1	Data-Analysis Problems for Microbiology Courses
2	Charles E. Deutch
3	Microbion Research
4	8734 E. Indian Hills Rd. Unit J
5	Orange, CA 92869
6	Email: Charles.Deutch@asu.edu
7	Telephone: (602) 703-9770
8	
9	Key words: data analysis, exams, experimental methods, microbiology, problem sets

10 Introduction

11 There is general agreement that scientific literacy in biology should include both 12 information about specific topics and an understanding the process by which this information is 13 obtained. The Vision and Change in Undergraduate Biology Education document produced by 14 the American Association for the Advancement of Science (AAAS) identified the key concepts 15 that students need to understand as well as the set of competencies they need to acquire (AAAS 16 2009; Woodin et al. 2010). The competencies include the ability to apply the process of science, 17 the ability to use quantitative reasoning, and the ability to use modeling and simulation. Since 18 the publication of this proposal, instructors of a variety of different courses have developed 19 strategies for doing this that go beyond the standard textbooks, class lectures, and lab exercises. 20 These include the careful analysis of graphs (Pechenik and Tashiro 1992; Malamitsa et al. 2008), 21 the reading of news stories and related journal articles (Krontiris-Litowitz 2013; Moisander 22 2021), the use of course based undergraduate research experiences or CUREs (Bennett et al. 23 2021; Sun et al. 2022), and extended undergraduate research programs such as SEA-PHAGES 24 (Jordan et al. 2014). These approaches have been linked to Bloom's taxonomy of learning where 25 students move from the acquisition of basic knowledge and comprehension to application and 26 analysis and finally on to evaluation and synthesis (Bloom et al. 1956).

While the goals of undergraduate education have changed, most textbooks have not. Although those in the area of Genetics normally include data analysis problems as the end of each chapter, only a few of those in the areas of Biochemistry, Cell Biology, and Ecology do so. This is particularly a problem in the case of Microbiology, where the primary target audience for textbooks is students in allied health fields such as nursing. The acquisition of basic information and demonstrating its relevance to human disease are the primary goals of the course, not the

33 scientific process. Even the textbooks for biology or microbiology majors such as those by 34 Willey et al. (2022), Wessner et al. (2021), Madigan et al. (2017), and Slonczewski et al. (2020) 35 contain very little material on this process. In 1997, I published a paper entitled "Using data analysis problems in a large general microbiology course" in The American Biology Teacher 36 37 (Deutch 1997). This paper described the organization of my course, the structure of the data 38 analysis problems, and the use and student response to these problems. Each problem was based 39 on a single journal article and included five multiple-choice questions. The multiple-choice 40 questions were of three basic types: type A questions were those that asked students to recall 41 basic terms or concepts related to the problem; type B questions were those that asked students to 42 read a table or figure of data; and type C questions were those that asked students to draw 43 conclusions from the data, to make predictions, or integrate the material with other information 44 presented in the course. The paper included three examples dealing with microbial structure, 45 microbial metabolism, and microbial pathogenesis.

46 The purpose of this manuscript is to provide additional examples of these data-analysis 47 problems and to set up a mechanism by which other instructors might contribute more problems 48 appropriate to their courses and areas of interest. The new examples fall into six general areas 49 (microbial structure, microbial growth, microbial metabolism, microbial genetics, microbial 50 ecology, and microbial pathogenesis), although some problems utilize concepts from several 51 areas. The examples in each area include one problem taken from an older set written in the 52 1990s and one new problem based on journal articles published from 2010 to 2020. Most have 53 five multiple-choice questions but some have more. The problems are written in Microsoft 54 Word so other instructors can modify them as necessary to meet the needs of students in their 55 courses. As suggested before, the problems may be used as part of problem sets, discussion

