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DISEASE SPREAD

STATEMENT

We offer a modeling opportunity in which the phenomenon of the spread of disease can be described

by one differential equation.

First, let us consider growth in which we have a quantity which grows by a constant amount,

say, k, i.e.,

y′(t) = k , y(0) = y0 (1)

In this case we can integrate both sides to obtain y(t) = k∗t+c where the initial condition y(0) = y0

determines c so that we have a complete solution, y(t) = k ∗ t + y(0).

A more interesting growth equation comes from assuming that the growth rate of some quantity

is proportional to the amount present, e.g., money earns interest and populations breed. Here

y′(t) = k y(t) , y(0) = y0 (2)

Exponential Growth Population Modeling

Exponential growth (and its related decay issues) stem from the following differential equation:

y′(t) = ky(t) , y(0) = y0 . (3)

k is referred to the rate constant and if k > 0 we call it a growth constant, while if k < 0 we call it

a decay constant.

This exponential growth model can be used to predict the growth of money where k is the

decimal value of the percent interest on continuously compounded interest situations or the growth

of organisms where k is the per unit time growth rate. In terms of parameter estimation the

problem of estimating k is universally the same and the various approaches (1) linearizing the

solution by taking natural logarithms of the non-time variable and fitting the linearized data using

linear regression, (2) estimating growth rates and fitting a linear model relating y′(t) and y(t), or
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(3) direct nonlinear fitting of the analytic solution to (3) to the data, will serve well to estimate

k. We seek more appropriate models for growth in biological situations and this demands we do a

better job of modeling the reality of finite resources or populations. This leads to a limited growth

population model.

Limited Growth Population Model

Time (days) Population (#) Time (days) Population (#)

0 200 26 783

2 240 28 792

4 281 30 837

6 317 32 800

8 362 34 866

10 392 36 933

12 437 38 942

14 496 40 941

16 542 42 986

18 601 44 964

20 615 46 940

22 662 48 1009

24 758 50 984

Table 1. Population data with units of number (#)

of members of the population at time t in days.

In Table 1 we have data from a population which does not actually grow exponentially. There

is a limit to growth. Often this is a natural limit, such as regional resource limitations, geometry of

the environment, or borders. Just consider growing microorganisms in a Petrie dish which has only

a finite space.

Conjecturing a growth model for Table 1 data

1) Take time to consider how we could modify the differential equation (3) for exponential growth

so as to actually model growth that would level off or whose growth rate would eventually

get smaller and smaller. Discuss your models with colleagues and decide if any of the models

under discussion are suitable. Look for characteristics of the differential equation you offer. For

example, does your differential equation appear to come to a point where growth is 0 (leveling

off)? Does it have any flaws? For example, does it create some population out of nothing?

2) Produce some conjectures and “talk” about other models being proposed by your colleagues.
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Figure 1. The plot of the population data in Table 1.

Probe each model, test it under obvious conditions, e.g., “If we have no population do we get

no growth in our model?”

While not ignoring your efforts we are going to turn - as you turn to the next page - to a well-

established model for a while and we will offer up a chance for you to try out your model shortly.

So hold on to your ideas. See the last question in this paper in which you can take your model as

far as you wish.
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The differential equation (4) is referred to as the logistic differential equation. It is used in such

areas as modeling limited growth population biology as well as the study of the spread of rumors,

disease, and technologies:

y′(t) = ry(t)
K − y(t)

K
, y(0) = y0 . (4)

Here y(t) is the population in appropriate units.

Scrutinize the logistic differential equation model

3) Take some time to give the logistic model the scrutiny you and your colleagues gave to each

other’s models. Try to push it around a bit, play some “what if” games with it. Test it,

interpret it, challenge it. Well, what do you think about this model?

In different contexts the logistic differential equation (4) could be the percent of the population

that has heard a specific rumor or acquired knowledge or uses a specific technology. Or it could

be the number in the population that have had a given disease. r represents the intrinsic growth

rate (in population models r is birth rate less death rate) with K as the limiting value of y(t). K is

called the carrying capacity . The latter comes from ecology and refers to the number of the given

species that the environment can support or carry. For excellent histories of the logistic curve in

the development of population biology see [3, 2].

Now, let us return to the data as offered in Table 1. This particular data is what we call a toy

set of data and is not from any real experiment. In later work with the logistic model we shall use

actual data from [1]. Indeed, in this activity you will generate data from a physical simulation using

M&M candies as members of your population.

Upon plotting the data (see Figure 1) and developing a model, presumably the logistic differential

equation (4), based on the sigmoidal or “S” shape of the solution of the logistic equation (4), we

ask how we might confirm or deny that (4) is a good model for our data. Throughout this early

discussion we may never actually solve (4) by hand - although one could do so by using the separation

of variables and partial fraction strategies described elsewhere. Rather, when we do need an analytic

solution we rely on Mathematica’s symbolic solving command DSolve or we may go to its numerical

solving command NDSolve as appropriate.

