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Abstract: We offer strategies for solving linear systems of nonhomogeneous differential equations of the

form ~X
′
(t) = A · ~X(t) + ~G(t) using a conjectured solution strategy for a system of constant coefficient,

linear, nonhomogeneous, differential equations.

INTRODUCTION

In [3] we considered a system of linear differential equations (1) of the form ~X′(t) = A · ~X(t) where

~X(t) is the vector of dependent functions we seek to find and A is the coefficient matrix which

relates the dependent functions, in our case in (1), x(t) and y(t), and produced a solution strategy

from a conjecture.

x′(t) = a x(t) + b y(t) (1)

y′(t) = c x(t) + d y(t)

with x(0) = x0 and y(0) = y0.

This strategy involved finding eigenvalues and eigenvectors of A, namely eigenvalues of λ1 and

λ2, with respective eigenvectors ~u1(t) and ~u2(t), and building a solution (2) from linear combinations

involving these,

~X(t) = c1e
−λ1t ~u1(t) + c2e

−λ2t ~u2(t) (2)

where c1 and c2 are determined by the initial conditions for the differential equations.

This system (1) is homogeneous in nature, i.e. the derivatives of our dependent functions x′(t)

and y′(t), respectively, are offered in terms of functions of x(t) and y(t) only, and are linear, without
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any intervention from other functions. In this Technique Narrative we consider developing a solution

strategy for a nonhomogeneous system of linear differential equations (3).

x′(t) = a x(t) + b y(t) + g1(t) (3)

y′(t) = c x(t) + d y(t) + g2(t)

with x(0) = x0 and y(0) = y0. We can put this in matrix form (4):

~X′(t) = A · ~X(t) + ~G(t) , (4)

where ~X(t) =

(
x(t)

y(t)

)
and A =

(
a b

c d

)
, while ~G(t) =

(
g1(t)

g2(t)

)
.

Some Preliminaries

We are going to stand on the shoulders of giants; those who have gone before and have laid a firm

foundation on which all can stand when making claims about solutions to differential equations. In

particular, with regard to possible solutions to (3) there is theory, [1, pp. 358-359] and [2, pp. 248-

250] to cite two sources, which says that under broad conditions solutions to (3) exist and are unique.

Moreover, if we can build a candidate which satisfies the differential equation system (3) AND the

initial conditions then we have THE UNIQUE solution and need look no more. So our focus will

be on building a solution and showing it satisfies both the differential equation system (3) AND the

initial conditions. The approach we are going to take is called Variation of Parameters.

We will first find a broad form solution to the homogeneous system, ~X(t)′(t) = A · ~X(t), calling

it ~XH(t). Our next step will be to produce a particular solution of the nonhomogeneous system

~X′(t) = A · ~X(t)+ ~G(t), calling it ~XP(t). We will then add the two solutions, ~XH(t) and ~XP(t) and

use the initial conditions to give specificity to the “broad form solution” ~XH(t) to render a unique

solution (5) to (3).

~X(t) = ~XH(t) + ~XP(t) (5)

Step by Step Analysis

We render a general analysis for producing a solution to (3) and also offer a running example

problem, (6), in this case, of a system of two constant coefficient, linear, nonhomogeneous differ-

ential equations. The analysis for larger systems, say, three and four constant coefficient, linear

nonhomogeneous differential equations is the same, only the computation is more intense.

x′(t) = −2x(t) + 1 y(t) + 2e−t (6)

y′(t) = 1x(t) − 2 y(t) + 3t

with x(0) = 5 and y(0) = 0.

We can put this in matrix form (7):
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~X′(t)︷ ︸︸ ︷(
x′(t)

y′(t)

)
=

A︷ ︸︸ ︷(
−2 1

1 −2

)
·

~X(t)︷ ︸︸ ︷(
x(t)

y(t)

)
+

~G(t)︷ ︸︸ ︷(
2e−t

3t

)
. (7)

Homogeneous Solution ~XH(t)

We will first build a solution to the homogeneous system, (8). The elements used to build this

homogeneous solution are from the eigenvalues and eigenvectors of our system matrix A.

~X′(t)︷ ︸︸ ︷(
x′(t)

y′(t)

)
=

A︷ ︸︸ ︷(
−2 1

1 −2

)
·

~X(t)︷ ︸︸ ︷(
x(t)

y(t)

)
. (8)

Assignment 1

For the system matrix

A =

(
−2 1

1 −2

)
(9)

in our running problem show that the eigenvalues and corresponding eigenvalues of A are λ1 = −3

and λ2 = 1, with respective eigenvectors ~u1(t) =

(
−1

1

)
and ~u2(t) =

(
1

1

)
. Be sure to

demonstrate how you found these.

Assignment 2

Show the following:

a) eλ1t ~u1(t) = e−3t

(
−1

1

)
and eλ2t ~u2(t) = e1t

(
1

1

)
are each a solution to the homogeneous

system (8) and

b) the linear combination, which we will call our homogeneous solution, ~XH(t) = c1e
−λ1t ~u1(t) +

c2e
−λ2t ~u2(t) = c1e

−3t

(
−1

1

)
+ c2e

t

(
1

1

)
is a solution to the homogeneous system (8).

Particular Solution ~XP(t)

We now turn our attention to constructing a particular solution, ~XP(t), to our nonhomogeneous

system (7).