56	boards, or exams. I have found that in-class discussions with groups of students work best, but
57	other instructors may use them in other ways. I encourage other instructors to create similar
58	problems based on their personal areas interest and those of the students in their courses.
59	References
60	American Association for the Advancement of Science (AAAS) Conference Homepage. 2009.
61	Vision and Change in Undergraduate Biology Education: A View for the 21st Century.
62	Available at https://www.aps.org/programs/education/undergrad/upload/Revised-Vision-
63	and-Change-Final-Report.pdf
64	Bennett, K. F., Arriola, P. E., Marsh, T. L., Mineo P. M., Raimondi, S. L, and Shaffer, C. L.
65	2021. CURE in a box: an online CURE for introductory biology majors that incorporates
66	Vision and Change. Journal of Microbiology & Biology Education 22(1): 22.1.20.
67	doi: 10.1128/jmbe.v22i1.2325.
68	Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H. and Krathwohl, D. R. 1956. Taxonomy
69	of educational objectives: The classification of educational goals. Handbook I: Cognitive
70	domain. David McKay Company.
71	Deutch, C. E. 1997. Using data analysis problems in a large general microbiology course. The
72	American Biology Teacher 59: 396-402.
73	Jordan T. C., Burnett, S. H., Carson, S., Caruso, S. M., Chase, K., DeJong, R. J. et al. 2014. A
74	broadly implementable research course in phage discovery and genomics for first-year
75	undergraduate students. Mbio 5(1): e0151-13. doi: 10.1128/mBio.01051-13.
76	Krontiris-Litowitz, J. 2013. Using primary literature to teach science literacy to introductory
77	biology students. Journal of Microbiology & Biology Education 14: 66-77. doi:
78	10.1128/jmbe.v14i1.538

- Madigan, M., Bender, K., Buckley, D., Sattley, W., and Stahl, D. 2017. Brock Biology of
 Microorganisms, 15th edition. Pearson.
- Malamitsa, K., Kokkotas, P., and Kasoutas, M. 2008. Graph/chart interpretation and reading
 comprehension as critical thinking skills. Science Education International 19: 371-384.
- 83 Moisander P. H. 2021. Practicing critical thinking in undergraduate microbiology classes by
- 84 presenting news stories with data evidence. Journal of Microbiology & Biology
 85 Education 22: e00171-21. doi: 10.1128/jmbe.00171-21.
- Pechenik, J. A., and Tashiro, J. A. 1992. The graphing detective: an exercise in critical reading,
 experimental design & data analysis. The American Biology Teacher 54: 432-435.
- Slonczewski, J. L., Foster, J. W., and Zinser, E. R. 2020. Microbiology: an evolving science,
 fifth edition. W. W. Norton & Company.
- 90 Sun E., König, S. G., Cirstea, M, Hallam, S. J., Graves, M. L., and Oliver, D. C. 2022.
- 91 Development of a data science CURE in microbiology using publicly available
- 92 microbiome data sets. Frontiers in Microbiology 13:1018237.
- 93 doi:10.3389/fmicb.2022.101823

doi: 10.1187/cbe.10-03-0044.

- 94 Wessner, D., Dupont, C., Charles, T., and Neufeld, J. 2021. Microbiology, third edition. Wiley.
- Willey, J., Sandman, K., and Wood, D. 2022. ISE Prescott's Microbiology, 12th edition. McGraw
 Hill.
- Woodin T., Carter, V. C., and Fletcher, L. 2010. Vision and change in biology undergraduate
 education, a call for action initial responses. CBE Life Sciences Education 9: 71-73.

100

101 Sample Data Analysis Problems

- 102 Examples of sample problems are given on pages 8 through 59. Each problem begins on103 a separate page so they can be individually copied, downloaded, and edited.
- 104 **Problems in Microbial Structure**
- 105 Problem 1 focuses on differences in the chemical composition of the cell or plasma
- 106 membrane and the outer membrane of the Gram-negative bacterium *Paracoccus denitrificans*.
- 107 Problem 2 concerns the possible functions of the S layer of the pathogenic Gram-negative
- 108 bacterium Campylobacter fetus.
- 109

Problems in Microbial Growth

110 Problem 3 deals with the effect of the compound glycine betaine on the growth of the

111 Gram-positive bacterium *Listeria monocytogenes* in high concentrations of salt at different

temperatures. Problem 4 deals with the growth and formation of extracellular polysaccharides

113 by the Gram-positive bacterium *Streptococcus thermophilus*.

