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Reading Exercises Key
For Version 1.10

Chapter 1

Reading Exercise Solution 1.1.1. a(t) = v′(t).

Reading Exercise Solution 1.1.2. Propulsive forces: the runner’s “ef-
fort” via foot in contact with the ground; a tailwind. Resistive: internal
forces/friction, air resistance/headwind.

Reading Exercise Solution 1.1.3. (a) P must have the dimension of
length per time squared, i.e., acceleration; (b) we might interpret P as the
maximum acceleration the runner is capable of, from a standing start.

Reading Exercise Solution 1.1.4. From F = ma and F = Fr+Fp we have
Fp + Fr = mv′(t). Then Fp = mP and Fk = −kmv(t) yield mP − kmv(t) =
mv′(t) or v′(t) = P − kv(t).

Reading Exercise Solution 1.1.5. If the sprinter begins from a standing
start, the graph of v(t) should start at v(0) = 0 (if the runner starts at time
t = 0) and rise to asymptotically approach a maximum velocity.

Reading Exercise Solution 1.1.6. (a), (b) (c) are all routine differen-
tiations. For example, if v(t) = 11/k − Ce−kt then v′(t) = Cke−kt and
11− kv(t) = 11− k(11/k − Ce−kt) = Cke−kt = v′(t).

Reading Exercise Solution 1.1.7. We need to use the initial condition
that v(0.165) = 0.

Reading Exercise Solution 1.1.8. The Hill-Keller ODE does not hold with
P = 11 for 0 < t < 0.165; in this time interval P = 0—Bolt was exerting no
forward effort!

Reading Exercise Solution 1.1.9. In addition to the explicit modeling
assumptions made, we ignore any but horizontal forces, variable runner ef-
fort, fatigue, perhaps the fact that maximum effort does not correspond to a
constant P (e.g, right out of the blocks the propulsive force may differ than
mid-race due to biomechanical differences in posture.)

Reading Exercise Solution 1.2.1. The rate of change is simply u′(t), with
units of micrograms per minute.
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Reading Exercise Solution 1.2.2. The inflow rate is rc1: each minute r
microliters enter, carrying c1 micrograms (c1 micrograms per microliter times
one microliter).

Reading Exercise Solution 1.2.3. The drug exits at −ru(t)/V micro-
grams per minute; each minute r microliters exit, carrying u(t)/V micro-
grams (u(t)/V micrograms per microliter times one microliter).

Reading Exercise Solution 1.2.4. We find here that u′(t) = 0.04 −
u(t)/6000.

Reading Exercise Solution 1.2.5. The solution here with u(0) = 0 is
u(t) = 240(1 − e−t/6000). After one week (t = 10080 minutes) we have
u(10080) ≈ 195.27 micrograms. After two weeks (t = 20160 minutes) we
have u(20160) ≈ 231.66 micrograms. These correspond to drug concentra-
tions of 0.976 and 1.158 micrograms per microliter, respectively. As t → ∞
the concentration of drug in the cochlear fluid approaches the inflow concen-
tration of 1.2 micrograms per microliter.

Reading Exercise Solution 1.3.1. The population doubles to u(t) = 2u0

when u0e
rt = 2u0, leading to t = ln(2)/r; this is the population double time

from u0 to 2u0, then to 4u0, etc.

Reading Exercise Solution 1.3.2. Recall u′(t)/u(t) = r(1− u(t)/K).

(a) If u(t) ≈ 0 then u′(t)/u(t) ≈ r; the population growth rate is r.

(b) If u(t) = K then u′(t)/u(t) = 0 and the population is not changing.

(c) If u(t) > K then u′(t)/u(t) < 0, and also u′(t) < 0; the population is
decreasing.

Reading Exercise Solution 1.3.3. Since u is in units of, e.g., “organisms”
and u′(t) is in unit of “organisms per time,” r must have unit reciprocal time.
K has units of “organisms.”

Reading Exercise Solution 1.3.4. See Figure 1.1. The solution grows
more rapidly at first, but slows and limits to K. Larger values of r make the
solution u(t) approaches K more rapidly.

Reading Exercise Solution 1.3.5. Harvesting should decrease the rate of
growth and limiting value of the population!
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Figure 1.1: Logistic solution with K = 10, r = 1, u0 = 2.

Reading Exercise Solution 1.3.6.

(a) See Figure 1.2, left panel. The solution levels out at a smaller value
than when h = 0.

(b) See Figure 1.2, right panel. This has an even larger impact.

(c) As t → ∞, u(t) → K(1 − h/r). If h = r, it seems the population is
doomed.

Reading Exercise Solution 1.3.7. See Figure 1.3, in which we use K =
105, r = 0.22, u0 = 72148 and h = 0.2; better choices may be possible.

Reading Exercise Solution 1.3.8. The solution to the harvested logistic
equation approaches K(1 − h/r) if h < r; for the parameters chosen above
the population will approach 105(1 − 0.2/0.22) ≈ 9100. But this is highly
dependent on r and h. With h = 0.4 and r = 0.22 the population is doomed
to extinction.

Reading Exercise Solution 1.4.1. A straightforward differentiation shows
that u′(t) = 3t2, and it is similarly easy to check that u(1) = 1 + 2 = 3. A
general solution for u′(t) = 3t2 is u(t) = t3 + C; for the initial condition
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Figure 1.2: Harvested logistic solution with K = 10, r = 1, u0 = 2 and
h = 0.1 (left), h = 0.5 (right).

u(t0) = u0 we need t30 + C = u0, which is always solvable for C = u0 − t30.
The solution is then u(t) = t3 + u0 − t30. This works for any choice of t0 and
u0.

Reading Exercise Solution 1.4.2. Integrating shows that u(t) = e2t/2+C.
Then u(0) = 8 yields 1/2 + C = 8, so C = 15/2.

Reading Exercise Solution 1.4.3. With u(t) = et+(3−e)t−1 it’s easy to
check that u′′(t) = et, u(1) = e+ (3− e)− 1 = 2, while u′(1) = e+ 3− e = 3.
More generally with u(t) = et + C1t + C2 the conditions u(t0) = u0 and
u′(t0) = u′0 we require

u0 = et0 + C1t0 + C2

u′0 = et0 + C1

with solution C1 = u′0 − et0 and C2 = et0(t0 − 1) − t0u′0 + u0. The solution
can be expressed as

u(t) = et + (u′0 − et0)t+ et0(t0 − 1)− t0u′0 + u0.

For any choice of t0, u0, u
′
0 we can solves for an appropriate C1 and C2.

Reading Exercise Solution 1.4.4. Integrate u′′(t) = sin(t) twice to find
u(t) = − sin(t) +C1t+C2. Then u(0) = 2 forces C2 = 2 and u′(0) = 3 forces
−1 + C1 = 3, so C1 = 4. The solution is u(t) = − sin(t) + 4t+ 2.



5

Figure 1.3: Data from Table 1.2 (red) and solution to harvested logistic
solution with K = 105, r = 0.22, u0 = 72148 and h = 0.2 (blue).

Reading Exercise Solution 1.5.1. The quantity “liters per second” is vol-
ume per time, so [q] = L3T−1. The rate of change of surface area with respect
to time has dimension L2T−1. The rate of change of the radius with respect
to time is LT−1.

Reading Exercise Solution 1.5.2. The dimension of v∆t is computed as
[v Deltat] = [v][∆t] = LT−1T = L. A simple interpretation is that if an
object is moving with velocity v (in one-dimension, anyway) then in a time
interval ∆t the object moves distance v∆t, with units a length or distance.

Reading Exercise Solution 1.5.3. From F = Gm1m2/r
2 we have G =

Fr2/(m1m2). Since [F ] = MLT−2, [m1] = [m2] = M , and [r] = L, we have

[G] = (MLT−2)(L2)(M−2) = M−1L3T−2.

Reading Exercise Solution 1.5.4. From the text, [E(t)] = ML2T−2. Then
[E ′(t)] = ML2T−3 and [E ′′(t)] = ML2T−4.

Reading Exercise Solution 1.5.5. The dimension of r(t) is [r(t)] = L3T−1

(volume per time). Then

∫ b

a

r(t) dt has dimension L3T−1T = L3, and may

be interpreted as the net amount of water that flowed into the tank from time
t = a to time t = b.
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Chapter 2

Reading Exercise Solution 2.1.1. Differentiating ektv(t)+C1 with respect
to t yields ekt(v′(t) + kv(t)), while differentiating Pekt/k+C2 yields Pekt, so
that we obtain exactly ekt(v′(t) + kv(t)) = Pekt. Since ekt is never zero, we
have v′(t) + kv(t) = P or v′(t) = P − kv(t).

Reading Exercise Solution 2.1.2. Starting with general solution v(t) =
P/k + Ce−kt, the condition v(t0) = 0 yields 0 = P/k + Ce−kt0 with solution
C = −Pekt0/k. Then

v(t) =
P

k
− P

k
ekt0e−kt =

P

k
− P

k
e−k(t−t0).

This works for any t0.

Reading Exercise Solution 2.1.3. With k = 1 the graph of v(t) rises from
v(0.165) = 0 asymptotically to v ≈ 11. Taking k = 0.9 yields a limiting value
of v ≈ 12.2. The larger the value of k, the smaller the limiting value of v,
and vice-versa.

Reading Exercise Solution 2.1.4. If we choose H(t) = ln(t) + A then
e−H(t) = e−A/t. Multiplying both sides of the ODE u′(t)− u(t)/t = t2 by this
integrating factor yields e−A(u′(t)/t−u(t)/t2) = e−At, but the e−A factor can
be immediately cancelled. The rest of the computation proceeds as in the text.

Reading Exercise Solution 2.1.5. When h(t) = 0 we can take, for ex-
ample, H(t) = 1 (or any constant) and then the ODE u′(t) = g(t) becomes
eu′(t) = eg(t) after multiplication by the integrating factor eH(t) = e. Of
course we can cancel e and proceed as before, by integrating both sides of
u′(t) = g(t).

Reading Exercise Solution 2.1.6. In this case we multiply both sides
of u′(t) − h(t)u(t) = 0 by e−H(t) to obtain e−H(t)(u′(t) − h(t)u(t)) = 0 or
d(u(t)e−H(t))/dt = 0. Integrating produces u(t)e−H(t) = C for some constant
C, and so u(t) = CeH(t).

Reading Exercise Solution 2.1.7.

(a) This is simply u′(t).

(b) This is k(u(t)− A) (or −k(u(t)− A)).
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(c) An appropriate ODE is u′(t) = k(u(t) − A) (with k < 0) or u′(t) =
−k(u(t)− A) (with k > 0).

Reading Exercise Solution 2.1.8. The Newton Cooling ODE is linear,
constant coefficient, and nonhomogeneous.

Reading Exercise Solution 2.1.9. The quantity u′(t) has dimension ΘT−1,
which means that [k] = T−1.

Reading Exercise Solution 2.1.10. If [V ] = ML2T−2Q−1 then from
Rq′(t) + q(t)/C = V (t) it follows that [q/C] = [V ] or [C] = [q]/[V ] =
M−1L−2T 2Q2. Also from Rq′(t) + q(t)/C = V (t) it follows that [Rq′] = [V ]
so that [R] = [V ]/[q′] = T [V ]/[q] = ML2T−1Q−2.

Reading Exercise Solution 2.2.1. From [Fr] = MLT−2, [A] = L2, [ρ] =
ML−3, [v] = LT−1 and Fr = KAaρbvc we find that we need

MLT−2 = M bL2a−3b+cT−c

which yields a = 1, b = 1, and c = 2. Thus Fr = KAρv2 is the only dimen-
sionally consistent choice, if these are the critically variables that determine
Fr.

Reading Exercise Solution 2.2.2. This ODE is of the form v′ = f(t, v) =
g − kv2/m = g(t)h(u) where g(t) = 1 and h(u) = g − kv2/m.

Reading Exercise Solution 2.2.3. Start by separating as du/(u2+1) = dt.
Integrate to find arctan(u) = t + C, and so u = tan(t + C). Then u(0) = 0
forces C = 0. The solution is u(t) = tan(t).

Reading Exercise Solution 2.2.4.

With the given parameters we find

v(t) ≈ 49.497(1− e−0.396t)/(1 + e−0.396t).

The solution graph is shown in Figure 2.4.

Reading Exercise Solution 2.2.5. That limt→∞ v(t) =
√
mg/k is easy

to see since both exponentials limit to 0. This is the limiting velocity of the
object. Given that [m] = M, [g] = LT−2, and [k] = ML−1 (easily deduced
from Fr = kv2) we find that [

√
mg/k] = (MLT−2M−1L)1/2 = LT−1 has the

dimension of velocity, so this makes perfect sense.
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Figure 2.4: Graph of v(t), solution to v′ = −kv2/m + g with v(0) = 0,
m = 1, g = 9.8, k = 0.00.

Reading Exercise Solution 2.3.1. Use f(t, u) = −0.2(u−(10+5 sin(t/2)))
to compute f(10, 5) ≈ 0.041 and f(15, 10) ≈ 0.940.

Reading Exercise Solution 2.3.2. If u(t) = 10 + 20
29

sin(t/2)− 50
29

cos(t/2)
then u′(t) = 10

29
cos(t/2)+ 25

29
sin(t/2). Routine computation shows that u′(t) =

−1
5
u(t) + 2 + sin(t/2), which is the relevant Newton cooling ODE.

Reading Exercise Solution 2.3.3. The falling object ODE is of the form
v′ = f(t, v) with f(t, v) = g − kv2/m, and since f doesn’t depend on t, this
ODE is autonomous.

Reading Exercise Solution 2.3.4. A phase portrait would appear as in
Figure 2.5.