In assessing how good a model we may have developed in (4) we might consider determining

criteria for estimating the parameters, i.e., finding the parameters which when we substitute them

in (4) and solve it will permit us to compare how our model predicts the data in Table 1.

4) Given the data in Table 1 and as presented in Figure 1 how would you confirm or deny that

(4) is a good model for our data, for the phenomena of limited growth.

5) Before going on, consider how you would estimate the parameters r and K and offer up your

ideas and approaches. Discuss the pros and cons of your approaches and your colleagues’

approaches. Write them down. State the steps you might use. Do it here, do it now.
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Developing strategies for estimating parameters

Here are our several approaches that usually crop up. How do your approaches compare?

1. Can we estimate the parameters by transforming the logistic differential equation model and

then determining the least sum of square differences between transformed data and model to

determine which parameters give the best fit - nonlinear fit of dP
dt

vs. rP K−P
K

= aP − bP 2,

where a = r and b = r
K ?

2. Can we estimate the parameters by transforming the ODE model and then determining the

least square differences between transformed data and model to determine which parameters

give the best fit - linear fit of 1
P

dP
dt vs. r K−P

K = a − bP , where a = r and b = r
K ?

3. Can we estimate the parameters by analytically solving the logistic differential equation model

in (4) and then determining the least sum of square differences between data and analytic model

to determine which parameters which yield the least sum of square differences, i.e. nonlinear

fit of the analytic solution to the data at the time observation points of the data?

4. Can we estimate the parameters by numerically solving the logistic differential equation model

for a wide variety of parameters and determining the least sum of square differences between

data and model values for EACH set of parameters and then determine the parameters r and

K which give rise to the smallest least sum of square differences?

Approach (4) is a bit strange and rather computationally intense, but it is still doable, namely

try lots, and we mean may LOTS, of parameter sets r and K in a reasonable vicinity of what you

believe might work to see if you can get systematically lucky and get pretty good estimate.

However, let us concentrate on the first two approaches (1) and (2). Even inside approaches (1)

and (2) we have several approaches to transforming the data. For example in each case we can take

a first difference approach to estimating the derivative from the data or a symmetric first difference

approach to estimating the derivative. Thus, we shall have approaches (1a) and (1b) as well as (2a)

and (2b) with the (a) denoting the plain first difference approach and (b) denoting the symmetric

first difference approach.

In all approaches we shall use the same measure of how good the method is, namely the sum

of square errors, i.e., the squares of the difference between the value of the solution to the logistic

differential equation (4) evaluated at the time value for each data point and the corresponding

population value at that time. This would look like:

n∑

i=1

(ŷ(ti, r, K)− Pi)2 ,

where ŷ(ti, r, K) is the value of our solution to our logistics differential equation (4) with parameters

(r, K) at time ti and Pi is the value of the population at time ti from our data set for i = 1, . . . , n,

while n is the size of our data set.
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Parameter estimation opportunities

6) Use approach (1a) and (1b) to estimate parameters r and K using Trendline in EXCEL and

fitting a parabola with intercept zero to the transformed data. Use your parameters in each

case and return to Mathematica. Enter the data as a list of pairs of numbers and ListPlot

that data, calling the plot, dataPlot. Now solve the differential equation and grab the solution

with this line of Mathematica code:

ys[t ] = y[t] /.DSolve[y’[t] == r y[t] (K - y[t])/K, y[0] == y0,

y[t], t][[1]]

with the parameters from your EXCEL adventure. Your solution should look like this, only

with your numerical estimates for r and K from your EXCEL adventure, instead of a general

from equation with the letters r and K as in (7):

ys(t) =
Ky0e

rt

K + y0ert − y0
. (5)

Now after substituting y0 = 200 (see Table 1) into (7) we proceed to evaluate the solution

at each time t = 0, 2, 4, . . ., 50 from the data; subtract the observed corresponding data values,

200, 240, 281, . . . , 984; square these differences; and add the square differences or errors to

obtain:

ss(r, K) =
n∑

i=1

(ŷ(ti, r, K)− Pi)2 . (6)

We seek the values of r and K that will minimize the sum in (8) and so we call up Math-

ematica’s FindMinimum command. From this output we can read our best r and K values.

Take these and substitute them into (7) along with y0 = 200 and we have a fully developed

model which we can plot (call it ModelPlot) and compare with our data plot by Showing them

together in Mathematica.

Discuss your results from (1a) and (1b) approaches.

