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Abstract:

This material introduces the idea of “rescaling” for ordinary differential equations (ODE’s) by the

introduction of dimensionless variables. In practice this is an extremely common and useful prelude to the

analysis and solution of ODE’s, and yet is not often taught in an introductory course. Most ODE texts do

not cover the material, but the benefits of understanding these techniques are myriad: rescaling indicates

the appropriate physical scale on which the relevant independent and dependent variables exist, and can

help determine conditions under which certain terms in an ODE model can be safely ignored, sometimes

leading to great simplification. Proper scaling is also a useful prelude to the numerical solution of ODE’s,

and can improve the stability and efficiency of numerical methods.

MOTIVATION: A SPRING-MASS PROBLEM

Consider a classic spring-mass system: a mass of m kilograms is constrained to move along a line

and is attached to a spring; refer to Figure 1, in which the mass moves only along the horizontal

axis (no gravity!) Hooke’s Law models the force F exerted by the spring on the mass as given by

F = −kx, where x is the displacement of the mass from equilibrium (x = 0) and k > 0 is some

constant that depends on the stiffness of the spring. Note that in order for F = −kx to balance

dimensionally k must have dimensions of force per distance (since k = −F/x). In metric MKS

(meters-kilograms-seconds) units k has units of Newtons per meter or equivalently, kilograms per

second squared.

Let us suppose that the spring is the only force acting on the mass, so there is no friction. From

Newton’s Second Law we have F = ma where a is the acceleration of the mass. If the position of
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Figure 1. A spring-mass system.

the mass is given by x(t) then a = d2x
dt2 and F = ma leads to −kx(t) = md2x

dt2 or

m
d2x

dt2
+ kx(t) = 0, (1)

an ordinary differential equation (ODE). Typical initial conditions are x(0) = x0 (initial position)

and dx
dt (0) = v0 (initial velocity).

Exercise 1

Suppose the initial conditions are x(0) = x0 for some x0 and dx
dt (0) = 0. Show the solution to

(1) is then x(t) = x0 cos(t
√

k
m ), and that the period of the resulting motion is P = 2π

√
m
k . Verify

that the quantity P so defined does indeed have the dimension of time.

CHARACTERISTIC VARIABLE SCALES

The period P of the spring-mass problem is an important feature of the physical system and is itself

of interest, quite apart from the specific form of the solution. For example, if we want to measure

the motion of an actual spring-mass system we should take data on a time scale comparable to P ,

perhaps 10 or 20 measurements per period, to clearly capture the motion of the system. Taking data

more often than this might be overkill (if the period is 3 seconds it makes little sense to measure

the mass position every microsecond.) Or perhaps we want to solve (1) numerically using Euler’s

method or something more sophisticated. The time scale of the problem will dictate the size of the

time steps we take as we repeatedly extrapolate the solution forward in time. The time steps should

be somewhat smaller than P if we are to track the motion accurately, but making them too small

is wasteful.

In the spring-mass problem the period P is proportional to the quantity

tc =

√
m

k
. (2)

Here tc is the characteristic time scale of the problem. The quantity tc, which does indeed have units

of time, provides some indication of how fast the system is changing. For the spring-mass system

we found this quantity by writing out the ODE (1), solving, and then finding P , but solving is a
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luxury we don’t always have. However, it’s usually possible to find the characteristic time scale for a

problem without solving an ODE, or even writing down an ODE model! And indeed, more complex

systems may have multiple time scales—different features of the physical system may change at

different rates. Moreover, time isn’t the only scale of interest. A system may have a characteristic

length, or mass, or other physical dimension.

A BIT OF DIMENSIONAL ANALYSIS

Let’s go back and find the time scale of the spring-mass system without solving or even writing down

an ODE. First, we’ll use “M” to denote the physical dimension of mass (not tied to any system

units), “T” to denote the dimension of time, and “L” to denote length. The mass m in the spring-

mass system has physical dimension M (duh!), which we’ll indicate by writing [m] = M . From

F = ma and the fact that [a] = LT−2 (acceleration has units of length per time squared) we find

that [F ] = MLT−2. This means that the spring constant k has dimensions [F/x] = MLT−2L−1 or

[k] = MT−2.