Reading Exercise Solution 2.3.5. As t→∞ the solution with u(0) = −4
should asymptotically increase to −1, while u(0) = 0 should decrease to −1
and u(0) = 4 blows up. As t → −∞ solutions with u(0) = 0 and u(0) = 4
approach u = 3, while the u(0) = −4 solution blows up. See Figure 2.6.
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Figure 2.5: Phase portrait for u′ = u2 − 2u− 3.

Reading Exercise Solution 2.3.6. The fixed point at u = −1 is asymp-
totically stable, that at u = 3 is unstable.

Reading Exercise Solution 2.3.7. The only difference is that the fixed
point at u = 3 in Figure 2.5 would be an empty circle.

Reading Exercise Solution 2.3.8. Compute f ′(u) = −4, so this fixed
point is stable, but f ′(3) = 4, so this fixed point is unstable.

Reading Exercise Solution 2.3.9. Solutions with u(0) = K/2 should
asymptotically increase to K, those with u(0) = 2K asymptotically decrease
to K.

Reading Exercise Solution 2.3.10. A nonautonomous ODE u′ = f(t, u)
typically has no fixed points. For example, if we try u(t) = u∗ in u′(t) =
u(t) + sin(t) we obtain 0 = u∗+ sin(t), a contradiction since u∗ was assumed
constant.
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Figure 2.6: Solutions to u′ = u2 − 2u− 3.

Reading Exercise Solution 2.3.11. Every solution to u′(t) = 0 is of the
form u(t) = c and so is a fixed point. Also, if a solution starts with u(0) = u0

and |u0−c| < δ then |u(t)−c| = |u0−c| < δ for all t (and any δ), so u(t) = c
is stable.

Reading Exercise Solution 2.3.12. The phase portrait is as shown in
Figure 2.7. It’s clear all solutions approach x(t) = 20.

0 20 x

Figure 2.7: Phase portrait for u′(t) = 0.2− x(t)/100.

Reading Exercise Solution 2.3.13. When h = r the harvested logistic
equation becomes u′ = −u2/K. The only fixed point is u = 0; all solutions
away from this fixed point satisfy u′ < 0, so u = 0 is semistable.
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Reading Exercise Solution 2.4.1. If p(x) = x5 + x3 + x + 5 then p is
continuous (it’s a polynomial). Also p(−2) = −32 − 8 − 2 + 5 = −37 and
p(2) = 32 + 8 + 2 + 5 = 47. By the Intermediate Value Theorem p has a root
in −2 < x < 2. Also, p′(x) = 5x4 + 3x2 + 1 which is positive for all x, so p
is strictly increasing on −∞ < x <∞, so any root is unique.

Reading Exercise Solution 2.4.2. For u(0) = −3/2 the interval is about
(−1/2,∞). For u(0) = 1/2 the interval is (−∞,∞). for u(0) = 2 the
interval is about (−∞, 0.5).

Reading Exercise Solution 2.4.3. The ODE is of the form v′ = f(v) with
f(v) = g − kvr/m (autonomous). On the region v > 0 the function f is
continuous. Also, ∂f

∂v
= −rkvr−1/m is continuous for v > 0. We conclude

that the ODE has a unique solution with v(t0) = v0 for v0 > 0.

Chapter 3

Reading Exercise Solution 3.1.1. The ODE is u = f(t, u) with f(t, u) =
u(1−u/(1+0.25 sin(2πt))). Since 1+0.25 sin(2πt) > 0 for all t, the function
f is clearly continuous for all t and u. Also, ∂f

∂u
= 1− 2u/(1 + 0.25 sin(2πt))

is also continuous for all t and u, so the ODE has a unique solution for any
initial condition u(t0) = u0.

Reading Exercise Solution 3.1.2. Compute L(t) = 2 + 4(t− 1) = 4t− 2.
The value of u(1 + h) for h = 1, 0.1, 0.01, 0.001 is 8, 2.42, 2.0402, 2.004002.
The same values for L(1 + h) are 6, 2.4, 2.04, 2.004. The respective errors
|u(1 + h) − L(1 + h)| are 2, 0.02, 0.0002, 0.000002. It appears the error is
exactly 2h2, quadratic in h.

Reading Exercise Solution 3.1.3. Straightforward algebra shows that |u(1+
h)−L(1+h)| = |2(1+h)2−(2+4h)| = |2h2| = 2h2, exactly as in the previous
Reading Exercise.

Reading Exercise Solution 3.1.4. For the ODE given Euler’s Method
with step size h = 0.25 produces u3 = u2 + f(t2, u2) ≈ 1.7070 and u4 =
u3 +f(t3, u3) ≈ 1.7119. The correct values for the solution are u(t3) ≈ 1.6025
and u(t4) ≈ 1.4086.

Reading Exercise Solution 3.2.1. With f(t, u) = u+ t+ 1, h = 0.5, and
t0 = 0, u0 = 2 Euler’s Method yields u1 = u0 +hf(t0, u0) = 2+(0.5)(3) = 3.5.
Then u2 = u1 + hf(t1, u1) = 3.5 + (0.5)(5) = 6.0.
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Reading Exercise Solution 3.2.2. With f(t, u) = u+ t+ 1, h = 0.5, t2 =
1, t3 = 1.5, t4 = 2 and u2 = 7.5625 from the Example we find

w = u2 + hf(t2, u2) = 12.34375

m =
f(t2, u2) + f(t3, w)

2
= 12.203125

u3 = u2 + hm = 13.6640625.

The second iteration produces

w = u3 + hf(t3, u3) = 21.74609

m =
f(t3, u3) + f(t3, w)

2
= 20.45508

u4 = u3 + hm = 23.8916.

The true value is u(2) = 4e2 − 4 ≈ 25.556.

Reading Exercise Solution 3.3.1. For this ODE t0 = 0, u0 = 0, and
f(t, u) = −2u+ t2. The analytical solution is u(t) = t2/2− t/2+1/4−e−2t/4
and u(1) = (1 − e−2)/4 ≈ 0.216166. The RK4 method gives m1 = f(0, 0) =
0,m2 = f(1/2, 0) = 1/4,m3 = f(1/2, 1/8) = 0,m4 = f(1, 0) = 1 and
m = 1/4. Then u1 = u0 +mh = 1/4 is the estimate for u(1).

Reading Exercise Solution 3.3.2. The data for h versus u(tk +h)− uk+1

is shown in Table 3.1. The quantity (u(tk+h)−uk+1)/h2 stabilizes at around
4.48, so we would estimate C ≈ 8.96. By no coincidence, u′′(1.5) ≈ 8.963.

h 1 0.1 0.01 0.001

u(tk + h)− uk+1 6.438 4.635× 10−2 4.497× 10−4 4.484× 10−6

Table 3.1: Error u(tk + h) − uk+1 as a function of step size h for solution
u(t) = 2et − t− 1 to ODE u′ = t+ u, tk = 1.5.

Reading Exercise Solution 3.3.3. A single Euler step of size h = 0.2
yields u1 = u0 + hf(t0, u0) ≈ 0.598. Two steps of size h/2 = 0.1 yield
uk+1/2 ≈ 0.649 and ũ1 ≈ 0.58112. The local truncation error has magnitude
about 2|ũ1 − u1| ≈ 0.03376.
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Reading Exercise Solution 3.4.1. The condition s3(k) = 0 leads to x(k, 3.78) =
30 or 11

k2
(e−k(3.78−0.165) − 1 + k(3.78 − 0.165)) = 30 with solution k = k∗ ≈

0.9530. Then s1(k∗) ≈ 0.0537 and s2(k∗) ≈ 0.0009.

Reading Exercise Solution 3.4.2. The sum of squares is

S(k) = (1.6e0.6k − 2.1)2 + (1.6e1.1k − 2.45)2 + (1.6e1.4k − 2.82)2.

A plot reveals a minimum around k = 0.4. Setting S ′(k) = 0 and solving for
k yields k = k∗ ≈ 0.4205 (easily verified to be a minimum by graphing).

Reading Exercise Solution 3.4.3. In this case the sum of squares is

S(k,A) = (Ae0.6k − 2.1)2 + (Ae1.1k − 2.45)2 + (Ae1.4k − 2.82)2.

Graphing ln(S(k,A)) shows a minimum somewhere around k = 0.4, A = 1.6.
Solving ∂S

∂k
= 0, ∂S

∂A
= 0 yields k ≈ 0.37, A ≈ 1.66.

Chapter 4

Reading Exercise Solution 4.1.1. We have Fspring = −ku and Fdamping =
−cu′, along with external force f(t) on the mass. The total force is F =
−ku− cu′+f(t), so from F = ma and a = u′′ this yields mu′′ = −ku− cu′+
f(t) or mu′′ + cu′ + ku = f(t).

Reading Exercise Solution 4.1.2.

(a) If u(t) = A cos(t) + B sin(t) then u′′(t) = −A cos(t) − B sin(t) and all
terms cancel in u′′ + u, for any A and B.

(b) More generally if u(t) = A cos(ωt)+B sin(ωt) then u′′(t) = −Aω2 cos(ωt)−
Bω2 sin(ωt). In mu′′ + ku = 0 this becomes

A(k −mω2) cos(ωt) +B(k −mω2) sin(ωt) = 0.

If ω =
√
k/m the equation is satisfied for all t.

Given that ωt appears as an argument to sine or cosine, we must have
[ω] = T−1. This also follows from [ω] = [k]1/2[m]−1/2 = T−1.

Reading Exercise Solution 4.1.3. Start with u(t) = A cos(t) + B sin(t)
and require u(0) = 0.5 (initial position) and u′(0) = 0 (initial velocity). This
leads to A = 0.5 and B = 0, so the solution is u(t) = 0.5 cos(t).
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Reading Exercise Solution 4.1.4. From u(t) = e−t cos(5t) + e−t sin(5t)/5
we have u′(t) = −26e−t sin(5t)/5, so the initial data is easy to check. Also,
u′′(t) = 26e−t sin(5t)/5− 26e−t cos(5t). Then

u′′(t) + 2u′(t) + 26u(t) = 26e−t sin(5t)/5− 26e−t cos(5t)

− 52e−t sin(5t)/5 + 26(e−t cos(5t) + e−t sin(5t)/5) = 0

after simplifying. The solution is a decaying sine/cosine wave, makes perfect
sense.

Reading Exercise Solution 4.1.5. With u(t) = ueq in the ODE we obtain
15000ueq = −450.8, which yields ueq ≈= 0.03 meters or 30 mm. This is 100×
(30/140) ≈ 21.4 percent of the shock’s range of travel, in the recommended
range.

Reading Exercise Solution 4.1.6. When d(t) = 0 the ODE becomes
my′′(t) + cy′(t) + ky(t) = kL0 −mg and if y(t) = yeq then kyeq = kL0 −mg.
Solve to find yeq = L0 −mg/k. That is, y(t) is exactly the natural length of
the spring compressed by an amount mg/k that stems from the weight of the
table top mass m.

Reading Exercise Solution 4.1.7. The ODE becomes LQ′′(t) +Q(t)/C =
cos(ωt). If Q(t) = A cos(ωt) then Q′′(t) = −Aω2 cos(ωt) and in the ODE
this becomes (−Lω2 + 1/C)A cos(ωt) = cos(ωt). This is a solution when
A = 1/(1/C − Lω2) = C/(1− LCω2). The amplitude A grows without limit
as ω → 1/

√
LC.

Reading Exercise Solution 4.2.1. Translations for “ansatz” include “method
of operation” or just “approach.”

Reading Exercise Solution 4.2.2. The Solution is of the form u(t) =
c1e
−t + c2e

−3t; u(0) = 2 forces c1 + c2 = 2, while u′(t) = −c1e
−t − 3c2e

−3t,
so u′(0) = 4 forces −c1 − 3c2 =. The solution is c1 = 5, c2 = −3, and then
u(t) = 5e−t − 3e−3t. Solution graphed in Figure 4.8.

Reading Exercise Solution 4.2.3. The general solution u(t) = c1e
−t +

c2e
−3t with u(1) = −1 yields c1e

−1 + c2e
−3 = −1. Since u′(t) = −c1e

−t −
3c2e

−3t the initial condition u′(1) = 6 leads to −c1e
−1 − 3c2e

−3 = 6. The
solution for c1 and c2 is c1 = 3e/2, c2 = −5e3/2. The solution u(t) is

u(t) =
3e

2
e−t − 5e3

2
e−3t =

3

2
e−(t−1) − 5

2
e−3(t−1).
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Figure 4.8: Graph of u(t) = 5e−t − 3e−3t.

Reading Exercise Solution 4.2.4. We are given

mu′′1(t)cu′1(t) + ku1(t) = 0

mu′′2(t)cu′2(t) + ku2(t) = 0.

Add and collect terms to find m(u′′1 + u′′2) + c(u′1 + u′2) + k(u1 + u2) = 0, or
m(u1 + u2)′′ + c(u1 + u2)′ + k(u1 + u+ 2) = 0, which is mu′′ + cu′ + ku = 0.

Reading Exercise Solution 4.2.5. If u1(t) = αu2(t) then u(t) = c1u1(t) +
c2u2(t) = (c1α + c2)u2(t) and u′(t) = (c1α + c2)u′2(t). Then u(0) = u0

forces (c1α + c2)u2(0) = u0 and u′(0) = v0 forces (c1α + c2)u′2(0) = v0.
If these equations are satisfied for some choice of c1 and c2 then multiply
(c1α + c2)u2(0) = u0 by u′2(0) and multiply (c1α + c2)u′2(0) = v0 by u2(0),
then subtract to find u′2(t0)u0 = u2(t0)v0. This last condition is necessary if
there is a suitable choice for c1, c2.

