STUDENT VERSION
 CONJECTURING SOLUTIONS FOR LINEAR SYSTEM OF DIFFERENTIAL EQUATIONS

Brian Winkel
Director SIMIODE
Chardon OH 44024 USA
BrianWinkel@SIMIODE.org

Abstract

We lead students from the solution for $y(t)=k y(t)$ to a natural extension for the solution conjecture for a system of two constant coefficient, homogeneous, linear differential equations introducing eigenvalues and eigenvectors through student discovery.

INTRODUCTION

We consider a system of linear differential equations

$$
\begin{align*}
x^{\prime}(t) & =a x(t)+b y(t) \tag{1}\\
y^{\prime}(t) & =c x(t)+d y(t)
\end{align*}
$$

with $x(0)=x_{0}$ and $y(0)=y_{0}$.
We can put this in matrix form:

$$
\left[\begin{array}{l}
x^{\prime}(t) \tag{2}\\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{l}
a x(t)+b y(t) \\
c x(t)+d y(t)
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

with $x(0)=x_{0}$ and $y(0)=y_{0}$.
OR

$$
X^{\prime}(t)=A \cdot X(t)
$$

where

$$
X^{\prime}(t)=\left[\begin{array}{l}
x^{\prime}(t) \tag{3}\\
y^{\prime}(t)
\end{array}\right] \quad, \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad, \quad X(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

$X^{\prime}(t)=A \cdot X(t)$ is very suggestive for a solution of the form $X(t)=c e^{A t}$. Thus one could conjecture a solution and try it out to see what c would have to be, but we have to remember A is a matrix, not a number, and while there are theories of what e^{A} would mean for a matrix A we choose not to go there now.

Instead, we conjecture a vector solution for $X(t)$ which has the best of both worlds (1) nice exponential form with no matrices in the exponent and (2) vector status where we can see the pieces of the solution:

$$
X(t)=\left[\begin{array}{l}
x(t) \tag{4}\\
y(t)
\end{array}\right]=\left[\begin{array}{l}
u \\
v
\end{array}\right] \cdot e^{\lambda t} .
$$

So here we are suggesting $x(t)=u e^{\lambda t}$ and $y(t)=v e^{\lambda t}$.

Assignment

1. Now put the conjecture (4) in (3) and see what has to happen to a, b, c, d and u, v in order to obtain solutions - interesting solutions, i.e. other than $u=0$ and $v=0$. Go for it!!! Summarize your conclusions in a nice write-up
2. Illustrate the solution strategy from assignment (1) using the following system

$$
\begin{align*}
x^{\prime}(t) & =-4 x(t)-2 y(t) \tag{5}\\
y^{\prime}(t) & =-1 x(t)-3 y(t)
\end{align*}
$$

with $x(0)=2$ and $y(0)=1$.