The characteristic time scale of the spring-mass system ought to depend on the values of k and

m, and in fact a simple hypothesis is that

tc = kamb (3)

for some numbers a and b. Since [tc] = T we must choose a and b so that the right side of (3) has

the dimension of time. Using [m] = M and [k] = MT−2, the right side of (3) has dimension

[kamb] = (MT−2)aM b = Ma+bT−2a.

Since both sides of (3) must have dimension T we need

a+ b = 0

−2a = 1.

This yields a = −1/2 and b = 1/2. From (3) we conclude that tc = k−1/2m1/2 =
√
m/k. This is

what we found in equation (2)!

Exercise 2

A pendulum of length R swings without friction in an environment with gravitational acceleration

g. The mass of the bob at the end of the pendulum is m. Let tc denote the characteristic time scale

for the problem and suppose that

tc = Ragbmc

for constants a, b, c. Find the dimension of each of R, g, and m, and show that the characteristic

time scale for this problem is given by tc =
√
R/g (and so the time scale does not depend on the

mass of the bob, already a valuable piece of information!) Note that you don’t actually need to use

the ODE that governs a swinging pendulum.
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Exercise 3

Consider a damped spring-mass system with mass m, spring constant k, and in which the

frictional force on the mass is given by −µx′(t) for some positive constant µ. The appropriate ODE

is

m
d2x

dt2
+ µ

dx

dt
+ kx(t) = 0 (4)

with some initial conditions. Show that [µ] = MT−1 (use the fact that µx′(t) has the dimension

force). If

tc = kambµc

show that we need

a+ b+ c = 0

−2a− c = 1

and that any solution is of the form

a = b− 1, c = 1 − 2b

where b can be chosen arbitrarily. As a result, any characteristic time scale must be of the form

tc = kb−1mbµ1−2b =
µ

k

(
mk

µ2

)b
(5)

for some b. Note that the parenthesized expression mk/µ2 is dimensionless. Equation (5) shows

that there are infinitely many possible time scales!

Exercise 4

We can nail down a specific physically relevant time scale by choosing a value for b in (5);

different choices highlight different time scales on which the phenomena evolves. Show that the

choice b = 1/2 in (5) yields the previous time scale tc =
√
m/k that captures the period of the

motion.

Exercise 5

How about a time scale that involves the damping constant µ? This could give insight into the

rate at which the solution decays, rather than oscillates. It makes intuitive sense that as µ gets

larger, the motion of the mass should damp to zero faster (though it never really gets there), so

let’s look for a time scale in which µ appears to a negative power. Show that the choice b = 1 in (5)

yields another time scale t′c = m/µ.

To gain some insight into how t′c relates to the solution, take m = 1, µ = 0.1, k = 1 and solve

the ODE (4) with x(0) = 1, x′(0) = 0 (analytically or numerically) and then plot the solution from

t = 0 to t = 200; the solution should substantially decay to zero by around t = 100. Compare this

to the value of m/µ. Then redo the computation but change the damping to µ = 0.2. How long
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does it take the solution to decay to a comparable level now, and how does it relate to m/µ? Try

µ = 0.5 and µ = 1, and compare m/µ to the decay time of the solutions. In plain English, what

does the time scale m/µ quantify here?

Exercise 6

Consider the ODE (4) with initial conditions x(0) = x0 and dx
dt (0) = 0. We now seek a charac-

teristic length scale xc for this problem, something of the form

xc = kambµcxd0.

Given that [x0] = L, show that anything of the form

xc = kbmbµ−2bx0 = x0

(
mk

µ2

)b
has dimension length. What’s the simplest choice for b?!

ANOTHER MOTIVATIONAL EXAMPLE

Consider a spring-mass system with a nonlinear “hard” spring that exerts a restoring force of the

form F (x) = −kx − qx3 for positive constants k and q. This models a spring that exerts more

force than would be dictated by Hooke’s Law, especially for large displacements. Suppose the mass

is displaced by an amount x0 at t = 0 and released with no initial velocity. The same F = ma

argument that led to (1) yields

m
d2x

dt2
+ kx+ qx3 = 0, (6)

x(0) = x0,

dx

dt
(0) = 0.