Reading Exercise Solution 4.2.6. If u(t) = cos(t) then u′′(t) = − cos(t),
so u′′ + u = 0 is clear. Also, u(0) = cos(0) = 1 and u′(0) = − sin(0) = 0.

Reading Exercise Solution 4.2.7. The characteristic equation 3r2 +18r+
75 = 0 has roots r1 = −3 + 4i and r2 = −3− 4i. The complex-valued general
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solution is u(t) = c1e
(−3+4i)t+c2e

(−3−4i)t. Initial conditions dictate c1+c2 = 0
and (−1 + 4i)c1 + (−1 − 4i)c2 = 4, with solution c1 = −i/2, c2 = i/2. The
solution can be written as

u(t) = − i
2
e(−3+4i)t +

i

2
e(−3−4i)t.

Applying Euler’s identity shows this is in fact u(t) = e−3t sin(4t).
This result can be obtained with a real-valued general solution. The roots

−3± 4i indicate a general solution can be written as u(t) = d1e
−3t cos(4t) +

d2e
−3t sin(4t). Then u(0) = 0 implies d1 = 0, so u(t) = d2e

−3t sin(4t). Then
u′(t) = −3d2e

−3t sin(4t) + 4d2e
−3t cos(4t) and u′(0) = 4d2 = 4 means d2 = 1.

This yields the same solution as above.

Reading Exercise Solution 4.2.8. If u(t) = te−2t then u′(t) = −2te−2t +
e−2t and u′′(t) = 4te−2t−4e−2t. Substituting these into u′′(t)+4u′(t)+4u(t) =
0 shows that it works. Also, u(0) = 0 and u′(0) = 1.

Reading Exercise Solution 4.2.9. If u(t) = c(t)e−αt then u′(t) = −αc(t)e−αt+
c′(t)e−αt and u′′(t) = c(t)α2e−αt − 2αc′(t)e−αt + c′′(t)e−αt. Substituting these
into m(u′′(t) + 2αu′(t) + α2u(t)) = 0 leads to me−αtc′′(t) = 0. This means
c′′(t) = 0 and so c(t) = At+B for some constants A and B.

With u(t) = c1e
−αt + c2te

−αt the condition u(0) = u0 leads to c1 = u0.
Then u′(t) = −αc1e

−αt + c2(−αte−αt + e−αt) and u′(0) = v0 leads to −αc1 +
c2 = v0, so c2 = v0 + αu0.

Reading Exercise Solution 4.3.1. If u(t) = 4e−t − 2e−3t − e−2t then
u′(t) = −4e−t+6e−3t+2e−2t and u′′(t) = 4e−t−18e−3t−4e−2t. Then u(0) = 1,
u′(0) = 4, and straightforward algebra shows u′′(t) + 4u′(t) + 3u(t) = e−2t.

Reading Exercise Solution 4.3.2. In this case the general solution takes
the form u(t) = c1e

−t+c2e
−3t−e−2t−5e−t. The u(0) = 1 forces c1+c2−6 = 1

or c1 + c2 = 7, and u′(0) = 4 forces −c1 − 3c2 + 7 = 4 or −c1 − 3c2 = −3.
This yields c1 = 9, c2 = −2 and solution u(t) = 9e−t − 2e−3t − e−2t − 5e−t =
4e−t − 2e−3t − e−2t, exactly as before.

Reading Exercise Solution 4.3.3. To find the minimum set

u′(t) ≈ 8.817e−14.56t − 14.237e−22.40t = 0.

The solution is t ≈ 0.611 seconds, maximum displacement u ≈ −0.117 me-
ters, or 117 mm. The shock will not bottom out under these circumstances.
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Reading Exercise Solution 4.4.1. Since the roots of the characteristic
equation r2 + 2r + 10 = 0 are r = −1 ± 3i, it’s clear the transient portion
provides a general solution to the homogeneous equation u′′(t) + 2u′(t) +
10u(t) = 0. It is also straightforward to check that the periodic portion
is a particular solution to the nonhomogeneous equation. With the given
values for A and B verification that

√
A2 +B2 = 1/

√
ω4 − 16ω2 + 100 is

also straightforward. A plot of this amplitude is shown in Figure 4.9.

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

ω

A
m

p
li
tu

d
e

Figure 4.9: Amplitude of periodic response as a function of driving frequency
ω.

Reading Exercise Solution 4.4.2. We have ψ(ω) = 1√
(ω2−10)2+ω2

. The

maximum occurs when ψ′(ω) = 0. If we write ψ(ω) = (g(ω))−1/2 with g(ω) =

(ω2−10)2 +ω2 then ψ′(ω) = −1
2
(g(ω))−3/2g′(ω) = − g′(ω)

(g(ω))3/2
. Thus ψ′(ω) = 0

exactly when g′(ω) = 0 and this yields

g′(ω) = 4(ω2 − 10)ω + 2ω = 0.

The only nonnegative solutions are ω = 0 and ω =
√

38/2 ≈ 3.08.
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Reading Exercise Solution 4.4.3. From G(ω) = 1√
(mω2−k)2+c2ω2

we have

G(0) = 1/
√
k2 = 1/k since k > 0. Also

lim
ω→∞

mω2G(ω) = lim
ω→∞

mω2√
(mω2 − k)2 + c2ω2

= lim
ω→∞

m√
(m− k/ω2)2 + c2/ω2

=
m√
m2

= 1.

Reading Exercise Solution 4.4.4. Resonance as defined requires c2 <
2mk, so if 2mk < c2 < 4mk the system is underdamped, but resonance does
not occur. However, if c2 < 2mk the resonance frequency of the system
is ωres =

√
4mk−2c2

2m
while the natural frequency is ωnat =

√
4mk−c2

2m
. Since

2mk− c2 < 4mk− c2, the resonant frequency is strictly less than the natural
frequency.

Reading Exercise Solution 4.4.5. The sin(3t) term has period 2π/3 and
the sin(4t) term has period 2π/4. The period of a linear combination will be
the least common multiple of these two periods, or 2π times the least common
multiple of 1/3 and 1/4, which is 1. The period is 2π.

Reading Exercise Solution 4.4.6. The function u(t) satisfies u(0) =
u′(0) = 0.

Reading Exercise Solution 4.5.1. If |x| ≤ 0.1
√
k1/k2 then |x|2 ≤ 0.01k1/k2.

Multiply by |x| and find |x|3 ≤ 0.01k1|x|/k2 or k2|x3| ≤ 0.01k1|x|.

Reading Exercise Solution 4.5.2. We seek constants α, β, γ such that
[uc] = [mαkβuγ0 ], which leads to M0L1T 0 = (Mα)(MT−2)β(Lγ) or M0L1T 0 =
Mα+βLγT−2β. This yields equations α+β = 0, γ = 1,−2β = 0 with solution
α = 0, β = 0, γ = 1. The only characteristic time scale that can be formed in
this manner is uc = u0, the initial displacement.

Reading Exercise Solution 4.5.3. Starting with tc = c
k

(
mk
c2

)α
and substi-

tuting in α = 1/2 yields tc = c
k

√
mk
c

= m
k

, comparable to the period of the
system.
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Reading Exercise Solution 4.5.4. Starting with tc = c
k

(
mk
c2

)α
and substi-

tuting in α = 1 yields tc = c
k
mk
c2

= m
k

. This is the time scale that appears

in the exponent in the solution u(t) = c1e
− ct

2m cos(ωt) + c2e
− ct

2m sin(ωt) and
characterizes the rate at which the solution decays; the solution is diminished
to about one percent of its initial value after t ≈ 5tc time constants.

Reading Exercise Solution 4.5.5. In this case ū(τ) = u(t)/uc = (3τ)2/7 =
9τ 2/7. Then du/dt = 2t, while d/̄dτ = (7/3)(18/7τ) = 6τ = 2t.

Reading Exercise Solution 4.5.6. Consider uc = rαKβhγ where [r] =
T−1, [K] = N, [h] = NT−1. This leads to N = T−α−γNβ+γ so that −α−γ = 0
and β + γ = 1. Treating γ as a free variable leads to α = −γ and β = 1− γ,
so that uc = r−γK1−γhγ or

uc = K

(
h

rK

)γ
for some γ.

Reading Exercise Solution 4.5.7. In this case we need h ≤ (0.05)(106)(0.03) =
1500 individuals per year. If K or r increases, the condition h/(rK) ≤ 0.05
or h ≤ (0.05)rK will yield larger values of h. This makes sense—if the
species reproduces more rapidly or has a larger carrying capacity then more
harvesting should be possible with no greater impact on the population.

Chapter 5

Reading Exercise Solution 5.1.1. A phase line portrait for u′(t) = −ku(t)+
r0 is shown in Figure 5.10. There is a single equilibrium solution at u = r0/k
and this equilibrium is asymptotically stable.

0 r0/k

u

Figure 5.10: Phase portrait for u′(t) = −ku(t) + r0.

Reading Exercise Solution 5.1.2. The solution is

u(t) =

{
8.67 + 1.33e−kt, 0 ≤ t ≤ 12
14.45− 5.61e−k(t−12), t > 12.

A plot is shown in Figure 5.11.
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Figure 5.11: Solution to u′ = −ku + r(t) with r(t) = 1.5 for 0 < t < 12,
r(t) = 2.5 for t > 12, initial data u(0) = 10.

Reading Exercise Solution 5.1.3. If the rate in for 0 < t < 12 is 1.5 mg
per hour then u′ = −ku + 1.5 still holds, and with u(0) = 10 the solution
u1(t) is still u1(t) = 8.67 + 1.33e−kt on this interval. At t = 12 we should
see a 5 mg instantaneous jump in the amount of morphine in the patient’s
system, so “just after” t = 12 there should be u1(12) + 5 ≈ 13.84 mg in
the patient. For t > 12 the rate in is still 1.5 mg per hour, so the amount
u2(t) in the patient’s system should still obey u′2 = −ku2 + 1.5, but with
the condition u2(12) = 13.84. The solution to this initial value problem is
u2(t) = 8.67 + 5.17e−k(t−12). A plot of the amount u(t) of morphine in the
patient’s system is shown in Figure 5.12.

Reading Exercise Solution 5.2.1. An easy differentiation.

Reading Exercise Solution 5.2.2. For a fixed choice of A,M > 0 define

the function φ(t) = et
2

Meat
. Then ln(φ(t)) = t2 − at − ln(M). It is clear that

for any choice of a and M we have

lim
t→∞

ln(φ(t)) =∞
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Figure 5.12: Solution to u′ = −ku + r(t) with r(t) = 1.5 for t > 0 but with
instantaneous 5 mg dose at time t = 12, initial data u(0) = 10.

from which we can conclude that

lim
t→∞

et
2

Meat
=∞.

In particular, the quantity on the left will exceed 1 when t is sufficiently large,
and so |f(t)| ≤Meat cannot holds for any fixed M and a for all t ≥ 0.

Reading Exercise Solution 5.2.3. Routine integrations.

Reading Exercise Solution 5.2.4. The transform of t2 is 2/s3, the trans-
form of −3 sin(3t) is (−3)(3)/(s2 + 9) = −9/(s2 + 9), and the transform of 5
is 5/s. So F (s) = 2/s3 − 9/(s2 + 9) + 5/s.

Reading Exercise Solution 5.2.5. Laplace transform u′(t) to obtain sU(s)−
u(0) or sU(s) − 3 after filling in the initial condition. From linearity the
Laplace transform of −2u(t) is −2U(s), so the ODE becomes sU(s) − 3 =
−2U(s). Solve for U(s) = 3/(s+ 2). A reverse lookup in the transform table
shows u(t) = 3e−2t.
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x, y ln
ln(x), y

multiplication

y ln(x)

z → ez

xy

product

Figure 5.13: Commutative diagram for computing xy.

Reading Exercise Solution 5.2.6. It might look like Figure 5.13.

Reading Exercise Solution 5.2.7. Compute f ′′(t) = 4e−2t(t−1) = 4te−2t−
4e−2t. The Laplace transform of 4te−2t is (from line 4 in the transform table
and linearity) equal to 4/(s + 2)2. The transform of −4e−2t is −4/(s + 2).
Then F (s) = 4/(s+ 2)2 − 4/(s+ 2) = −4(s+ 1)/(s+ 2)2.

Reading Exercise Solution 5.2.8. Laplace transforming u′′(t) produces
s2U(s) − su(0) − u′(0) = s2U(s) − s + 3, while the transform of 3u′(t) is
3(sU(s) − u(0)) = 3(sU(s) − 1). The transform of the left side of the ODE
is then s2U(s) − s + 3 − 3sU(s) − 9 + 2U(s), and of course the transform
of the right side is 0. All in all s2U(s) − s + 3 − 3sU(s) − 3 + 2U(s) = 0.
Collect all U(s) terms on the right and everything else on the right to find
(s2 − 3s + 2)U(s) = s. Then U(s) = s/(s2 − 3s + 2). A partial fraction
decomposition shows

U(s) =
2

s+ 2
− 1

s+ 1
.

From the Laplace transform table we find u(t) = 2e−2t − e−t.

Reading Exercise Solution 5.2.9. The transform of f(t) = t is F (s) =
1/s2, so the transform of te−t is F (s+ 1) = 1/(s+ 1)2 (using a = −1 in the
Theorem).

Reading Exercise Solution 5.2.10. If t has dimension T or time and we
want to exponentiate −st then st should be dimensionless. Thus s should
have dimension T−1, just as a frequency does.
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Reading Exercise Solution 5.2.11. Given that the denominator factors
as (s+2)(s+5) we should expect terms involving e−2t and e−5t in the inverse
transform. And in fact a partial fraction expansion shows

F (s) =
3s+ 3

s2 + 7s+ 10
=

4

s+ 5
− 1

s+ 2

so that f(t) = 4e−5t − e−2t.