7) Use approaches (2a) and (2b) to estimate parameters r and K using Trendline in EXCEL and

fitting a linear function to the transformed data. Use your parameters in each case and return

to Mathematica. Enter the data as a list of pairs of numbers and ListPlot that data, calling

the plot, dataPlot. Then solve the differential equation and grab the solution with this line of

Mathematica code:

ys[t ] = y[t] /.DSolve[y’[t] == r y[t] (K - y[t])/K, y[0] == y0,

y[t], t][[1]]

with the parameters from your EXCEL adventure. Your solution should look like this:

ys(t) =
Ky0e

rt

K + y0ert − y0
. (7)

After substituting y0 = 200 (see Table 1) into (7) we proceed to evaluate the solution at

each time t = 0, 2, 4, . . . , 50 from the data; subtract the observed corresponding data values,
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200, 240, 281, . . . , 984; square these differences; and add the square differences or errors to

obtain:

ss(r, K) =
n∑

i=1

(ŷ(ti, r, K)− Pi)2 . (8)

We seek the values of r and K that will minimize the sum in (8) and so we call up Mathe-

matica’s FindMinimum command. From this output we can read our best r and K values. Take

these and substitute them into (7) along with y0 = 200 and we have a fully developed model

which we can plot (call it ModelPlot) and compare to our data plot by Showing them together

in Mathematica.

Discuss your results from (2a) and (2b) approaches.

8) Finally, directly estimate r and K by first evaluating the solution, (7), to the logistic differential

equation (4) at each time value t = 0, 2, 4, . . . , 50 along with y0 = 200 and form the sum of

square errors, as before. Except that now we can simply FindMinimum this sum of square errors

to find directly which r and K make the solution ((7)) with these r and K values our best

fitting model.

Take these values of r and K and substitute them into (7) along with y0 = 200 and we have

a fully developed model which we can plot (call it ModelPlot) and compare to our data plot by

Showing them together in Mathematica.

Discuss your result and compare it with those from (1a) and (1b) as well as from (2a) and

(2b) approaches.

Modeling spread of disease with M&M simulations

While we will examine some real data from the literature and attempt to model it with a logistic

model, we take some time here to develop our own data of the spread of disease using this logistic

model approach. Namely, if in a population of size K we have y(t) members who have a communi-

cable disease and can spread it upon contact with susceptible members of which there are (K−y(t))

then a possible model for the rate of the spread of the disease could be the logistic equation:

y′(t) = αy(t)(K − y(t)) (9)

where the product y(t) ∗ (K − y(t)) represents the number of interactions that could take place

per unit time and α is a constant which reflects just how many interactions take place AND haw

many result in the spread of the disease. Of course we could convert to percentage of the population

whereupon K = 1 stands for 100% of the population, y(t) stands for the percentage of the population

who have the disease, and K − y(t) = 1 − y(t) stands for the population which does not have the

disease and is susceptible.

We recognize (9) as an over simplified model of the spread of disease, because it does not reflect

several realities, among them the need to accommodate immune individuals, the various stages
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of gestation of the disease before it might be transmittable, effects on various age groups, etc.

Nevertheless, we shall proceed to work with the model of (9), picking up on more realistic variations

as our modeling and differential equations skills increase!

9) Articulate the assumptions and oversimplifcations we need to make to postulate (9) as a model

for the spread of disease.

So let us simulate a disease spread among M&M’s!!! We shall need a regular size bag of M&M

chocolates - not the peanut kind (there should be about 55 pieces in this size bag); a small cup or

glass to hold the M&M’s; and a grid (copy in Figure 2 blown up to a size (300%) so that each grid

is 1.32 cm high and wide - the radius of an M&M is 1.32 cm. Indeed, in the folder for this scenario

there is a pdf file, M&MLayout.pdf which, if printed, is the exact size of your population surface

which you will need. Otherwise, follow instructions in caption of Figure 2.

Figure 2. A grid used for our simulation is to be reproduced so that each grid is

1.32 cm high and wide when expanded to 300% - the radius of an M&M is 1.32 cm.

To make the necessary grid sheet for the simulation copy this actual grid on a copy

machine at 300% - making sure it exactly fills an 8.5” x 11” sheet.

The Simulation Experiment

We are going to simulate the spread of a disease. Prepare and then cut out a grid of squares each

1.32 cm by 1.32 cm where 1.32 cm is the diameter of an M&M on an 8.5” x 11” sheet of paper. See
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instructions in Figure 2. Each grid box represents an individual M&M. We put bold X’s in 8 of the

boxes to indicate that the disease initially has 8 individual M&M’s infected. Select these randomly.

If you are not confident in doing so then use these Mathematica instructions to select randomly

Table[{Random[Integer, {1, 16}], Random[Integer, {1, 21}]}, {i, 1, 8}]

where there will be 16 M&M’s width and 21 M&M’s height.