This ODE is nonlinear and can’t be solved in any simple closed form. However, if the nonlinear

qx3 term wasn’t present then this would be the spring-mass problem we’ve already solved. Can we

safely ignore that term and use the linear system as a good approximation?

Exercise 7

To gain some insight into when the qx3 term may or may not significantly influence the solution,

consider the case where m = 1, k = 1, and q = 0.01 in (6), for a couple different initial displacements

x0.

(a) Use a computer package to solve the ODE (6) numerically for initial displacement x0 = 1, from

t = 0 to t = 25. Plot the solution. Solve and plot again without the qx3 term, and compare

the solutions. Did the nonlinear term make much difference?

(b) Repeat the last exercise with x0 = 5.

(c) Repeat the procedure with x0 = 5, but now take k = 20.
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DIMENSIONLESS VARIABLES AND SCALING

In Exercise 7 you should find that, depending on the values of k and x0, q = 0.01 might be small

enough that the qx3 terms makes little difference, or it might make a lot of difference! Maybe it

depends on m too. Trying to sort out when a term like this is important and when it’s not can be

quite difficult. But a rescaling or “change-of-variable” argument can make it much easier analyze.

Let’s start with a simple example of how rescaling works. In the ODE (1) with initial conditions

x(0) = x0,
dx
dt (0) = 0, the independent variable t has physical dimension “time,” of course, while the

dependent variable x has dimension “length.” The relevant time scale on which t evolves is given

by (2) and from Exercise 6 above, the relevant spatial scale on which x(t) changes is xc = x0. We

will make a change of variables in both time and space to make both variables “dimensionless.”

Specifically, define a new independent time variable t̄ = t/tc with tc as given in (2), and also

define a new dependent spatial variable x̄ = x/xc where xc = x0 (from Exercise 6). Both t̄ and x̄

are dimensionless—they are “pure numbers” with no units in whatever system of units we work in.

We can move back and forth between the t and t̄ time scales (since t = tct̄), as well as the x and x̄

systems (x = xcx̄).

From Exercise 1, the motion of the mass in the original (t, x) variables is given by x(t) =

x0 cos(t
√
k/m), but the motion can also be described in the dimensionless (t̄, x̄) variables. We use a

new function x̄(t̄) to indicate the position of the mass, so that for any choice of t̄ (which corresponds

to some time t = tct̄ in the original time variable) we have

x̄(t̄) =
x(t)

xc
. (7)

Since t = tct̄ we can also write this explicitly, x̄(t̄) = x(tc t̄)
xc

. Alternatively, since t̄ = t/tc (7) also

yields x(t) = xcx̄(t/tc).

The function x̄(t̄) satisfies an ODE similar to (1), but simpler. To see this, start with (7) in the

form x(t) = xcx̄(t̄) and differentiate both side with respect to t twice (use the chain rule, and note

dt̄/dt = 1/tc) to find

dx

dt
= xc

dx̄

dt̄

dt̄

dt
=
xc
tc

dx̄

dt̄
(8)

d2x

dt2
=
xc
tc

d2x̄

dt̄2
dt̄

dt
=
xc
t2c

d2x̄

dt̄2
(9)

Substituting these relations into the ODE (1) produces

mxc
t2c

d2x̄

dt̄2
+ kxcx̄ = 0.

However, t2c = m/k and so the above equation collapses to

d2x̄

dt̄2
+ x̄ = 0. (10)
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after dividing by kxc. The general solution to (10) is just x̄(t̄) = c1 cos(t̄) + c2 sin(t̄). The initial

condition for x̄(0) is x̄(0) = x(0)/xc = x0/xc = 1! Thus we find that we must take c1 = 1, c2 = 0 in

the general solution and so

x̄(t̄) = cos(t̄).

Of course, we can translate this back to x(t) using x(t) = xcx̄(t/tc) and find

x(t) = xc cos(t/tc) = x0 cos(t
√
k/m).