Reading Exercise Solution 5.2.12. Given that F (s) = (6s + 2)/(s2 + 4)
has poles at s = 2i and s = −2i expect the inverse transform to contain e2it

and e−2it. But these corresponds to sin(2t) and cos(2t). Writing

F (s) =
6s+ 2

s2 + 4
= 6

s

s2 + 4
+

2

s2 + 4

an inverse table lookup shows that f(t) = 6 cos(2t) + sin(2t).

Reading Exercise Solution 5.2.13. If f(t) = 2 + 3e−t then F (s) = 2/s+
3/(s+ 1) = 5s+2

s2+s
. Then

lim
t→0+

f(t) = 5

lim
s→∞

sF (s) = lim
s→∞

5s2 + 2s

s2 + s
= 5

lim
t→∞

f(t) = 2

lim
s→0+

sF (s) = lim
s→0+

5s2 + 2s

s2 + s
== lim

s→0+

5s+ 2

s+ 1
= 2.

Reading Exercise Solution 5.3.1. If t < 2 then all Heaviside functions
equal 0 and q(t) = 0. If 2 < t < 5 then H(t − 2) − H(t − 5) = 1, but
H(t − 5) −H(t − 7) = 0 and H(t − 7) = 0, so q(t) = t2. For 5 < t < 7 we
have H(t− 2)−H(t− 5) = 0 (since both Heaviside functions are “on”) and
H(t − 5) − H(t − 7) = 1 while H(t − 7) = 0, so q(t) = et. For t > 7 only
H(t− 7) = 1 and q(t) = cos(t).

Reading Exercise Solution 5.3.2. If c < 0 then H(t− c) = 1 for all t ≥ 0
and so L(H(t − c)) = 1 in this case. As far as the Laplace transform is
concerned, H(t− c) is the constant function 1 if c < 0.

Reading Exercise Solution 5.3.3. Write φ(t) = H(t − 3)f(t − 3) where
f(t) = et. Then F (s) = 1/(s− 1) and so L(φ) = e−3s/(s− 1).
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Reading Exercise Solution 5.3.4. Define f(t) = (t+7)2 so that f(t−7) =
t2 and φ(t) = H(t − 7)f(t − 7). Since f(t) = t2 + 14t + 49 we compute
F (s) = 2/s3 + 14/s2 + 49/s and so L(φ) = e−7sF (s).

Reading Exercise Solution 5.3.5. Take g(t) = t2 and c = 7, so that
f(t) = g(t+7) = (t+7)2 = t2+14t+49. Then F (s) = 2/s3+14/s2+49/s and
so L(H(t− 7)t2) = L(H(t− 7)g(t)) = e−7sF (s) = e−7s(2/s3 + 14/s2 + 49/s).

Reading Exercise Solution 5.3.6. Laplace transform both sides of u′(t) =
−u(t)+H(t−1) and substitute in u(0) = 0 to obtain sU(s) = −U(s)+e−s/s.
Solve for U(s) = e−s/(s(s+ 1)). A partial fraction decomposition shows that
1/(s(s+1)) = 1/s−1/(s+1) so that U(s) = e−s/s−e−s/(s+1). The inverse
transform of e−s/s is H(t − 1) and the inverse transform of e−s/(s + 1) is
H(t− 1)e−(t−1), so u(t) = H(t− 1)(1− e−(t−1)).

Reading Exercise Solution 5.3.7. Given the mass is at rest at equilibrium
at t = 0 and no forces act on it until t = 3, it should clearly stay at rest.
Only for t > 3 should it move, and given that the force is constant the mass
should approach a position F/k = 10/10 = 1 as t→∞.

Reading Exercise Solution 5.4.1. Yes, you have been paying attention.
No, the Dirac delta function is not a function.

Reading Exercise Solution 5.4.2. If a < b < t0 − ε then the integrand is
identically zero on this interval, so∫ b

a

φε(t) dt =

∫ b

a

0 dt = 0.

A similar analysis holds if t0 + ε < a < b.

Reading Exercise Solution 5.4.3. If a < b < 0 then for ε > 0 sufficiently
close to 0 it follows that b < −ε and so φε(t) = 0 for a < t < b. Then∫ b

a

φε(t) dt = 0 for all such ε and so

∫ b

a

δ(t) dt = lim
ε→0+

∫ b

a

φε(t) dt = lim
ε→0+

0 = 0.

Similar reasoning holds for 0 < a < b, since then φε(t) = 0 for a < t < b
once ε < a.



25

Reading Exercise Solution 5.4.4. With g(t) = t2 + t we have antideriva-
tive G(t) = t3/3 + t2/2, so (at least if ε < 2) we have∫ 5

0

1

2ε
(H(t− 2 + ε)−H(t− 2− ε))g(t) dt =

1

2ε

∫ 2+ε

2−ε
g(t) dt

=
1

2ε

∫ 2+ε

2−ε
(t2 + t) dt

=
1

2ε

(
t3

3
+
t2

2

) ∣∣∣t=2+ε

t=2−ε

= 6 +
ε2

3

after simplifying. As ε→ 0+ this limits to g(2) = 6.

Reading Exercise Solution 5.4.5. This is essentially the argument of
Reading Exercise 132.

Reading Exercise Solution 5.4.6. With g(t) = t2 + t

1. We find (using the fact that 1
2ε

(H(t − 2 + ε) − H(t − 2 − ε)) = 1 for
2 ≤ t ≤ 2 + ε, zero elsewhere)∫ 5

2

1

2ε
(H(t− 2 + ε)−H(t− 2− ε))g(t) dt =

1

2ε

∫ 2+ε

2

g(t) dt

=
ε2

6
+

5ε

4
+ 3,

at least once ε < 3. As ε→ 0+ this limits to 3 = g(2)/2. It’s as if the
Dirac mass is half in the interval, half out.

2. This integral is exactly g(t0), by the sifting property of the Dirac func-
tion.

3. From part (b) the limit is

lim
t0→2+

∫ 5

2

δ(t− t0)g(t) dt = lim
t0→2+

g(t0) = g(2)

since g is continuous. This treats the Dirac mass as if it is entirely
inside the interval.



26

Reading Exercise Solution 5.4.7. From the formula for u(t) we can com-
pute that u′(t) = 10e−(t−1) cos(3(t−1))−10e−(t−1) sin(3(t−1))/3. As t→ 1+

we find u′ limits to 10, and to the momentum of the particle just after the
blow lands is 1 kg times 10 meters per second or 10 kg-meters per second.
This is the same as the total impulse of the hammer blow, 10 newton-second
(and note that kg-meters per second is the same as newton-seconds.)

Reading Exercise Solution 5.5.1. Laplace transforming mg′′(t) + cg′(t) +
kg(t) = δ(t) and using the initial data yields (ms2 + cs + k)G(s) = 1, so
G(s) = 1/(ms2 + cs+ k) as advertised.

Reading Exercise Solution 5.5.2. Write a = 2304 = 2 · 103 + 3 · 102 + 0 ·
101 + 4 · 100 and b = 137 = 1 · 102 + 3 · 101 + 7 · 100 and foil to obtain product

a · b = (2 · 1)105 + (2 · 3 + 3 · 1)104 + (2 · 7 + 3 · 3 + 0 · 1)103

+ (3 · 7 + 0 · 3 + 4 · 1)102 + (7 · 0 + 4 · 3)101 + (4 · 7)100

= 2 · 105 + 9 · 104 + 23 · 103 + 25 · 102 + 12 · 101 + 28 · 100

or (2|3|0|4) ∗ (3|1|7) = (2|9|23|25|12|28). But performing the carries leads to
a · b = 315, 648.

Reading Exercise Solution 5.5.3. The convolution of e−t and e−2t is com-
puted as

(e−t) ∗ (e−2t) =

∫ t

0

e−τe−2(t−τ) dτ

=

∫ t

0

e−2t+τ dτ

= e−2t

∫ t

0

eτ dτ

= e−2t(et − 1)

= e−t − e−2t.

Reading Exercise Solution 5.5.4. They do!

Reading Exercise Solution 5.5.5. The transform of H(t − t0)f(t − t0)
is, from the Second Shifting Theorem, equal to e−st0F (s). The transform of
δt0 is e−st0, so it is clear that L(δt0 ∗ f) = L(δt0)L(f) is consistent with the
Convolution Theorem.
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Reading Exercise Solution 5.6.1. In addition to those listed, the Newton
cooling ODE, the RC/RLC circuits, or compartment/salt tank models might
be subject to control, in the right setting.

Reading Exercise Solution 5.6.2. The ODE here is y′(t) = −0.05y(t)−
0.5(1 + 19e−t). Any number of techniques show that the solution is y(t) =
10(1− e−t).

Reading Exercise Solution 5.6.3. With initial condition y(0) = y0 the
solution is y(t) = 10(1−e−t)+y0e

−0.05t, which approaches the desired setpoint
as t→∞.

Reading Exercise Solution 5.6.4.

With initial condition y(0) = y0 the solution is y(t) = 5 sin(2πt/24) +
y0e
−0.05t, which approaches the desired setpoint r(t) = 5 sin(2πt/24) as t →

∞, for any y0.

Reading Exercise Solution 5.6.5. The solution to y′(t) = −ky(t)+0.4u(t)
with y(0) = 0 and u(t) = 1 + 19e−t is y(t) = 8 − 8e−t. The incubator
temperature does not track the desired setpoint.

Reading Exercise Solution 5.6.6. The governing controlled ODE is y′(t) =
−ky(t) + Ku(t). If we substitute u(t) = Kp(r(t) − y(t)) into this ODE we
obtain y′(t) = −ky(t) +KKp(r(t)− y(t)) or

y′(t) = −(k +KKp)y(t) +KKpr(t).

With k = 0.05, K = 0.5, Kp = 1, and setpoint r(t) = 10− 10e−t the ODE is

y′(t) = −0.55y(t) + 5(1− e−t).

The solution with initial data y(0) = 0 is y(t) ≈ 9.09 + 11.1e−t − 20.2e−0.55t.
This differs from the setpoint r(t), even in the limit that t → ∞. Larger
values for Kp improve the situation. In fact solving the ODE with Kp left
undefined and taking the limit as t→∞ shows that y(t)→ 100Kp/(10Kp+1).

Reading Exercise Solution 5.6.7. The solution is approximately

y(t) ≈ 1.764e−0.55t − 1.764 cos(2πt/24) + 3.71 sin(2πt/24).

A plot of y(t) and r(t) is shown in Figure 5.14.
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Figure 5.14: Setpoint r(t) (red) and system process variable y(t) (tempera-
ture, blue).

Reading Exercise Solution 5.6.8. We need kr0/(KKp + k) < 0.1, or
0.5/(0.5Kp + 0.05) < 0.1, which leads to Kp > 9.9.

Reading Exercise Solution 5.6.9. In this case G(s) = 1/(2s − 0.9) and
Y (s) = 10

s(2s−0.9)(s+1)
. Then y(t) ≈ 11.11 − 3.49e−t − 7.66e0.45t contains a

growing exponential and y(t) is unbounded. This disastrous control strategy
is to turn up the heat when the incubator is too hot, turn up the cooling when
the incubator is too cold.

Reading Exercise Solution 5.6.10. The solution here is y(t) ≈ 10 −
2.08e−t − 4.73e−0.15t sin(0.69t)− 7.92e−0.15t cos(0.69t). The solution still sta-
bilizes at the appropriate value, but oscillates while doing so. The poles of
G(s) lie at approximately −0.15 ± 0.69i, which is precisely where Y (s) has
poles, and this explains the behavior of y(t).

Reading Exercise Solution 5.6.11. G(s) is continuous up to s = 0, which
makes this easy.

Chapter 6



29

Reading Exercise Solution 6.1.1. For this system f1(x1, x2, t) = tx1 −
3x2+t2 = a1,1(t)x1+a1,2x2+b1(t) with a1,1(t) = t, a1,2(t) = −3, and b1(t) = t2.
Also f2(x1, x2, t) = − sin(t)x1 + 3tx2 − t = a2,1(t)x1 + a2,2x2 + b2(t) with
a2,1(t) = − sin(t), a2,2(t) = 3t, and b2(t) = −t. This is of the form for a
linear system.

Reading Exercise Solution 6.1.2. Take x1 = θ and x2 = θ̇. Then ẋ1 = x2

is clear. The equation θ̈(t) + g
L

sin(θ(t)) = 0 can be solved for θ̈ = − g
L

sin(θ),
or in terms of x1 and x2, ẋ2 = − g

L
sin(x1). The coupled ODE’s

ẋ1 = x2

ẋ2 = − g
L

sin(x1)

is equivalent to the scalar ODE θ̈(t) + g
L

sin(θ(t)) = 0.

Reading Exercise Solution 6.1.3.

(a) If the rest length of mass 1 is L1 then based on the figure it’s pretty
clear the amount it is stretched is x1−L1. And given that the distance
between mass 1 and mass 2 is x2−x1, the amount spring 2 is stretched
is the deviation from this, so x2 − x1 − L2.

(b) The force on mass m1 due to the first spring follows from Hooke’s law
and is −k1(x1 − L1). The force exerted by spring 2 also follows from
Hooke’s law and is k2(x2 − x1 − L2), since that spring in on the right
(e.g., if the spring is lengthened so that x2 − x1 − L2 > 0 the force is
to the right. The velocity of mass 1 is ẋ1, so viscous damping specifies
force −c1ẋ1 for some c1 ≥ 0.

(c) The force exerted by spring 2 on mass m2 follows from Hooke’s law
and is −k2(x2 − x1 − L2), since that spring in on the left (e.g., if the
spring is lengthened so that x2−x1−L2 > 0 the force is to the left, the
negative direction). The velocity of mass 2 is ẋ2, so viscous damping
specifies force −c2ẋ2 for some c2 ≥ 0.