Now tape one edge of the 8.5” x 11” sheet of paper to a desk or table flat surface and then

line the sheet with four vertical walls on each edge, e.g., four reams of 8.5” x 11” paper to make a

bounded fenced region.

Take the 55 M&M’s in a standard M&M bag and place them in a cup. These form our healthy

population, the susceptibles. Thus we have 63 M&M’s in our population - 8 infected and 55 suscep-

tibles - at the start of our simulation.

Figure 3. A grid used for our first simulation of infecting M&M’s. Notice the 8 original

infectives with an X in each box and then the consecutive infectives numbered 1-55.

Gently toss the M&M’s from the cup “randomly” on the grid in the bounded fenced region.

Each time we toss the M&M’s we will consider a generation or cycle or unit of time. If an M&M

“touches” (overlaps in any part) a box with an X in it we mark the box in which most of the M&M

resided with a number (starting with 1 for our first infected M&M beyond the original 8, and then

a 2 for our second, and so forth). As an M&M becomes infected we remove it from the healthy

population, noting that our number of infecteds is in addition to the original or current infected

population. The newly numbered boxes stand for infected M&M’s who stand ready (and willing!)
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to infect other susceptible M&M’s should one of these susceptible M&M’s touch one of the infected

M&M squares. See Figure 3 for a summary simulation.

Figure 4 (in Black and White) shows the result of the simulation at some point in time along

the process.

Figure 4. Photograph of actual grid and M&M’s at some point in time of the simulation.

Can you identify the newly infected M&M’s from this picture?

At each generation we toss the cup, determine those M&M’s who get infected, increment the

number of newly infecteds, and write that number in a square nearest to the M&M that just got

infected. We also keep a tally sheet of the total number of infected at each new generation or cycle

or time interval. We show such numerical results in Table 2.

The “touching” or overlap simulate contact and we presume contact is sufficient to transmit the

disease, i.e. absolute contagion. Of course, we could toss a die, for example, to determine for each

touch what the chance of spread of the disease could be, using some preassigned rule such as if face

of die shows 5 or 6 then there is no infection in this case; doing this for each touched situation.

This would slow up the process, but make it more realistic in some sense as most diseases are not

automatically transmitted upon touch.

10) Either from the data in Table 2 or from one of your own experiments analyze the data by

assuming the logistic differential equation (10) could be used to describe the spread of the

disease between the susceptible (y(t)) and infected (K − y(t)) M&M’s.
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Generation # Infected

0 8

1 11

2 16

3 22

4 28

5 37

6 46

7 48

8 54

9 58

10 61

11 62

12 62

13 62

14 62

15 63

Table 2. Data from our first experiment in simulating infection of M&M’s. Yours

should look somewhat the same, don’t you think?

y′(t) = ry(t)
K − y(t)

K
, y(0) = y0 . (10)

Then use some of our previously discussed methods to determine the parameters r and K.

11) Discuss the fact that if you do not assume K = 63, i.e. there are eventually at most 8+55 = 63

M&M’s in our population (the original 8 infectives and the 55 susceptibles from your bag of

yummy M&M’s) you might get a different model than if you do NOT assume a value for K.

12) Discuss (and do!) variations of the model, such as

– making the squares on your grid larger or smaller;

– increasing the number of original infectives;

– do not put the new infectives where they were infected but rather randomly put them in

some other position (they could have wandered a while before dying);

– making a grand sheet of taping four 8.5” x 11” sheets to form a large 17” x 22” sheet with

the same number of initial infecteds and the same number of susceptibles; or

– making your own changes.

13) What is the value of r that you get in each case? Does it change in any way? What does r
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mean? What is the significance of r without the limiting value K (i.e. unlimited bag of M&M’s

- yummy, yummy!!!)

14) A time intensive (possibly project) activity is to use some random feature to determine that

IF an uninfected or susceptible M%M comes in contact with an infected one then with some

probability the disease is passed on – not all contact results in the spread of the disease in

this case. For example, use a six sided die and consider each contact, one by one. Toss the

die, and if, say, it is a 3 or a 5 (you make up your own rule), then an infection actually takes

place; otherwise no infection takes place and the potentially infected M&M goes back into the

susceptible pool. Change your probability rule. Does increasing the chance of infection at each

step do anything to the data, to the plot, to r?

15) Take your model or one of those you develped before we “spilled the beans” (M&M’s actually!)

and shared the logistic differential equation and address questions (3) - (7) above with that

model, addressing the issues as best you can.

NB: With regard to the set of references below, what are the chances

that all reference lead authors would have a last name beginning with

letters only from the first half of the alphabet? Just a curiosity we noted.
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