114 **Problems in Microbial Metabolism**

Problem 5 focuses on the role of the enzyme fructose-1,6-bisphosphate phosphatase in
the metabolism of the Gram-negative bacterium *Xanthobacter flavus*. Problem 6 is concerned

117 with the role of the enzyme L-malate dehydrogenase in the metabolism of the autotrophic

118 nitrifying bacterium Nitrosomonas europeae.

- 119 **Problems in Microbial Genetics**
- 120 Problem 7 deals with the transformation of the pathogenic bacterium *Vibrio vulnificus* in
- 121 the laboratory. Problem 8 focuses on the use of transposon mutagenesis to identify genes
- 122 involved in desiccation tolerance in by the food-borne pathogen *Staphylococcus aureus*.
- 123 **Problems in Microbial Ecology**

124 Problem 9 deals with role of *Rhizobium meliloti* in nitrogen fixation in alfalfa. Problem

125 10 is concerned with the isolation and potential use of a novel bacterium from Antarctica that has

126 a thermotolerant enzyme.

127 **Problems in Microbial Pathogenesis**

Problem 11 deals with the mechanism of pathogenesis and the role of pili in the

129 bacterium *Vibrio cholerae*. Problem 12 is concerned with the exotoxin proteins formed by

130 *Aeromonas trota* that have hemolysin or proteolytic activities.

131

133 Area: Microbial Structure

134 Microorganism: Paracoccus denitrificans

- Reference: Nauyalis, P. A., Hindahl, M. S., and Wilkinson, B. J. 1985. Isolation, characterization
 and protein and polar lipid compositions of *Paracoccus denitrificans* outer membrane.
 Biochimica et Biophysica Acta 840: 297-308.
- 138

The cell membrane and the outer membrane of Gram-negative bacteria differ in biochemical structure and function. *Paracoccus denitrificans* is a Gram-negative bacterium that has been extensively studied because it carries out respiration in a way that is very similar to that found in mitochondria. To study the composition of the cell membrane and the outer membrane of *P. denitrificans*, Nauyalis, Hindahl, and Wilkinson (Biochim. Biophys. Acta 840: 297-308, 1985) disrupted the bacteria mechanically and subjected the broken cells to high-speed

145 centrifugation. They collected two membrane fractions and then analyzed their composition.146

147	<u>component</u>	fraction A	fraction B
148	-		
149	protein (µg/mg)	623	501
150	lipid (µg/ml)	515	321
151	carbohydrate (µg/ml)	11.6	40
152	KDO (µg/ml)	2.3	5.7
153	hexosamine (µg/ml)	1.8	12.4
154	NADH dehydrogenase	119	trace
155	(units/mg protein)		
156	succinate dehydrogenase	460	29
157	(units/mg protein)		
158			

 Which of the following statements best describes the organization of the proteins and lipids in these membranes?

162 a. The lipids form a bilayer with the proteins bound to the inner and outer surfaces.

b. The proteins form an inner layer with the lipids bound to the surfaces.

164 c. The lipids form a bilayer with the proteins either inserted into the bilayer or bound 165 to their surfaces.