Reading Exercise Solution 6.1.4. From Newton’s second law, F = m1ẍ1

where F is the sum of all forces on m1. From the last Reading Exercise this
net force is −k1(x1 − L1) + k2(x2 − x1 − L1)− c1ẋ1 (spring 1, spring 2, and
friction). So

m1ẍ1 = −k1(x1 − L1) + k2(x2 − x1 − L1)− c1ẋ1
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From Newton’s second law, F = m2ẍ2 where F is the sum of all forces on
m2. From the last Reading Exercise this net force is −k2(x2−x1−L1)− c2ẋ2

(spring 2 and friction). So

m2ẍ2 = −k2(x2 − x1 − L1)− c2ẋ2.

Reading Exercise Solution 6.1.5. Start with

ẇ2 = −k1 + k2

m1

w1 −
c1

m1

w2 +
k2

m1

w3

Now use w2 = u̇1 to find that ẇ2 = ü1 on the left. Fill in w1 = u1, w2 = u̇1,
and w3 = u2 and obtain exactly the equation ü1 = −k1+k2

m1
u1 + k2

m1
u2 − c1

m1
u̇1.

Similarly, start with

ẇ4 =
k2

m2

w1 −
k2

m2

w3 −
c2

m2

w4.

Use w4 = u̇2 to find ẅ4 = ü2 on the left. Fill in w1 = u1, w3 = u2, and
w4 = u̇2 to obtain

ü2 =
k2

m2

u1 −
k2

m2

u2 −
c2

m2

u̇2.

Reading Exercise Solution 6.2.1. The matrix A is

A =

[
−3.601 4.64

3.19 −4.64

]
and has eigenvalues λ1 = −0.238, λ2 = −8.002 with corresponding eigenvec-
tors

v1 =

[
0.810
0.587

]
and v2 =

[
−0.725
0.688

]
.

Then

w1(t) = e−0.238t

[
0.810
0.587

]
and w2(t) = e−8.002t

[
−0.725
0.688

]
.

The eigenvalues should have negative real part since the amount of LSD in
each compartment should clearly decay to zero if there is no input after time
t = 0.

Reading Exercise Solution 6.2.2.
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(a) A general solution would be u(t) = c1w1(t) + c2w2(t) or

u(t) = c1e
−0.238t

[
0.810
0.587

]
+ c2e

−8.002t

[
−0.725
0.688

]
.

(b) At t = 0 we need 0.81c1−0.725c2 = 140 and 0.587c1 +0.688c2 = 0, with
solution c1 ≈ 98.02 and c2 ≈ −83.57. The solution with the required
initial data is

u(t) = 98.02e−0.238t

[
0.810
0.587

]
− 83.57e−8.002t

[
−0.725
0.688

]
.

A plot of both components, u1(t) and u2(t), is shown in Figure 6.15.
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Figure 6.15: Plot of x1(t) (red) and x2(t) (blue).

Reading Exercise Solution 6.2.3. In this case we find

x(t) = d1e
−t
[
− cos(2t) + 2 sin(2t)

5 cos(2t)

]
+ d2e

−t
[
sin(2t) + 2 cos(2t)
−5 sin(2t)

]
after picking off the real and imaginary parts of e(−1−2i)t〈−1 + 2i, 5〉.
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Reading Exercise Solution 6.2.4. Substituting t = 0 into the general
solution w(t) yields w(0) = 〈(−c2 + c4)/α, c1/2 − c3,−αc2 − c4/α, c1 + c3〉,
and setting this equal to 〈1, 0, 0, 0〉 gives the asserted equations. The c1, c3

equations are decoupled from c2, c4 and homogeneous, so c1 = c3 = 0, while
c2 = −

√
2/3 and c4 = 2

√
2/3. Then

w(t) = −
√

2

3


− cos(t/α)/α

sin(t/α)/2
−α cos(t/α)

sin(t/α)

+
2
√

2

3


cos(αt)/α
− sin(αt)
− cos(αt)/α

sin(α)

 .
Reading Exercise Solution 6.3.1. Transforming the ODEs and substitut-
ing in the initial data yields

sX1(s)− 2 = 3X1(s)−X2(s) + 3/(s− 1)

sX2(s)− 1 = −X1(s) + 3X2(s).

Solve to find X1(s) = −s+5
2(s2−3s+2)

and X2(s) = s+1
2(s2−3s+2)

. Inverse transforming

yields x1(t) = 3e2t/2− 2et and x2(t) = 3e2t/2− et.

Reading Exercise Solution 6.3.2.

(a) We find

A =

[
2 3
−6 −7

]
and f(t) = et

[
5
10

]
.

(b) Write f(t) = etw with w = 〈5, 10〉 and substitute xp(t) = etv into
the ODE to find v = Av + w after cancelling the et terms. Then
(A− I)v = −w so

v = −(A− I)−1w =

[
7
−4

]
.

Then xp(t) = etv.

(c) A general homogeneous solution is

xh(t) = c1e
−4t

[
−1
2

]
+ c2e

−t
[
−1
1

]
.
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(d) From x(t) = xp(t) + xh(t) the initial data x1(0) = 1, x2(0) = 3 yields
equations −c1−c2 +7 = 1, 2c1 +c2−4 = 3 with solution c1 = 1, c2 = 5.

Reading Exercise Solution 6.4.1. For m = 1 the sum yields[
6 −2
6 −1

]
.

For m = 2 the sum yields [
25/2 −5
15 −5

]
.

For m = 5 the sum yields[
251/12 −91/10
273/10 −164/15

]
≈
[
20.92 −9.1
27.3 −10.93

]
.

For m = 10 the sum yields approximately[
21.40 −9.34
28.02 −11.29

]
.

Reading Exercise Solution 6.4.2. We know that B + (−B) = 0, so

eB+(−B) = e0 = I.

But since B and −B commute under multiplication it follows that eB+(−B) =
eBe−B. Combine these last two facts to find that

eBe−B = I.

Reading Exercise Solution 6.4.3. 1. We find that

d(etA)

dt
=

[
−4e−t 2e−t

−6e−t 3e−t

]
.

if we differentiate component-by-component.

2. A routine matrix multiplication shows that

AetA = etAA =

[
−4e−t 2e−t

−6e−t 3e−t

]
which is the same as d(etA)

dt
from part (a).
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Reading Exercise Solution 6.4.4. The matrix here is

D =

[
3 0
0 1

]
with eigenvalues λ1 = 3 and λ2 = 1. We conclude that

etD =

[
e3t 0

0 et

]
.

The solution with x(0) = 〈2, 5〉 is

x(t) = etDx(0) =

[
e3t 0

0 et

] [
2
5

]
=

[
2e3t

5et

]
.

Reading Exercise Solution 6.4.5. The eigenvalues of A are λ1 = 0 and
λ2 = −1 with corresponding eigenvectors v1 = 〈1, 2〉 and v2 = 〈2, 3〉 (the
ordering of the eigenvalues and scaling of the eigenvectors may vary). Then

P =

[
1 2
2 3

]
and D =

[
0 0
0 1

]
.

Also,

etA =

[
1 2
2 3

] [
1 0
0 e−t

] [
−6 4

6 −3

]
=

[
−3 + 4e−t 2− 2e−t

−6 + 6e−t 4− 3e−t

]
.

Reading Exercise Solution 6.4.6.

There is a double eigenvalue λ = −2 but only one eigenvector, v = 〈−1, 2〉,
so we cannot form P. This matrix has a defective eigenvalues and is not
diagonalizable.

Chapter 7

Reading Exercise Solution 7.1.1. The expression r1u1

(
K1−u1−au2

K1

)
de-

creases as u2 increases (since K1 − u1 − au2 is a decreasing function of
u2 when a > 0). This makes sense—a larger population for u2 decreases
the growth rate of the u1 species. Similar remarks apply to the expression

r2u2

(
K2−u2−bu1

K2

)
, with the roles of u1 and u2 reversed.
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Reading Exercise Solution 7.1.2. Each solution pair (u1(t), u2(t)) has
u̇1 = u̇2 = 0 (since both components are constant) and are easily seen to be
solutions to the right hand side of the ODEs. The solution (u1, u2) = (0, 0) is
mutual extinction, (u1, u2) = (K1, 0) is species 1 at carrying capacity, species
2 extinct, (u1, u2) = (0, K2) is species 2 at carrying capacity, species 1 extinct.
The choice

u1 =
K1 −K2a

1− ab
, u2 =

K2 −K1b

1− ab
can also be verified to satisfy the ODEs and corresponds to mutual coexis-
tence, provide both functions are positive.

Reading Exercise Solution 7.1.3. Many critiques are possible, for exam-
ple, once someone is sick and bedridden their contact with susceptible people
may drop to near zero (if isolated), as opposed to when they are sick and not
bedridden. The model makes no obvious attempt to model the length of the
illness, and of course assumes a closed community.

Reading Exercise Solution 7.1.4. We find that Ṡ+ İ+Ṙ = 0 at all times.
This makes sense: the total population remains constant.

Reading Exercise Solution 7.1.5. The substitution sin(θ) = θ in the non-
linear pendulum ODE leads to

θ̈ + cθ̇ + gθ/L = 0.

If we let x1 = θ and x2 = θ̇ then ẋ1 = x2 and ẋ2 = −gx1/l − cx2, which can
be formulation as ẋ = Ax with

A =

[
0 1

−g/L −c

]
.

The characteristic equation for A is λ(λ+c)+g/L = 0 or λ2 +cλ+g/L = 0,
with roots

− c
2
±
√
c2 − 4g/L

2
.

These are the eigenvalues of A. When 0 < c ≤ 2
√
g/L we have c2−4g/L < 0

and the eigenvalues are complex and conjugate with negative real part −c/2.
If c > 2

√
g/L then c2 > 4g/L, so c2−4g/L > 0 and the eigenvalues are real.

Moreover, it is always the case that c2 − 4g/L < c2 so that
√
c2 − 4g/L < c.
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As a result −c +
√
c2 − 4g/L < 0 (and −c −

√
c2 − 4g/L < 0 too). Thus

both eigenvalues are real and negative.
Thus when c > 0 the solution will decay in time; the pendulum comes to

rest.

Reading Exercise Solution 7.1.6. In this case the direction vector is
〈0, 1〉. That is, ẋ1 = 0 and ẋ2 = 1. This indicates that (since x1 = u)
u̇ = 0, so the mass is not moving. Also (since x2 = u̇) that ü = 1, that is,
the mass is accelerating in the direction of increasing u.

Reading Exercise Solution 7.1.7. The solution is u(t) = 2
√

3
3
e−t/2 sin(t

√
3/2)+

2e−t/2 cos(t
√

3/2). Equivalently, x1(t) = 2
√

3
3
e−t/2 sin(t

√
3/2)+2e−t/2 cos(t

√
3/2)

and x2(t) = −4
√

3
3
e−t/2 sin(t

√
3/2). The function x1(t) oscillates and decays

to zero, as does x2 = ẋ1, consistent with the solution trajectory show in the
text.

Reading Exercise Solution 7.1.8. Solving p1(1− p1/2)− 0.1p1p2 = 0 and
2p2(1 − p2/3) − 0.3p1p2 = 0 yields solutions (x, y) = (0, 0), (2, 0), (0, 3), and
(20/13, 30/13) ≈ (1.54, 2.31). The point (0, 0) is mutual extinction, (2, 0) is
the extinction of species 2, (0, 3) is the extinction of species 1, and (1.54, 2.31)
is mutual coexistence.

Reading Exercise Solution 7.1.9. The solutions are now (x, y) = (0, 0), (2, 0), (0, 3).

Reading Exercise Solution 7.2.1.

(a) A general solution in this case is x(t) = c1e
λtv+c2e

λt(v1 +tv). If λ < 0
then clearly limt→∞ e

λt = 0. It’s also easy to check that limt→∞ te
λt = 0

(e.g, use L’Hopital’s rule on t/e−λt).

(b) Also clear, since then limt→∞ e
λt = ∞ and limt→∞ te

λt = ∞. If either
c1 or c2 in nonzero, the solution will grow without bound.

Reading Exercise Solution 7.2.2. The inequality x2 >
kb+ke
ka

x1 is easily
manipulated to −(kb + ke)x1 + kax2 > 0 (multiply by ka, subtract (kb + ke)x1

from both sides. Thus ẋ1 = −(kb + ke)x1 + kax2 > 0, so solutions move
in the direction of increasing x1 (to the right). Similar computations show
that x2 <

kb+ke
ka

x1 is equivalent to −(kb + ke)x1 + kax2 < 0, so in this region
ẋ1 = −(kb+ke)x1+kax2 < 0 and solutions move in the direction of decreasing
x1 (to the left).
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Reading Exercise Solution 7.3.1. If u1(t) = 0 for all t and u2(t) satisfies
the logistic equation u̇2 = 2u2(1 − u2/3) then the pair (u1, u2) satisfies the
coupled system u̇1 = u1(1 − u1/2) − 0.1u1u2 (both sides of this ODE are
identically zero here) and u̇2 = 2u2(1− u2/3)− 0.3u1u2 (satisfied since u1 =
0). We conclude that this is the solution to the coupled system with data
u1(t0) = 0, u2(t0) = u0. In this setting the u1 species is extinct and the u2

species exists alone, and will approach its carrying capacity.

Reading Exercise Solution 7.3.2. At this point we are in the region where
u̇1 < 0, so the population of species 1 is declining.

Reading Exercise Solution 7.3.3. From the left panel, at such a point
u̇1 < 0 so the population of species 1 is declining. From the right panel we
see also that u̇2 < 0, so the population of species 2 is also declining.