RESCALING FOR APPROXIMATION

But the point above is not simply to solve the ODE (1) by rescaling to a simpler ODE. When we

properly rescale variables, it not only simplifies the ODE of interest, but also makes it much easier

to see which terms are important and which might have a negligible effect on the solution (and so

can be omitted), and how this depends on the various parameters in the ODE. Let’s return to the

hard spring system governed by (6) as an example.

Since our goal is determine when the qx3 term might be negligible so that the solution to the

ODE (1) suffices as an approximation, let’s again rescale with dimensionless variables t̄ = t/tc and

x̄ = x/xc, where tc is given by (2) and xc = x0. With x̄(t̄) = x(t)/xc as before, (8) and (9) still

hold. Using these in (6) yields

mxc
t2c

d2x̄

dt̄2
+ kxcx̄+ qx3

c x̄
3 = 0.

Use t2c = m/k, xc = x0, and divide through by mxc to find

d2x̄

dt̄2
+ x̄+ εx̄3 = 0 (11)

where

ε =
qx2

0

k
. (12)

The initial conditions become x̄(0) = 1 and dx̄
dt̄ (0) = 0. You can easily check that ε is dimensionless.

If we solve (11) for x̄(t̄) we can recover the solution x(t) to (6). Moreover, if we take ε = 0 we obtain

the solution to (1).

This helps make it clear when the nonlinear term can be neglected. If we let x̄ε(t̄) denote the

solution to (11) for a fixed ε (so x̄0(t̄) = cos(t̄)) we expect that x̄ε is well-approximated by x̄0

when ε is sufficiently close to 0. To illustrate, in the left panel of Figure 2 is shown x̄ε(t̄) versus

x̄0(t̄) = cos(t̄) when ε = 0.05, for 5 periods, so 0 ≤ t̄ ≤ 10π. The same information is shown in the

right panel for ε = 1. If we consider the approximation on the left sufficient for our purposes (but

not on the right) then something like ε ≤ 0.05 makes sense as a criteria for dropping the nonlinear

term. But in light of (12) this is just the condition

qx2
0

k
≤ 0.05. (13)
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Figure 2. Solution to (11) (solid curve) versus cos(t) (dashed curve) when ε = 0.05 (left) and ε = 1 (right).

If (13) holds we are justified in dropping the nonlinear term in (6), at least if we’re only interested

in the first five periods of the solution. If we want the solutions to agree for a longer time period, or

agree even more closely, we might need to lower 0.05. In any case, the critical quantity that dictates

when the solution to the nonlinear problem (6) agrees with the solution to the linear problem (1)

is the dimensionless quantity qx2
0/k. This also shows that the mass m plays no role in when the

approximation is valid.

SUMMARY

Rescaling via the introduction of dimensionless variables can make the analysis and solution of

ODE’s (and other problems in applied mathematics!) much easier. In particular

� It can illuminate the nature of the solution to an ODE by indicating the natural scale for the

quantities of interest, in time, space or other physical dimensions.

� It allows us to determine when and how equations can be simplified by dropping “negligible”

terms.

� It can aid in the numerical solution of the problem. For example, if we want to solve (6)

numerically for a large selection of different values of m, k, q, and x0, the introduction of

dimensionless variables shows that we really only need to solve (11) for the relevant values of

ε, which may lead to much less work.

� As it turns out, the introduction of dimensionless variables is an essential part of many types

of experimentation. For example, you can’t easily put a full scale jumbo jet into a wind tunnel;

you’d likely use a scale model. But will the results for the scale model correspond to the

behavior of a full size jet? Dimensional analysis of the type we’ve done can help assure that it

will. See [1] for more on this topic and dimensional analysis in general.
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Exercise 8

Consider the damped spring-mass equation (4) with initial conditions x(0) = x0, dx
dt (0) = 0.

Rescale the problem to the dimensionless form

d2x̄

dt̄2
+ ε

dx̄

dt̄
+ x̄ = 0

with appropriate initial conditions using xc = x0 and tc =
√
m/k.