- 166 d. The lipids and proteins are randomly organized into a continuous layer.
- 168 2. The space between the cell membrane and the outer membrane in a Gram-negative
 169 bacterium is referred to as:
- 170
 171 a. the cytoplasm
 172 b. the periplasm
 173 c. the epiplasm
 174 d. the extracellular space
 175
- 176

161

163

177	3.	The	The compound KDO (2-keto-3-deoxyoctonic acid) is almost exclusively found in the				
1/8		npop	polysaccharides characteristic of G		ina. The enzymes		
1/9		deny	drogenase and succinate denydroge	enase are usually i	nvolved in respirat	ion and ATP	
180		synt	hesis. From the results in the table,	which of the follo	owing statements is	smost	
181		corre	ect?				
182							
183		a.	Fraction A corresponds to the ce	ell membrane.			
184		b.	Fraction A corresponds to the or	uter membrane.			
185		с.	Fraction B corresponds to the ce	ell membrane.			
186		d.	Neither fraction corresponds to	the cell membrane			
187							
188	4.	Fron	n the results given in the table, which	ch of the following	g statements is mos	st correct.	
189							
190		a.	The cell membrane and the oute	r membrane have	the same composit	ion.	
191		b.	The cell membrane and the oute	r membrane were	completely separat	ted in this	
192			experiment.				
193		c.	The cell membrane and the oute	r membrane were	partially separated	in this	
194			experiment, but each fraction wa	as contaminated b	y small amounts of	the other.	
195		d.	The cell membrane and the oute	r membrane were	not separated in th	is	
196			experiment.		1		
197			I				
198		Whe	en the phospholipid composition of	the membrane fra	ctions was measure	ed. the results	
199	in th	e next t	able were obtained (each phospholi	bid is given as the	percent of total lir	oid	
200	phos	phorus).	r8	r		
201	phios	P					
202			phospholipid	fraction A	fraction B		
203			<u>prosproupre</u>				
203			phosphatidylglycerol	55	86		
205			phosphatidylethanolamine	16	7		
206			phosphatidylcholine	9	7		
207			cardiolinin	15	, 1		
208			cardionphi	10	1		
200	5	The	data in the table indicate that.				
210	5.	The					
210		а	the two membranes are compose	ed only of phosph	olinids		
212		h.	the cell membrane and outer me	mbrane have the s	ame phospholipid	composition	
212		с.	The cell membrane and outer me	embrane differ in	nhospholinid com	osition	
213		с. d	The cell membrane is a bilayer l	out the outer mem	hrane is a monolay	er	
217		u.	The cen memorane is a bilayer (orane is a monoray	U 1.	
<u> </u>							

216 Problem 2

- 217 Area: Microbial Structure
- 218 Microorganism: *Campylobacter fetus*
- Reference: Graham, L. L., and Feero, S. E. 2019. The *Campylobacter fetus* S layer provides
 resistance to photoactivated zinc oxide nanoparticles. Canadian Journal of Microbiology
 65: 450-460.
- 222

The genus *Campylobacter* includes more than 26 species of Gram-negative spiral shaped bacteria that are often pathogenic to humans or other animals. *C. fetus* includes several subspecies that can cause venereal disease in cattle, sheep, or goats, leading to premature labor and spontaneous abortion. While antibiotics can be used to treat these infections, an alternative approach involves the use of zinc oxide (ZnO) nanoparticles which can penetrate the cell

- envelope and lead to the formation of reactive oxygen species that are highly toxic. Graham and
- Feero (Can. J. Microbiol. 65: 450-460, 2019) investigated the role of the S layer of the cell
- envelope *C. fetus* in protecting the bacteria from ZnO nanoparticles. The following picture from
- their paper shown an electron micrograph of some of these particles.
- 232

233 234

235 236 The following figure is a diagram of the envelope of a Gram-negative bacterium.

237 238

240 241

242

243

244

- 239 1. What is the best definition of a bacterial S layer?
 - a. It is an organized bilayer of phospholipids and proteins that surrounds the cytoplasm.
 - b. It is a multilayered network of peptidoglycan molecules that lies outside of the plasma membrane.
 - c. It is a second layer of phospholipids and proteins and surrounds the cell wall.
- 246d.It is an ordered array of identical protein molecules that lies outside of the outer247membrane.