Reading Exercise Solution 7.3.4. If u2(t) = 0 for all t and u1(t) satisfies
the logistic equation u̇1 = u1(1 − u1/2) then the pair (u1, u2) satisfies the
coupled system u̇1 = u1(1−u1/2)−0.1u1u2 (since u2 is identically zero here)
and u̇2 = 2u2(1 − u2/3) − 0.3u1u2 (satisfied since u2 = 0, so both sides
of the ODE are identically zero). We conclude that this is the solution to
the coupled system with data u2(t0) > 0, u2(t0) = 0. In this setting the
u2 species is extinct and the u1 species exists alone, and will approach its
carrying capacity.

Reading Exercise Solution 7.3.5. First, the right sides of the competing
species equations are continuous with continuous partial derivatives, so the
solution through any point in the plane is unique. If u1(t0) = 0 with u2(t0) > 0
or u1(t0) > 0 with u2(t0) = 0 the previous Reading Exercises show that the
solution will stay on the corresponding axis (u1 = 0 or u2 = 0). If we start
at u1(t0) = u2(t0) = 0 then both u1(t) and u2(t) are identically zero. In each
case, the solution remains in the first quadrant.

If u1(t0) > 0 and u2(t0) > 0 then the solution must also remain in the
first quadrant, so if at some time t = t∗ we have u1(t∗) = 0 then we have
two distinct solutions curves (one with u1(t) > 0 for t < t∗, the other of the
form u1(t) = 0 for t < t∗) both passing though the same point, (0, u2(t∗)), in
violation of the existence-uniqueness theorem.

Reading Exercise Solution 7.3.6. The point (0, 0) is mutual extinction.
The point (2, 0) is the first species at its carrying capacity and the second
species extinct, while the point (0, 3) is the second species at its carrying
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capacity and the first species extinct. The point (1.54, 2.31) is mutual coexis-
tence.

Reading Exercise Solution 7.3.7. Solutions with each set of initial con-
ditions are shown in Figure 7.16.

Figure 7.16: Solutions for u1(t) (solid red curves) and u2(t) (dashed blue
curves). Top left panel: u1(0) = 4, u2(0) = 8. Top right panel: u1(0) =
1, u2(0) = 8. Bottom panel: u1(0) = 0.5, u2(0) = 0.5.

Reading Exercise Solution 7.3.8. The linearizations of f1 and f2 for this
system at the point (1.54, 2.31) are

L1(u1, u2) ≈ −0.769(u1 − 1.54)− 0.154(u2 − 2.31)

L2(u1, u2) ≈ −0.692(u1 − 1.54)− 1.54(u2 − 2.31),

respectively. The corresponding matrix is

A ≈
[
−0.769 −0.154
−0.692 −1.54

]
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and A has approximate eigenvalues −0.65 and −1.66. This means that
(1.54, 2.31) is a stable node for the fixed point (1.54, 2.31) in the linearized
system u̇1 = L1(u1, u2), u̇2 = L2(u1, u2). From the Hartman-Grobman The-
orem, the fixed point (1.54, 2.31) behaves like a stable node for the nonlinear
system.

Reading Exercise Solution 7.4.1. The ODE for u1(t) is u̇1 = r1u1(K1 −
u1−au2)/K1. With u1 = K1v1, u̇1 = K1v̇1, and u̇2 = K2v̇2 this ODE becomes

K1v̇1 = r1K1v1(K1 −K1v1 − aK2v2)/K1.

Divide by K1 to obtain v̇1 = r1v1(K1 − K1v1 − aK2v2)/K1 = r1v1(1 − v1 −
aK2v2/K1). With ā = K2a/K1 this becomes v̇1 = r1v1(1 − v1 − āv2). The
same computation with the roles and parameters the first and second species
reversed yields v̇2 = r2v2(1− v2 − b̄v1) with b̄ = K1b/K2.

Reading Exercise Solution 7.4.2. If we set r1v1(1 − v1 − āv2) = 0 we
can divide both sides by r1 and find v1(1 − v1 − āv2) = 0. The implies that
either v1 = 0 or 1− v1 − āv2 = 0. The second ODE similarly leads to v2 = 0
or 1 − v2 − b̄v1 = 0. Clearly (v1, v2) = (0, 0) is a solution. Taking v1 = 0
and v2 = 1 yields a solution, as does v1 = 1, v2 = 0. Finally, if we impose
1 − v1 − āv2 = 0 and 1 − v2 − b̄v1 = 0 and solve simultaneously we find
(v1, v2) = ((ā− 1)/(āb̄− 1), (b̄− 1)/(āb̄− 1)).

Reading Exercise Solution 7.4.3. We find ā = K2a/K1 = 0.3 and b̄ =
K1b/K2 = 0.3. Then 1/ā = 10/3 and 1/b̄ = 10/3, both greater than 1.

Reading Exercise Solution 7.4.4. This is straightforward; the figure is
correct.

Reading Exercise Solution 7.4.5. The value for 1/ā has two possibilities,
greater than or less than one, as does 1/b̄. This gives 2× 2 = 4 possibilities,
as listed.

Reading Exercise Solution 7.4.6. When 1 < 1/ā and 1 < 1/b̄ it looks
like all solutions converge to the fixed point (v1, v2) = ((ā− 1)/(āb̄− 1), (b̄−
1)/(āb̄ − 1)) (corresponding to fixed point u1 = (K1 − K2a)/(1 − ab) and
u2 = (K2−K1b)/(1−ab) in the original system. When 1 > 1/ā and 1 > 1/b̄
it appears that solutions converge to either v1 = 1, v2 = 0 or v1 = 0, v2 = 1,
depending on the initial conditions. These corresponds to u1 = K1, u2 = 0 or
u1 = 0, u2 = K2.
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Reading Exercise Solution 7.4.7. When ā < 1 and b̄ < 1 the eigenvalues
of the Jacobian at (1, 0) are −r1 < 0 and r2(1 − b̄) > 0, so this is a saddle.
When ā < 1 and b̄ < 1 the eigenvalues of the Jacobian at (0, 1) are −r2 < 0
and r1(1− ā) > 0, so this is also a saddle.

When ā > 1 and b̄ > 1 the eigenvalues of the Jacobian at (1, 0) are
−r1 < 0 and r2(1− b̄) < 0, so this is a stable node. Similarly when ā > 1 and
b̄ > 1 the eigenvalues of the Jacobian at (0, 1) are −r2 < 0 and r1(1− ā) < 0
and this is also a stable node.

Reading Exercise Solution 7.4.8. That T 2 − 4D = (r1v
∗
1 − r2v

∗
2)2 +

4āb̄r1r2v
∗
1v
∗
2 is a straightforward algebra computation. The quantity on the

right is clearly positive as it is a sum of a square and a positive term. Then
we have D > 0 and T 2/4 − D. From the analysis in the appendix, both
eigenvalues of J(v∗1, v

∗
2) are in fact real, so this is a stable node.

Reading Exercise Solution 7.5.1. With f(1.0,x2) ≈ 〈0.483,−0.783〉 we
find

x3 = 〈0.960, 0.720〉 > +0.5〈0.483,−0.783〉 ≈ 〈1.202, 0.328〉
and with f(1.5,x3) ≈ 〈0.0043,−0.846〉

x4 = 〈1.202, 0.328〉+ 0.5〈0.0043,−0.846〉 ≈ 〈1.204,−0.0949〉.

Reading Exercise Solution 7.5.2.

(a) The system is linear, of the form ẋ = Ax with

A =

[
1 −1
6 −4

]
.

The solution with the given initial data is x(t) = 〈3e−t − 2e−2t, 6e−t −
6e−2t〉 and x(2) ≈ 〈0.36937, 0.70212〉.

(b) The estimate is 〈0.34167, 0.66028〉, error ‖x(2)− xn‖ ≈ 0.05017.

(c) The estimate is 〈0.36968, 0.70158〉, error 6.177× 10−4.

(d) The estimate is 〈0.36937, 0.70211〉, error 5.68× 10−6.

(e) For Euler the error is 0.004584, for the improved Euler method the
error is 4.47× 10−6, and for RK4 the error is 4.77× 10−10. The Euler
method error dropped by about a factor of 10, improved Euler by about
a factor of 100, and RK4 by about a factor of 104, all as expected.
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Reading Exercise Solution 7.5.3. In this case λ = 1, so we have xk+1 =
(1 − h)xk with x0 = 1. Then it’s easy to see that in general xk = (1 − h)k,
and with h = 1.5 this becomes xk = (−0.5)k or xk = (−1/2)k. With h = 2.2
we have xk = (−1.2)k.

Reading Exercise Solution 7.5.4. The inequality 0 < 1−hλ < 1. Multiply
through by −1 to obtain −1 < hλ − 1 < 0, add 1 throughout, and divide by
λ (assumed positive) to find 0 < h < 1/λ. For the system x′(t) = −x(t) we
have λ = 1, so the bound on the step size becomes 0 < h < 1 to maintain
positive iterates. This is in accord with the figure.

Reading Exercise Solution 7.5.5. The bound in this case is 0 < h < 2/λ
where λ should be chosen as max(λ1, λ2) with λ1 = 1, λ2 = 100, so λ = 100
and the stability bound on h is 0 < h < 0.02. In the figure we see that
h = 0.001 yields a good approximation, but h = 0.02005 (which violates the
bound) causes the iterates for the x1 component to grow.

Reading Exercise Solution 7.5.6. The true solution is x1(t) = 1.05e−t −
0.05e−100t, x2(t) = 1.05e−t + 0.04e−100t. A bit of experimentation shows
that h < 0.2 is necessary in the improved Euler method for the iterates to
decay (and approximate the true solution). For the RK4 method h < 0.27 is
necessary.

Reading Exercise Solution 7.6.1. Given E(u, v) = mgL(1 − cos(u)) +
1
2
mL2v2 compute ∇E = 〈mgL sin(u),mL2v〉 and so the critical point of E

occur when v = 0 and u = kπ for some integer k. A second derivative test
shows that the points u = 2kπ, v = 0 are local minima.

Reading Exercise Solution 7.6.2. These trajectories correspond to the
pendulum swinging “over the top”, around and around.

Reading Exercise Solution 7.6.3. Constant functions would be a first
integral for any system of ODEs (if allowed) and carry no information at all
about the system’s behavior.

Reading Exercise Solution 7.6.4.

(a) We find ẋ1 = x2 and ẋ2 = −kx1/m, or ẋ = f(x) with f(x) = 〈x2,−kx1/m〉.

(b) Compute ∇E = 〈ku1,mu2〉 and then ∇E(u) · f(u) = 0 for any u.
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(c) The solution trajectories are level curves E(x1, x2) = c for some con-
stant c, or k

2
x2

1 + m
2
x2

2 = c. This is the equation of an ellipse in the
x1x2 phase plane. It indicates that (given x1 = x, x2 = ẋ) the solutions
are periodic without decay.

Reading Exercise Solution 7.6.5.

(a) See the left panel in Figure 7.17.

(b) See the right panel in Figure 7.17.

Figure 7.17: left panel: Function V (u) = mgL(1 − cos(u1)) + 1
2
mL2u2

2 with
m = L = 1, g = 9.8, on region −1 ≤ u1, u2 ≤ 1. Right panel: same, on
region −3π < u1 < 3π, −1 < u2 < 1.

Reading Exercise Solution 7.6.6. The right side of the ẋ1 equation is
the model we’ve seen before for logistic growth of a prey species rx1(K −
x1)/K and the effect of predation by the second species, −rax1x2/K (jointly
proportional to x1 and x2.) The right side of the ẋ2 equation captures the
beneficial effect that x2 predation on x1 has on the x2 population (bx1x2), the
negative effect of the x3 predation on x2 (−cx2x3), and the exponential decay
of the x2 species (−dx2). Finally, the ẋ3 equation captures the sustenance
this population gains from eating the x2 species (ex2x3), and the exponential
decay of the x3 species in the absence of food (−fx3).

Reading Exercise Solution 7.6.7. The point (0, 0, 0) is obviously mu-
tual extinction. The point (K, 0, 0) corresponds to the extinction of the sec-
ond and third species, with the first at carrying capacity. The fixed point
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(0, f/e,−d/c) is not physical since the third population is negative. The
fourth point (d/b, (Kb − d)/(ab), 0) corresponds to extinction of the third
species and the coexistence of the first two species, if Kb − d > 0. Finally
(K−af/e, f/e, (Kbe−fac−de)/(ec)) corresponds to the mutual coexistence
of all three species, if K − af/e > 0 and Kbe− fac− de > 0.

Reading Exercise Solution 7.6.8. The Jacobian at x∗ = 〈1, K − 1, 0〉 is

J(x∗) =

−r/K −r/K 0
K − 1 0 1−K

0 0 K − 2

 .
The characteristic polynomial is

p(λ) = λ3 + (2−K + r/K)λ2 + (r/K)λ− (K − 1)(K − 2)r/K.

A bit of tedious computation (aided by software, preferably) shows that

D1 =
−K2 + 2K + r

K

D2 =
r(K(K − 2)2 + r

K2

D3 = −r
2(K − 1)(K − 2)(K(K − 2)2 + r

K3
.

If r > 0 and 1 < K < 2 then (using the hint that −K2 + 2K + r = r + 1−
(K − 1)2) we see that the denominator of D1 is positive, since r+ 1 > 1 and
0 < (K − 1)2 < 1. Hence D1 is positive. The quantity D2 is always positive,
and if 1 < K < 2 we see that (K − 1)(K − 2) < 0, which makes it clear that
D3 > 0. The roots of p(λ) (the eigenvalues of the Jacobian at x∗) all have
negative real part, and so this fixed point is asymptotically stable. Perhaps
this can be interpreted that the carrying capacity for the base species in this
food chain must be high enough to support the second species, but if K < 2
there is not enough of the second species to support the third.

