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Given right circular CYLINDER with fixed Spigot Hole size.  What shape 
container would we have to offer so that the water falls at a constant rate, 
meaning for a right circular cylinder what cross-sectional area A(h) at height h 
would we have to offer so that the water falls at a constant rate? 

We begin with Torricelli' s which computes the rate at which water leaves a cylindrical tank at height 
h(t) and cross sectional area A(h(t)). 

TorricelliLaw = A[h[t]]×h'[t]  - α a Sqrt[2 g h[t]]

A[h[t]] h′[t]  -8.76231 h[t]

We seek to determine A(h(t)), the cross sectional area at height h(t) so that the water falls at a constant 
rate all the time, i.e. h’(t) = - c, (c > 0). Here,  
a is the cross sectional area of the tiny hole near the bottom of our clock; 
α is the discharge or contraction coefficient, i.e. the effective percent of the tiny hole’s area which 
actually permits water to flow out; 
g is the acceleration due to gravity - different  clocks for different altitudes(!); and 
c is the actual rate in cm/(unit time) we want our water level to fall.

We solve for h'[t] in Torricelli' s Law differential equation: 

hsolTor = h'[t] /. Solve[TorricelliLaw, h'[t]]〚1〛

-
8.76231 h[t]

A[h[t]]

ASol = A[h[t]] /. Solve[-c  hsolTor, A[h[t]]]〚1〛

525.738 h[t]

We see from the above equation that if we are to have our column of water fall at a constant rate, say 

h’[t] = - c (c > 0), then our Surface area at the top of the column, A(h(t)) has to be proportional to h(t) . 

Indeed, should we desire to make the cross sectional area circular, i.e. A(h(t)) = π rad2 then our radius 
at the surface level of our column has to be the positive root of the solution of A(h(t)) = π r2 .



r = rad /. Solveπ rad2  ASol, rad〚2〛

12.9363 h[t]1/4

Combining terms and rewriting we see that r = 
α a 2 g h(t)

π c
 where r is the radius of a circular cross 

sectional clock at height h; a is the cross sectional area of the tiny hole near the bottom of our clock; α 
is the discharge or contraction coefficient, i.e. the effective percent of the tiny hole’s area which actu-
ally permits water to flow out; g is the acceleration due to gravity - different  clocks for different alti-
tudes(!); and c is the actual rate in cm/(unit time) we want our water level to fall.

We now use this radius in Torricelli' s Law to get confirmation that the column of water does fall at a 
constant rate.

TorrLaw = π r^2 h'[t]  -α a Sqrt[2 g h[t]]

525.738 h[t] h′[t]  -8.76231 h[t]

ht[t_] = h[t] /. DSolve[{TorrLaw, h[0]  h0}, h[t], t]〚1〛 /. {h0  60}

DSolve: For some branches of the general solution, the given boundary conditions lead to an empty solution.

60 - 0.0166667 t

So, how long does it take to empty this container?

tempty[c_] = t /. Solve[ht[t]  0, t]〚1〛

3600.

Thus if we set c = 1 cm/min = 1 cm/ (60 sec) we can compute the height at any time, t, and confirm our 
clock does have its water level fall at a rate of 1/60 cm/sec.

We construct the hole at the base to be circular of radius r = 0.3 cm and hence area a = π 
(0.3)2 = 0.282743.

a = π (.3)^2;

Here we will presume (and we can determine this experimentally) that α = 0.70.

α = 0.70;

We shall use g = 980 cm/s2

g = 980;

And since we wish the water to fall 1 cm every 1 minute we shall use c = 1 cm/(1 min) = 1 cm/ (1*60 s) = 
1/60 cm/s.

c = 1/60

1

60
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Our height of the column of water as a function of time is given by hh (t) in cm at time t seconds.  We 
confirm the height at the start, t = 0 s, and when the tank should be empty, t = 60*60 s.

hh[t_] = 60 - 1 / 60 t;

hh[0]

60

hh[60 * 60]

0

Thus the radius of our cylinder at height h is 

rc[t_]=
α a 2 g hh[t]

π c

12.9363 60 -
t

60

1/4

We plot the relationship between height of the water in the tank and radius of the surface of the water 
at that height, .

Plot[hh[t], {t, 0, 60*60}, AxesLabel  {"Time - s","Height - cm"}]
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We plot the relationship between the radius of the surface of the water as a function of time.
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Plot[rc[t], {t,0,60*60}, AxesLabel  {"Time - s","Radius - cm" }]
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We create the container.

container = ParametricPlot3D[{Sin[θ] rc[t], Cos[θ] rc[t], ht[t]}, {t, 0, 60*60}, {θ, 0, 2 π}, BoxRatios

AxesLabel  {"Radius - cm", "Radius - cm", "Height - cm"}, Axes  False, Boxed  False, Mesh  False

We create graphic for the surface of the water.

Surf[t_] := Graphics3D[{Blue, Cylinder[{{0, 0, ht[t]}, {0, 0, ht[t] + .001}}, rc[t]]}]

We attempt to do a reasonable job on the text for the graphics.

txt[t_] := Graphics3D[{Text["Time = ", {50, 0, ht[t]+5}], Text[t, {62, 5, ht[t]+6}], Text["s ",

First, we offer an animation of the water falling out of the tank with time stamp.
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Animate[Show[container, Surf[t], txt[t]], {t, 0, 60 * 60}]

Next, we offer a manipulation of the water falling out of the tank with time stamp.

Manipulate[Show[container, Surf[t], txt[t]], {t, 0, 60 * 60}]
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