- To study the effects of ZnO nanoparticles on *C. fetus*, Graham and Feero used several strains of that different in their expression of the S layer proteins. Cff 13783 and Cff 11686 had high levels of expression and Cff 13783K and Cff 11686K had low levels of expression due to insertion of transposable element carrying a gene for kanamycin resistance. The bacteria were routinely cultured on Columbia agar supplemented with 5% sheep blood without or with 50 µg/ml kanamycin. The next figure shows the number of viable bacteria present in each culture expressed as colony forming units/ml (CFU/ml) following exposure to different concentrations
- 256 of ZnO nanoparticles for up to 6 hours.

269

- 2. What is the best conclusion to be drawn from these data?
 - a. There was no decrease in viability in the untreated samples or in any of the treated samples.
 - b. There was no decrease in viability in the untreated samples but viability was reduced in a concentration dependent-fashion in all of the treated samples.
- c. There was no decrease in viability in the untreated samples but viability was reduced in a concentration-dependent fashion more in the strains with an S layer than in the ones without an S layer.
- 270d.There was no decrease in viability in the untreated samples but viability was271reduced in a concentration-dependent fashion more in the strains without an S272layer than in the ones with an S layer.

To determine if the ZnO nanoparticles might affect the cell envelope of the bacteria, the authors examined thin sections of the bacteria by electron microscopy. The results are shown in the following figure. Panel A shows an image of freeze substituted *C. fetus*, Panel B shows an image of *C. fetus* not treated with ZnO nanoparticles but processed by conventional EM techniques; and Panel C shows an image of *C. fetus* treated with 500 µg/ml ZnO nanoparticles for four hours and processed by conventional EM techniques.

279

280			
281			
282			
283	3.	Wha	t can you see in these images?
284			
285		a.	The ZnO treated cells have the same general appearance as the untreated cells.
286		b.	The bacteria treated with ZnO nanoparticles have extensive gaps in the cell
287			envelope between the cell membrane and the outer membrane.
288		с.	The bacteria treated with ZnO nanoparticles have no S layer.
289		d.	The bacteria treated with ZnO nanoparticles have no cell envelope and have
290			undergone extensive lysis.
291			
292		In pr	evious studies, it was found that bacteria treated with ZnO nanoparticles and then
293	expo	sed to v	visible light died at a greater rate than those kept in the dark. To determine if this
294	were	true for	r C. fetus, they inoculated medium containing different concentrations of ZnO
295	nano	particle	s in the wells of microtiter plates with the same strains used before. One plate was
296	incub	bated in	the dark and the other exposed to light for 30 min. They then determined the
297	numł	per of v	iable cells after 24 hours and expressed the results again as CFU/ml. In some cases,
298	the en	nzyme	catalase was added at a concentration of 4 μ g/ml to remove reactive oxygen species
299	like l	iydroge	on peroxide. The results are shown in the next figure.

- nanoparticles.
 b. The strains that have more S layer proteins (Cff 13783 and Cff 11686) are more sensitive to the ZnO nanoparticles than the strains that have less S layer proteins (Cff 13783K and Cff 11686K).
 - c. The strains that have more S layer proteins (Cff 13783 and Cff 11686) are less sensitive to the ZnO nanoparticles than the strains that have less S layer proteins (Cff 13783K and Cff 11686K).
 - d. For any particular strain like 11783, the expression of the S layer proteins has no effect.