What is ε in terms of m,µ, k, and x0? Compare the damped and undamped solutions for a few

values of ε, say over the first five cycles. Under what conditions (analogous to (13)) on m,µ, k, and

x0 can we reasonably ignore the damping for five cycles?

Exercise 9

A series RC (resistor-capacitor) circuit is governed by the ODE

R
dq

dt
+
q(t)

C
= 0 (14)

where R is the resistance of the resistor, C is the capacitance of the capacitor, and q(t) is the charge

on the capacitor. We assume there is no voltage source in the circuit. Suppose the capacitor starts

with initial charge q(0) = q0.

Let us use the symbol “Q” for the fundamental physical dimension of electric charge, so for

example, [q] = Q. It turns out that voltage or electrical potential is “work per unit charge.” If

we take work as “force times distance” then work has dimension ML2T−2, and so voltage V has

dimension [V ] = ML2T−2Q−1. The fundamental relation that governs a capacitor is q = CV , and

so [C] = Q/[V ] = M−1L−2T 2Q2. Similarly from Ohm’s law V = IR (where I is current in the

circuit, so [I] = QT−1, charge per time) we find [R] = [V/I] = ML2T−1Q−2.

(a) Use [R] = ML2T−1Q−2 and [C] = M−1L−2T 2Q2, along with [q0] = Q to find a time scale tc

for this ODE, of the form

tc = RaCbqc0.

(b) Find a “charge scale” qc for the problem, also in the form qc = RaCbqc0 (different a, b, c than

for tc.)

(c) Let t̄ = t/tc and q̄ = q/qc. Show that the rescaled ODE involving q̄(t̄) is

dq̄

dt̄
+ q̄ = 0

with q̄(0) = 1. Solve this DE and use it to find the solution to (14).

Exercise 10

Suppose an object of mass m falls at velocity v(t) under the influence of gravitational acceleration

g. Let’s take v > 0 to indicate downward motion, which is all we’re interested in. As it falls the

mass experiences a drag force F (v) that is a function of the object’s velocity v. Suppose that
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F (v) = −k1v − k2v
2 for some positive constants k1 and k2, so that the force is always upward

(which is the negative direction) when v > 0. From F = ma we find

m
dv

dt
= g − k1v(t) − k2v

2(t). (15)

Note g > 0 here.

(a) What are the dimensions of k1 and k2? (Hint: F (v) is a force, so k1v and k2v
2 must be forces

as well).

(b) Show that any characteristic time that can be formed from m, g, k1, and k2 is of the form

tc =
m

k1

(
mgk2

k2
1

)c
for some choice of c (note the quantity in parentheses is dimensionless). Hint: mimic the

procedure for tc after equation (4) in Exercise 3.

(c) Show that any characteristic velocity that can be formed from m, g, k1, and k2 is of the form

vc =
mg

k1

(
mgk2

k2
1

)d
for some choice of d.

(d) Let v̄(t̄) = v(t) where v̄ = v/vc and t̄ = t/tc, with tc and vc are obtained from the above

formulae, both with d = 0. Show that this leads to an ODE for v̄ of the form

dv̄

dt̄
= 1 − v̄ − εv̄2 (16)

where ε = mgk2/k
2
1 (dimensionless).

Solve (16) with ε = 0 and v̄(0) = 0. Call this solution v̄0(t). Then compute (numerically

or symbolically) the solution to (16) with v̄(0) = 0 for each of ε = 0.01, 0.1, 1.0 and plot with

v̄0(t) for 0 ≤ t ≤ 5. Experiment. How small must ε be before the solution to (16) agrees well

with v̄0 on this time interval?

Based on this, what is a reasonable quantitative criteria (involving m, g, k1, and k2) for

dropping the quadratic term in F (v) and using the simpler linear ODE?

(e) Find a choice for c and d in the formulae for tc and vc above that leads to values of tc and vc

so that the rescaled ODE is of the form

dv̄

dt̄
= 1 − εv̄ − v̄2. (17)

Mimic the computations in part (d) above to find a reasonable quantitative criteria (involving

m, g, k1, and k2) for dropping the linear term in F (v) and using the ODE in which F (v) is

purely quadratic.
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