Reading Exercise Solution 8.1.1. Many possibilities.

Reading Exercise Solution 8.1.2. The dimensions:

• For a pipe with water we have [ρ] = ML−1 and [q] = MT−1.
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• For a wire with electrons we have [ρ] = QL−1 and [q] = QT−1.

• For a roads with cars we have [ρ] = L−1 and [q] = T−1 if cars are a di-
mensionless quantity, a simple count. Of we assign them the dimension
“N” [ρ] = NL−1 and [q] = NT−1.

• For a river with pollutant we have [ρ] = ML−1 and [q] = MT−1.

• For a metal bar with thermal energy (energy has dimension ML2T−2

we have [ρ] = MLT−2 and [q] = ML2T−3.

Reading Exercise Solution 8.1.3. With 19 people in the building at time
t = t0, if 14 enter and 7 exit over the next hour, there should be 19+14−7 =
26 people in the building. But this assumes that people are conserved. If there
are 27 people at the end of the hour, it means there was a net creation of one
person during that hour—maybe it’s a hospital and someone was born. Or if
there are 25 people, someone died. Again, maybe it’s a hospital.

Reading Exercise Solution 8.1.4. This is a routine differentiation. For
the graphs see Figure 8.18.

Figure 8.18: Solution u(x, t) = e
− x2

4(t+1)
√
t+1

to heat equation with α = 1 at times

t = 0 (solid/red), t = 1 (dotted/blue) and t = 5 (dashed/black).
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Reading Exercise Solution 8.1.5. That ∂u
∂t
− ∂2u

∂x2
= 0 is a routine compu-

tation. It’s also easy to see that u(x, 0) = sin(πx), as well as u(0, t) = 0 and
u(1, t) = 0 for t > 0. The solution for t > 0 is just a scaled down version
(vertically) of sin(πx), and seems perfectly reasonable—the heat energy flows
out of the ends of the bar.

Reading Exercise Solution 8.1.6. Similar to the previous Reading Exer-
cise 8.1.5. The condition ∂u

∂t
− ∂2u

∂x2
= 0 is a routine computation. It’s also easy

that since ∂u
∂x

(x, t) = −πe−π2t sin(πx) we have ∂u
∂x

(0, t) = ∂u
∂x

(1, t) = 0, and
clearly u(x, 0) = 1 + cos(πx). The solution seems perfectly reasonable—the
heat energy can’t flow out the ends of the bar, so the solution (temperature)
settles to the constant value 1.

Reading Exercise Solution 8.1.7. For u(x, t) = e−αλ
2t sin(λx) compute

∂u

∂t
= −αλ2e−αλ

2t sin(λx)

∂2u

∂x2
= −λ2e−αλ

2t sin(λx).

Then it’s easy to see that ∂u
∂t
− α∂2u

∂x2
= 0. Virtually the same computation

works for v(x, t).

Reading Exercise Solution 8.1.8. If γ = 0 then the expression T becomes
just T (t) = C, a constant (the actual ODE for T is just T ′(t) = 0). The ODE
for X(x) becomes X ′′(x) = 0 with general solution X(x) = c1x + c2. Then
u(x, t) = T (t)X(x) = C1x+C2 (with C1 = Cc1, C2 = Cc2) is the solution to
the heat equation.

Reading Exercise Solution 8.1.9. Start with

u(x, t) = C1e
−αλ2t sin(λx) + C2e

−αλ2t cos(λx).

Then
∂u

∂x
(x, t) = C1λe

−αλ2t cos(λx)− C2λe
−αλ2t sin(λx).

The condition ∂u
∂x

(0, t) = C1λe
−αλ2t = 0 forces C1 = 0 or λ = 0. If λ = 0

then u(x, t) = C2, a constant. If λ 6= 0 then we must have C1 = 0, so

u(x, t) = C2e
−αλ2t cos(λx)
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and
∂u

∂x
(x, t) = −C2λe

−αλ2t sin(λx).

The condition that ∂u
∂x

(L, t) = 0 means that −C2 sin(λL) = 0. Taking C2 = 0
leads to u(x, t) = 0, which is of no value. We thus need sin(λL) = 0, which
(as in the Dirichlet data case) leads to λ = πj/L for some integer j.

Reading Exercise Solution 8.2.1. From the identity cos(x) cos(y) = cos(x+y)+cos(x−y)
2

we find∫ L

0

cos(jπx/L) cos(kπx/L) dx =

∫ L

0

(
cos(π(j + k)x/L) + cos(π(j − k)x/L)

2

)
dx

=

(
L sin(π(j + k)x/L)

2π(j + k)
+
L sin(π(j − k)x/L)

2π(j − k)

) ∣∣x=L

x=0

=
L sin(π(j + k))

2π(j + k)
+
L sin(π(j − k))

2π(j − k)

+
L sin(0)

2π(j + k)
+

L sin(0)

2π(j − k)

= 0

since j and k are distinct integers (so j − k 6= 0, and note that j + k > 0).
If j = k then we can use the identity with x = y, in which case this

identity becomes cos2(y) = 1/2 + cos(2y)/2. Then∫ L

0

cos2(jπx/L) dx =

∫ L

0

(1/2 + cos(2jπx/L)/2) dx

=

(
x

2
+
L sin(2jπx/L)

2jπ

) ∣∣∣x=L

x=0

=
L

2

since sin(2jπ) = 0 (and j > 0, so no division by zero).

Reading Exercise Solution 8.2.2. Here s0(x) = s1(x) = 0, while s2(x) =
s3(x) = s4(x) = f(x) = cos(2πx). Once n = 2 the approximation is exact
and increasing n cannot improve the approximation.
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Reading Exercise Solution 8.2.3. Compute

a0 = 2

∫ 1

0

x dx = 1

ak = 2

∫ 1

0

x cos(kπx) dx = 2

(
x sin(kπx)

kπ

∣∣∣1
x=0
−
∫ 1

0

sin(kπx)

kπ
dx

)
= −2

cos(kπx)

k2π2

∣∣∣1
x=0

= 2
1− (−1)k

k2π2

(integrate by parts for ak). It’s easy to see that ak = 0 if k is even and
ak = 4/(k2π2) if k is odd. Then the Fourier cosine series for f yields

f(x) =
1

2
− 4

π2

∞∑
k=1, odd

cos(kπx)

k2
.

Using x = 0 on the right yields value 1/2, since cos(kπ/2) = 0 when k is
odd. With x = 0 we obtain (using f(0) = 0 and pointwise convergence)

0 =
1

2
− 4

π2

∞∑
k=1, odd

1

k2
.

Subtract 1/2 from both sides and multiply by π2/4 to find

1 +
1

32
+

1

52
+

1

72
+ · · · = π2

8
.

Reading Exercise Solution 8.3.1. Now the solution becomes

u(x, t) =
∞∑
k=1

4(1− (−1)k)

k3π3
e−2k2π2t sin(kπx) =

∞∑
k=1,odd

8

k3π3
e−2k2π2t sin(kπx).

In effect, time moves twice as fast when α = 2. A plot is shown in Figure
8.20.

Reading Exercise Solution 8.3.2. From

u(x, t) =
a0

2
+
∞∑
k=1

ake
−αkπ2t/L2

cos(kπx/L)
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Figure 8.19: Solution u(x, t) to heat equation with diffusivity α = 2 on
interval 0 ≤ x ≤ 1, boundary conditions u(0, t) = u(1, t) = 0 and initial data
u(x, 0) = x(1 − x). Solution u at time t = 0 shown as solid black graph,
t = 0.1 as dashed red graph, t = 0.3 as dotted blue graph.

it’s clear that the solution decays to a0/2, since all terms in the summation
decay rapidly to zero. But from the formula for the ak we have

a0

2
=

1

L

∫ L

0

f(x) dx.

Reading Exercise Solution 8.3.3. Use sin(y) sin(z) = (cos(y−z)−cos(y+
z))/2 with y = π(j + 1/2)x/L and z = π(k + 1/2)x/L to write

sin

(
π(j + 1/2)x

L

)
sin

(
π(k + 1/2)x

L

)
=

1

2
cos

(
π(j − k)x

L

)
−1

2
cos

(
π(j + k)x

L

)
.

Then ∫ L

0

sin

(
π(j + 1/2)x

L

)
sin

(
π(k + 1/2)x

L

)
dx

=
1

2

∫ L

0

cos

(
π(j − k)x

L

)
dx− 1

2

∫ L

0

cos

(
π(j + k)x

L

)
dx

=
sin(π(j − k)x/L)

2π(j − k)/L

∣∣∣x=L

x=0
− sin(π(j + k)x/L)

2π(j + k)/L

∣∣∣x=L

x=0
.
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All function evaluations in this last line are of the form sin(mπ) for some
integer m, and so all are zero. Note that j − k and j + k are never zero too.

Also, from sin2(y) = 1/2− cos(2y)/2 with y = π(j + 1/2)x/L we have

sin2

(
π(j + 1/2)x

L

)
=

1

2
+

cos((2j + 1)πx)

2L
.

Then ∫ L

0

sin2

(
π(j + 1/2)x

L

)
dx =

∫ L

0

(
1

2
+

cos((2j + 1)πx)

2L

)
dx

=

(
x

2
+

sin((2j + 1)πx)

4π(j + 1/2)L

) ∣∣∣x=L

x=0

=
L

2

since all the sin evaluations are at a multiple of π.

Reading Exercise Solution 8.3.4. The coefficients turn out to be cj =
8(−1)j/(π2(2j + 1)2) so

sn(x) =
n∑
j=0

8(−1)j sin((j + 1/2)πx/2)

π2(2j + 1)2
.

The graph of sn(x) for n = 0, 5, 10 is shown in Figure ??.

Reading Exercise Solution 8.3.5. If x = 1/2 then cos(kπx) = cos(kπ/2) =
0 when k is odd and cos(kπx) = cos(kπ/2) = (−1)k/2 when k is even. Then

sn(1/2) = 1 + 2
n∑

k=2, even

(−1)k/2(−1)k/2 = 1 + 2
n∑

k=2, even

1 = n+ 1

and sn(1/2) = n when n is odd. For example, s6(1/2) = 1 + 2(1 + 1 + 1) = 7,
and s5(1/2) = 1 + 2(1 + 1) = 5. The quantity sn(1/2) is the height of the
delta function that develops as n increases, to this make perfect sense.

Reading Exercise Solution 8.3.6. If ρ has dimensions of mass per length
(ML−1) then from the analysis of Section 1.5, ∂ρ/∂t has dimension ML−1T−1.
Similarly if q has the dimension mass per time (MT−1) then ∂q/∂x has di-
mension ML−1T−1. And it is given that r has the dimension of ML−1T−1.
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Figure 8.20: Function f(x) = x and approximations s0(x), s5(x), and s10(x)
on 0 ≤ x ≤ 2.

Reading Exercise Solution 8.3.7. The total amount of pollutant mass in
the bar at time t = T should be the total amount present at time t = 0 plus
the total amount introduced by the source term r(x, t) because none can enter
or exit at the boundaries. Since f is the initial density, the integral∫ L

0

f(x) dx

simply tallies the total amount of stuff present at time t = 0. The integral∫ L

0

r(x, t) dx

(integrating only in x) is the rate at which stuff is entering the pipe or bar at
time t, so the double integral∫ T

0

∫ L

0

r(x, t) dx dt
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tallies up the total amount of stuff introduced from t = 0 to t = T . In this
example we have ∫ L

0

f(x) dx =

∫ 2

0

x2(2− x)2 dx = 16/15

and ∫ T

0

∫ L

0

r(x, t) dx dt =

∫ 5

0

∫ 2

0

r(x, t) dx dt = 2(1− e−5) ≈ 1.987.

By time t = 5 the stuff has diffused to a mostly constant concentration, which
in a conduit of length 2 yields a concentration of (16/15 + 1.987)/2 ≈ 1.527.
That’s what the graph shows.

Reading Exercise Solution 8.4.1.

(a) In the figure, consider the fluid at position x = x0− c∆t at time t = t0.
Over the next ∆t seconds this fluid will move to the right a distance of
c∆t (rate multiplied by time) and end up at position x = x0, ready to
cross this x coordinate. All the fluid that was in the region x0 − c∆t <
x < x0 did cross x = x0 in this ∆t time interval. Thus total amount
of fluid that flowed past x = x0 is the amount that was in the interval
x0 − c∆ ≤ x0 at time t0, and this is (since ρ is the density of the
pollutant in the fluid) ∫ x0

x0−c∆t
ρ(x, t0) dx.

(b) The integral in part (a) when divided by ∆t yields the average rate at
which fluid flowed past x = x0 in the time interval t0 ≤ t ≤ t0 + ∆t, so
the instantaneous rate is

q(x0, t0) = lim
∆t→0

(∫ x0

x0−c∆t
ρ(x, t0) dx

)
.

(c) Take the hint and let P be an antiderivative for ρ(x, t) with respect to
x. Then form part (b) we have

q(x0, t0) = c lim
∆t→0

(
P (x0, t0)− P (x0 − c∆t, t0)

c∆t

)
.

The limit on the right is ∂P
∂x

(x0, t0), from the very definition of the
derivative. But ∂P

∂x
(x0, t0) = ρ(x0, t0), so we have shown that q = cρ.



52

(d) The flux q has dimension MT−1 (mass per time), ρ has dimension
ML−1 (mass per length) and c has the dimension velocity, LT−1. Note
that the dimension of cρ is thus (ML−1)(LT−1) = MT−1, the same as
q.

