the three models and determine which is best suited to the data. Once this has been done, it will be

possible to approach the main question by generating a forecast for the percentage of engineering

degrees awarded to women in the future. The remainder of this modeling scenario will break this

large task into a series of steps, many of which rely on knowledge developed earlier in the course.

1 Qualitative Analysis

Qualitative analysis leads to the understanding of certain characteristics of the solutions of a dif-

ferential equation (what is going to happen) without explicitly solving the differential equation (no

solution formula is used). This is especially important when the differential equation cannot be

solved using available techniques. Notice that the differential equation (1) is autonomous for any

growth function f(P ), which means the slope dP
dt at any point (t, P ) is dependent only on P . Recall
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that the phase line of an autonomous differential equation dP
dt = f(P ) is essentially an annotated

graph of f(P ) versus P . Positive values of f(P ) correspond to positive values of dP
dt , which means

P will increase (move to the right) as t increases. Similarly, negative values of f(P ) correspond to

negative values of dP
dt , which means P will decrease (move to the left) as t increases. These direc-

tions are noted on the P -axis using arrows to the right or left. If f(P ) = 0, however, then dP
dt = 0

and P (t) will remain constant. Such a point P is called an equilibrium point of the differential

equation. If nearby solutions tend towards the equilibrium point it is said to be stable. Otherwise,

the equilibrium point is said to be unstable.

Student Task: Construct a phase line for the cubic model,

dP

dt
= kP

(
1 − P

N

)3

, (0 < N < 100)

in the space provided below. Include arrows on the P -axis that illustrate the direction of solutions.

Be sure to identify any equilibrium points and label each as stable or unstable.

N 100
P

dP
dt

0

Questions:

1.1 How many equilibrium points does this model have? Describe the stability of each equilibrium

point.

1.2 If 0 < P (0) < 100, what can you say about P (t) for large values of t? Try to interpret

your answer in the context of the percentage of women earning undergraduate degrees in

engineering.

1.3 How do the parameters k and N affect the phase line? Does one parameter have a more

noticeable effect?

1.4 Would the phase line or any of your subsequent answers change if you replace the cubic model

with the logistic model or the Gompertz model? Explain.

1.5 How do the logistic, Gompertz, and cubic growth functions differ? How do you think these

differences will affect the solution curves for these models? (You may want to graph each of

the growth functions on a common plot.)
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2 Numerical Solution

Regardless of the choice of the growth function, notice that (1) is always separable, so one can

attempt to find an explicit formula for the solutions via integration. This works well for the logistic

and Gompertz models, which is one of the reasons these models are often used. The cubic model,

on the other hand, is not easily solved in this manner. In this case it makes sense to implement

a numerical method to obtain an approximate solution of the differential equation. The improved

Euler method, summarized in Figure 3, will be adopted for this project.

Improved Euler Method:

Choose ∆t > 0 and consider the initial value problem

dP

dt
= f(P ) subject to P (t0) = P0.

Define tj = t0 + j∆t. The approximate value of P (tj), denoted by

Pj , can be computed from Pj−1 as follows:

1. Compute the initial slope estimate: m1 = f(Pj−1).

2. Compute a temporary estimate for P : P̃ = Pj−1 + m1∆t.

3. Compute the second slope estimate: m2 = f(P̃ ).

4. Compute Pj using the average slope:

Pj = Pj−1 +
(m1 + m2

2

)
∆t.

Figure 3. The improved-Euler method.

Student Task: Create a spreadsheet to implement the improved Euler method for the cubic model

to solve the initial value problem

dP

dt
= kP

(
1 − P

N

)3

subject to P (0) = 1

over the range 0 ≤ t ≤ 52. Use ∆t = 1, k = 0.2, and N = 57.

Tips for the Spreadsheet: (see Figure 4)

� Create six columns: (A) Iteration j, (B) Time tj , (C) Population Pj , (D) Slope m1 = f(Pj),

(E) Temporary Estimate P̃ , (F) Slope m2 = f(P̃ ).