We will use the fundamental matrix for matrix A. The fundamental matrix of A consists

of columns of vectors of the solution to the homogeneous portion of our system obtained from

eigenvalues and eigenvectors of A in Activity 2. We will use the symbol Φ or Φ(t) (the capital
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Greek letter phi) to denote the fundamental matrix, but some presentations [1, p. 414] use the

capital Greek letter psi, Ψ.

In our problem we see that

Φ(t) =

(
−1e−3t 1et

1e−3t 1et

)
. (10)

Indeed, the solution for the homogeneous system (8) can be expressed using Φ(t):

Φ(t) · ~c = Φ(t) ·

(
c1

c2

)
=

(
−1e−3t 1et

1e−3t 1et

)
·

(
c1

c2

)
= c1e

−3t

(
−1

1

)
+ c2e

t

(
1

1

)
. (11)

A reasonable conjecture for the nonhomogeneous system is

~XP(t) = Φ(t) · ~u =

(
−1e−3t 1et

1e−3t 1et

)
·

(
u1(t)

u2(t)

)
, (12)

where u1(t) and u2(t) are to be determined, namely some non-constant multiples of the homogeneous

solutions.

We can test the reasonableness of this conjecture by substituting ~XP(t) directly into (7). How-

ever, let us continue symbolically before getting caught up in too many numbers and functions.

To substitute ~XP(t) directly into (7) symboilically we will need to differentiate Φ(t). We now

make the direct substitution of our conjecture (12) into (7), first using the product rule for differ-

entiation:

Φ′(t) · u(t) + Φ(t) · u′(t) = A · Φ(t) · u(t) + G(t) . (13)

Notice we are dropping the vector (arrow) notation, but using the boldface notation for vectors.

Now since Φ(t) is the fundamental matrix of A, consisting of column solutions to the homogenoue

system, we know that Φ′(t) = A ·Φ(t). So we can cancel these terms, Φ′(t) · u(t) = A ·Φ(t), from

both sides of (13). This leaves

Φ(t) · u′(t) = G(t) . (14)

If we know the determinant of Φ(t) is not zero, i.e. Φ(t) is nonsingular (this occurs if our eigen

solutions which made up Φ(t) are linearly independent - can usually safely assume this - or in the

two by two cases, are not scalar multiples of each other) then we can find Φ−1(t) and use it to

determine our functions u(t) =

(
u1(t)

u2(t)

)
. Let us obtain u′(t) and then u(t) by first multiplying

both sides of (14) by Φ−1(t),

u′(t) = Φ−1(t) · G(t) . (15)

Finally, we are in a position to determine the functions of u(t) by integration in (16)



Linear Nonhomogeneous System Solution Strategies 5

u(t) =

∫
Φ−1(t) · G(t) dt+ k , (16)

where k is a vector of constants of integration. Since this is indefinite integration we will pick k = ~0.

We return to our nonhomogeneous system (7) and denote our success in finding a particular

solution, XP(t):

XP(t) = Φ(t) · u(t) = Φ(t) ·
∫

Φ−1(t) · G(t) dt . (17)

We are now ready to build our General Solution and get back to the computations for our

problem.

General Solution ~X(t) = ~XH(t) + ~XP(t)

From the previous two sections in which we obtained the homogeneous solution ~XH(t) and the

nonhomogeneous (particular) solution ~XP(t) we summarize:

~X(t) = ~XH(t) + ~XP(t) = Φ(t) · c + Φ(t) ·
∫

Φ−1(t) · G(t) dt , (18)

where the constants c1 and c2 which make up vector c can be obtained from the initial conditions

of the system of differential equations.

We return to our problem now to see how this plays out. Recall that our system matrix is

A =

(
−2 1

1 −2

)
and our fundamental matrix is Φ(t) =

(
−1e−3t 1et

1e−3t 1et

)
.

Activity 3

a) Show that the inverse matrix of our fundamental matrix Φ(t) for our problem is

Φ−1(t) =

(
− e3t

2
e3t

2
et

2
et

2

)
(19)

b) Substitute the information about our problem (7) into (18) and show that we obtain,

X(t) = XH(t) · c + XP(t) = c1

(
e−3t

e−3t

)
+ c2

(
e−t

e−t

)
+

(
e−tt+ t+ e−t

2 − 4
3

e−tt+ 2t− e−t

2 − 5
3

)
. (20)

c) Use initial conditions x(0) = 5 and y(0) = 0 to render a complete and final solution (21) to (7).

X(t) =

(
e−tt+ t+ 11e−3t

6 + 9e−t

2 − 4
3

e−tt+ 2t− 11e−3t

6 + 7e−t

2 − 5
3

)
. (21)

d) Confirm that your final solution really is a solution to (7).
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Activity 4

Solve completely, using the techniques developed here, the system of constant coefficient, linear,

nonhomogeneous differential equations (22),
x′(t)

y′(t)

z′(t)

 =


3 2 2

1 4 1

−2 −4 −1

 ·


x(t)

y(t)

z(t)

+


2e−t

3t

2t

 (22)

with x(0) = 5, y(0) = 0, and z(0) = 1.

SOME FINAL WORDS

Quite often the computations, especially for systems of three or more differential equations, become

quite cumbersome when done by hand and so it is sometimes prudent to use a computer algebra

system such as SAGE, Maple, or Mathematica to compute the individual pieces and steps for

solutions. Indeed, it could be more appropriate to use a powerful command in that system to get a

solution directly or to solve the problem numerically. In all cases it is wise to compare the solution

to the situation under study, e.g., examine a plot of the solutions for their geometric significance.
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