Reading Exercise Solution 8.4.2. Start with ρ(x, t) = f(x− ct). By the
chain rule we have

∂ρ

∂t
= −cf ′(x− ct) and

∂ρ

∂x
= f ′(x− ct).

Then ∂ρ
∂t

+ c ∂ρ
∂x

= −cf ′(x− ct) + cf ′(x− ct) = 0 as advertised. Also, ρ(x, 0) =
f(x− c0) = f(x).

Reading Exercise Solution 8.4.3. From the solution formula for the ad-
vection equation we find that ρ(6, 3) = f(6−3 ·3) = f(−3) = e−9. This point
lies on the characteristic x− 3t = −3 since (6)− (3)(3) = −3. This line in-
tersects the x axis at x = −3 (when t = 0) and here ρ(−3, 0) = f(−3) = e−9.
The function ρ equals e−9 all along this characteristic.

Reading Exercise Solution 8.4.4. If c = 0 the characteristic curves would
be of the form x = x0, vertical lines. Given that ρ is constant on such a curve,
this says that the value of ρ at any time t > 0 and at a point x = x0 is equal
to f(x0), whatever the initial concentration was at time t = 0. Nothing is
moving.

If c < 0 then the characteristic curves are lines sloping to the left instead
of the right.

Reading Exercise Solution 8.4.5. In each case compute(
∂

∂t
+ 3

∂

∂x

)
(x) =

∂x

∂t
+ 3

∂x

∂x
= 3(

∂

∂t
+ 3

∂

∂x

)
(xet) =

∂(xet)

∂t
+ 3

∂(xet)

∂x
= xet + et(

∂

∂t
+ 3

∂

∂x

)
((x− 3t)2) =

∂(x− 3t)2

∂t
+ 3

∂(x− 3t)2

∂x

= 2(x− 3t)(−3) + (3)2(x− 3t) = 0.

Reading Exercise Solution 8.4.6. It can be helpful to put an unspecified
function into the computation, something for the differential operators to
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act upon. In this case we’ll use u(t). After doing this just “FOIL” the
composition as(

d

dt
+ 2I

)(
d

dt
+ I

)
(u(t)) =

(
d

dt
+ 2I

)(
du

dt
+ u

)
=

d

dt

(
du

dt
+ u

)
+ 2I

(
du

dt
+ u

)
=
d2u

dt2
+
du

dt
+ 2

du

dt
+ 2u

=
d2u

dt2
+ 3

du

dt
+ 2u.

Taking u out of the computation after the fact yields

(
d

dt
+ 2I

)(
d

dt
+ I

)
=

d2

dt2
+ 3

d

dt
+ 2I.

The same computation works if we reverse the order of the differential
operators.

Since

(
d

dt
+ I

)
(e−t) = −e−t + e−t = 0, it follows that

(
d

dt
+ 2I

)(
d

dt
+ I

)
(e−t) =

(
d

dt
+ 2I

)
(0)

= 0.

But this says that ( d
2

dt2
+ 3 d

dt
+ 2I)(e−t) = 0, that is, u(t) = e−t satisfies the

ODE d2u/dt2 + 3du/dt+ 2u = 0. The same conclusion holds for u(t) = e−2t

if we apply the differential operators in the order

(
d

dt
+ I

)(
d

dt
+ 2I

)
.

Reading Exercise Solution 8.4.7. We are given ρ(x, t) = f(x−ct)+g(x+
ct). Compute

∂2ρ

∂t2
= c2f ′′(x− ct) + c2g′′(x+ ct)

∂2ρ

∂x2
= f ′′(x− ct) + g′′(x+ ct).

It’s easy to see that for any f and g (twice-differentiable, anyway) we have
∂2ρ
∂t2
− c2 ∂2ρ

∂x2
= 0.



54

Reading Exercise Solution 8.4.8. The dimension of the tension is MLT−2
(here T is time, not tension!) and the dimension of λ is ML−1. Then the
tension divided by λ has dimension L2T−2. Since c is the square root, c has
the dimension LT−1.

Reading Exercise Solution 8.4.9. The fundamental frequency of the gui-
tar string stems from the first terms in the wave equation solution and these
involve cos(ckπt/L) and sin(ckπt/L) with k = 1. With c =

√
T/λ the corre-

sponding radial frequency is ω =
π
√
T/λ

L
, which is a frequency of f =

√
T/λ

2L
Hz

(just ω/(2π)). We want f = 110, so substitute L = 0.66 and λ = 3.5× 10−3

into f = 110 and solve for T to find T = 73.79 newtons.

Reading Exercise Solution 8.4.10. If c is close to zero then the backward
light cone becomes narrower, and encompasses a smaller portion of the x
axis. In the extreme case that c = 0 the backward light cone would become
a vertical line. Conversely, if c is large the light cone spreads out, and as
c → ∞ the cone would become a half-space that encompasses the entire x
axis. This means that anything that happens at time t = 0 could affect future
events at any x coordinate and any time t > 0, since information propagates
arbitrarily rapidly.

Appendix A

Reading Exercise Solution A.1.1. Re(z) = −3, Im(z) = 5, z = −3− 5i,
and |z| =

√
34.

Reading Exercise Solution A.2.1. z+w = 3+i, z−w = 1−3i, zw = 4+i,
and −i.

Reading Exercise Solution A.3.1. eiπ = −1, eiπ/2 = i, and eiπ/4 =√
2/2 + i

√
2/2.

Reading Exercise Solution A.4.1. With u = z2 the quartic (fourth degree)
polynomial becomes u2 + 5u + 6 = 0, with solutions u = −2 and u = −3.
Then z2 = u gives z = i

√
2,−i

√
2, i
√

3, and −i
√

3 as solutions to the quartic
equation.

Reading Exercise Solution A.4.2. If z = 1 − i and w = 3 + i then
z = 1 + i, w3− i, and then zw = (z)(w) = 4 + 2i, z/w = z/w = 1/5 + 2i/5,
and ez = ez = e1+i.
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Appendix B

Reading Exercise Solution B.1.1.

Ax =

[
−18
−6

]
.

Reading Exercise Solution B.1.2. Here

A =

 3 −1 1
1 −1 0
−2 1 4

 and b =

6
3
0

 .
Then

A

 1
−2

1

 = b.

Reading Exercise Solution B.1.3.

(a) Here

A =

[
1 −2
2 −4

]
and b =

[
3
6

]
.

Then

A

[
3 + 2t

t

]
= b

for any choice of t.

(b) Here

A =

[
1 −2
2 −4

]
and b =

[
3
5

]
.

But subtracting twice x1 − 2x2 = 3 from 2x1 − 4x2 = 5 leads to 0 =
−1, so the equations are inconsistent (we don’t even need the matrix
formulation)

Reading Exercise Solution B.2.1. Compute

BA =

[
3 −3

13 22

]
.
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Reading Exercise Solution B.2.2. We find

(AB)C = A(B)C =

[
−18 12

39 9

]
.

Reading Exercise Solution B.2.3. They are

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Both I2C and CI2 equal C, of course.

Reading Exercise Solution B.2.4. The inverse is

A−1 =

[
−1/7 3/7

2/7 1/7

]
.

It is straightforward to check that A−1A = I, and also that AA−1 = I.

Reading Exercise Solution B.2.5. If we write out[
a b
c d

] [
1 2
2 4

]
=

[
1 0
0 1

]
we find that we need a+2b = 1 and 2a+4b = 0, which are inconsistent. (We
also require c+ 2d = 0 and 2c+ 4d = 1, also inconsistent.)

Reading Exercise Solution B.2.6. The determinants are, from left to
right, −11, 19,−32, and 1, respectively. The determinant of the 4× 4 matrix
is (1)(−11)− (2)(19) + (4)(−32)− (3)(1) = −180.

Reading Exercise Solution B.2.7. The computation is∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣[e f
h i

]∣∣∣∣− (b)

∣∣∣∣[d f
g i

]∣∣∣∣+ (c)

∣∣∣∣[d e
g h

]∣∣∣∣
= (a)(ei− fh)− (b)(di− fg) + (c)(dh− eg)

= aei− afh+ bfg − bdi+ cdh− ceg.
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Reading Exercise Solution B.2.8. The determinant of A will be A1,1

times the determinant of the (n− 1)× (n− 1) diagonal matrix with diagonal
entries Ai,i for 2 ≤ i ≤ n. This (n−1)× (n−1) matrix has determinant A2,2

times the determinant of the (n− 2)× (n− 2) diagonal matrix with diagonal
entries Ai,i, 3 ≤ i ≤ n. The pattern is the simple; an induction shows that
the determinant of A is A1,1A2,2 · · ·An,n.

Reading Exercise Solution B.3.1. Compute

A =

[
−3 2
−12 7

] [
1
2

]
=

[
1
2

]
so that v1 = 〈1, 2〉 is an eigenvector for A with eigenvalue λ1 = 1. Also

A =

[
−3 2
−12 7

] [
1
3

]
=

[
3
9

]
so v2 = 〈1, 3〉 is an eigenvector for A with eigenvalue 3.

Reading Exercise Solution B.3.2. We have

A =

[
1 3
3 1

]
Then

A− 4I =

[
−3 3

3 −3

]
.

If v1 = 〈x, y〉 then (A − 4I)v1 = 0 leads to equations −3x + 3y = 0 and
3x − 3y = 0. Any choice x = y will work, e.g., x = y = 1. An eigenvector
for the eigenvalue λ = 4 is then v1 = 〈1, 1〉. Any nonzero multiple will also
work.

Reading Exercise Solution B.3.3. Form

A− (1− 2i)I =

[
−4 + 2i 2
−10 4− 2i

]
.

If v = 〈x, y〉 then (A− (1−2i)I)v = 0 leads to equations (−4+2i)x+2y = 0
and −10x + (4 − 2i)y = 0. These equations are dependent—multiplying the
first by 2+ i yields the second. Thus either equation can be used to determine
an eigenvector. We can take x = 1 in the first equation and solve for y = 2−i.
An eigenvector with eigenvalue 1− 2i is thus v = 〈1, 2− i〉.
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Reading Exercise Solution B.3.4. Compute

A− λI =

[
2− λ 0

0 2− λ

]
with determinant (λ − 2)2. Of course Av = 2Iv = 2v for any v, so all
vectors are eigenvectors for A, with eigenvalue 2.

Reading Exercise Solution B.3.5. Compute

A− λI =

[
2− λ 1

0 2− λ

]
with determinant (λ− 2)2, which is the characteristic polynomial. If we seek
an eigenvector v, first form

A− 2I =

[
0 1
0 0

]
.

With v = 〈x, y〉 the equation (A− 2I)v = 0 leads to y = 0 and the only con-
dition on v. So anything of the form v = 〈x, 0〉 with x 6= 0 is an eigenvector
for A. All such vectors are scalar multiples of 〈1, 0〉.

Reading Exercise Solution B.3.6. Such a vector v would satisfy Av =
0v = 0. But according to the cited theorem, this means A cannot be invert-
ible.

Conversely, according to the theorem, if A is not invertible then there is
a nonzero vector v such that Av = 0. Such a v is an eigenvector for A with
eigenvalue 0 (by definition).

Reading Exercise Solution B.3.7. When

A =

[
a b
0 d

]
we can compute

A− λI =

[
a− λ b

0 d− λ

]
which has determinant (λ − a)(λ − d). This makes it easy to see that the
eigenvalues (the roots of (λ− a)(λ− d) = 0 are precisely λ = a and λ = d.
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When

A =

[
a 0
c d

]
we can compute

A− λI =

[
a− λ 0

c d− λ

]
which also has determinant (λ − a)(λ − d), and so eigenvalues λ = a and
λ = d.

Reading Exercise Solution B.4.1. If D = 0 then the formula for the
eigenvalues in terms of T and D yields

λ1 = (T + |T |)/2
λ2 = (T − |T |)/2

using
√
T 2 = |T |. If T > 0 then |T | = T , so λ1 = T and λ2 = 0. If T < 0

then |T | = −T , so λ1 = 0 and λ2 = T . If T = 0 the both eigenvalues are 0.

Reading Exercise Solution B.4.2. If D = T 2/4 then T 2 − 4D = 0 and
the formula for the eigenvalues in terms of T and D yields λ1 = λ2 = T/2.

Appendix C

Reading Exercise Solution C.1.1. The ODE is

0.001q′′(t) + 4q′(t) + 200000q(t) = 5

with q(0) = q′(0) = 0. The solution is

q(t) =
1

40000
− 1

40000
e−2000t cos(14000t)− 1

280000
e−2000t sin(14000t).

The current is

I(t) =
5

14
e−2000t sin(14000t).

A plot of I(t) is shown in Figure 3.21. This system appears to be under-
damped, easily confirmed by looking at the roots of the characteristic equa-
tion.
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Figure 3.21: Current through RLC circuit governed by 0.001q′′(t) + 4q′(t) +
200000q(t) = 5.

Reading Exercise Solution C.1.2. The solution is

q(t) = (−7.57× 10−7)e−2000t sin(14000t)− (5.09× 10−6)e−2000t cos(14000t)

+ (2.08× 10−7) sin(2000t) + (5.09× 10−6) cos(2000t).

Then

I(t) = (0.0728)e−2000t sin(14000t)− (0.0004)e−2000t cos(14000t)

− (0.01) sin(2000t) + (0.0004) cos(2000t).

A plot of I(t) is shown in Figure 3.22. The transient has died out by about
t = 0.004 seconds.

Reading Exercise Solution C.1.3. The solution is shown in Figure 3.23.
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Figure 3.22: Response of RLC circuit governed by 0.001q′′(t) + 4q′(t) +
200000q(t) = cos(2000t).
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Figure 3.23: Response of RLC circuit governed by 0.001q′′(t) + 4q′(t) +
200000q(t) = 5H(t− 2).