� Create cells for the parameters k and N and reference these cells in the two slope formulas.

� Add a scatter plot to graph Pj as a function of tj .
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Figure 4. Screenshot of a sample spreadsheet.

Questions:

2.1 How long does it take before Pj exceeds 25? How sensitive is this time to the changes in te

parameters k and N?

2.2 How does the graph of the approximate solution change when k is increased? What if k is

decreased?

2.3 Create new sheets to implement the logistic and Gompertz models by copying and modifying

the current sheet. What changes are required? How do the solution curves differ?

2.4 Does the data in Figure 1 exhibit any characteristics of the solution curves found here? Explain.

3 Model Implementation

The last step in this project involves the application of the three population models to actual data for

the percentage of bachelor’s degrees in engineering earned by women in the United States between

1966 and 2018. The parameters k and N will be adjusted so that each model predicts the data as

accurately as possible. The previous steps should have provided some insight about how changes to

the parameters k and N will influence the shape of the solution predicted by the model. This insight

will help determine whether a given value of k or N in the model is too small or too large based

on the comparison with the historical data. For convenience, the raw data depicted in Figure 1 is

presented as Table 1. This data is also available in a spreadsheet among the supporting documents.

Student Task: Modify your spreadsheet to compare the observed data to predicted values of P (t)

for any values of the parameters k and N . Optimize the values of k and N for each model so that

the sum of the squared error (SSE) is minimized. The sum of the squared error is computed as

follows:

SSE =

J∑
j=1

(Pj − P (tj))
2
,

where J is the number of data points.
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Year P (Year) Year P (Year) Year P (Year) Year P (Year)

1966 0.4075 1980 10.1207 1994 16.5096 2008 18.4923

1967 0.5083 1981 11.0850 1995 17.2792 2009 18.0604

1968 0.5732 1982 12.2665 1996 17.9368 2010 18.4281

1969 0.7503 1983 13.2820 1997 18.3960 2011 18.7971

1970 0.7527 1984 14.0887 1998 18.6147 2012 19.1987

1971 0.7978 1985 14.4975 1999 19.7700 2013 19.3157

1972 1.0763 1986 14.4988 2000 20.5188 2014 19.8257

1973 1.2313 1987 15.3228 2001 20.1118 2015 20.0755

1974 1.6139 1988 15.3648 2002 20.9667 2016 20.9124

1975 2.1218 1989 15.2180 2003 20.3679 2017 21.5032

1976 3.3952 1990 15.4130 2004 20.5111 2018 22.2550

1977 4.9423 1991 15.5418 2005 19.9740

1978 7.3692 1992 15.5567 2006 19.5750

1979 9.1287 1993 15.9174 2007 18.5692

Table 1. Percentage of Bachelor’s degrees in engineering earned by women in the United States [1].

Tips for the Spreadsheet:

� Add two additional columns: (G) Actual Data P (tj), (H) Squared Error.

� Interpret 1966 as t = 0 so that 2018 corresponds to t = 52.

� Modify P0 to match the starting value of the data.

� Create a cell for the sum of the squared error column.

� Add a line or scatter plot to compare P (tj)-observed with Pj-predicted.

� Start with k = 0.1 and N = 50. Make small adjustments to k or N while watching the

graphs and the sum of the squared error. Think about how the changes will affect the graph

of P (t)-predicted before implementing them.

� If the spreadsheet is equipped with Solver, use the Solver to optimize the values of k and N

so that the sum of the squared errors is minimized.

� Repeat these steps for each of the three models.
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Questions:

3.1 Do any of the models fail to capture important trend(s) in the data? Explain.

3.2 What do the optimal values of k and N convey about the progress towards a gender balance

in the engineering sciences through 2018? Do the models agree in this regard?

3.3 Which model led to the smallest value for the sum of the squared error?

3.4 Which model do you think will predict P (t) the most accurately over the next ten years?
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