- 320 5. Now look at the dashed lines for the cultures that contained catalase. What can you learn 321 from these data? 322 323 Catalase has no effect on the sensitivity of the bacteria ZnO nanoparticles and a. 324 light. 325 b. Catalase makes the bacteria more sensitive to ZnO nanoparticles and light. 326 Catalase makes the bacteria less sensitive to ZnO nanoparticles and light. c. 327 d. Catalase only affects the bacteria that are kanamycin resistant. 328 329 To determine if these results were specific to C. fetus, the authors did similar experiments
- 330 with another species of *Campylobacter* called *C. jejuni*. The results are shown in the next figure.
- 331

332			
333	6.	What	t can you conclude from this experiment?
334			
335		a.	C. jejuni shows the same sensitivities to ZnO nanoparticles and light as C. fetus.
336		b.	C. jejuni is sensitive to ZnO nanoparticles but only in the light.
337		c.	C. jejuni has the same sensitivities to ZnO nanoparticles in both the dark and the
338			light.
339		d.	C. jejuni is not sensitive to ZnO nanoparticles.
340			
341	7.	Base	d on these experiments, what would be the most interesting experiment to do next?
342			
343		a.	Repeat these experiments with the same concentrations of ZnO nanoparticles.
344		b.	Repeat these experiments with higher concentration of ZnO nanoparticles.
345		c.	Compare the S layer of C. jejuni to that of C. fetus.
346		d.	Compare the S layer of C. fetus to that of E. coli.
347			
348			

349 Problem 3

355

370

371

375

- 350 Area: Microbial Growth
- 351 Microorganism: *Listeria monocytogenes*
- Reference: Ko, R., Smith, L. T., and Smith, G. M. 1994. Glycine betaine confers enhanced
 osmotolerance and cryotolerance on *Listeria monocytogenes*. Journal of Bacteriology
 176: 426-431.
- *Listeria monocytogenes* is an opportunistic Gram-positive pathogen that causes listeriosis, a disease characterized by fever, diarrhea, and sore throat. This disease is fatal as much as 25% of the time and is normally transmitted through foods such as cheese, milk, and coleslaw. One factor that appears to contribute to outbreaks of listeriosis is the ability of *L. monocytogenes* to grow vigorously at refrigerator temperatures and to tolerate high salt concentrations. Ko et al. (J. Bacteriol. 176: 426-431, 1994) recently examined the accumulation of glycine betaine as an osmotically compatible solute by these bacteria.
- 363
- Based on its vigorous growth at refrigerator temperatures (about 4°C), one would classify
 L. monocytogenes as a:
- 366
 367 a. psychrophile
 368 b. mesophile
 369 c. thermophile
 - c. thermophile d. refrigophile
 - a. remgophin
- Ko et al. first measured the intracellular concentrations of several different compounds
 after growth of *L. monocytogenes* in a rich complex medium under different conditions. The
 results are shown in the following table.

376 377	<u>solute</u>	intracellular <u>0 NaCl/30°C</u>	concentration (m <u>8% NaCl/30°C</u>	M) after gro <u>0 NaCl/4°C</u>	wth in <u>8% NaCl/4°C</u>
378 379	glycine betaine	65	1300	310	1800
380	giyeine betuine	05	1500	510	1000
381	glutamate	200	640	350	430
382 383	carnitine	120	<100	430	<75
384					

- 385 2. From these data, one can conclude that:
- a. the concentrations of the three compounds are not affected by growth conditions
 b. the concentrations of all three compounds increase in response to both increased
 salt concentration and reduced temperature.
 c. the concentrations of glycine betaine and carnitine increase in response to both
- 391 increased salt concentration and reduced temperature.
- 392d.the concentration of glycine betaine increases in response to both increased salt393concentration and reduced temperature.

To determine if these bacteria can accumulate glycine betaine from the growth medium, Ko et al. compared the growth of *L. monocytogenes* on agar plates containing a chemically defined medium to which either NaCl or glycine betaine was added. The results are shown below.

399					
400			specific gr	owth rate (gen/hr))
401	tempe	erature	% added NaCl	0 betaine	<u>130 µM betaine</u>
402					
403	30)	0	0.35	0.35
404			2	0.22	0.26
405			4	0.13	0.17
406			8	0.008	0.09
407					
408	7	7	0	0.027	0.033
409			2	0.020	0.030
410			4	no growth	0.014
411					
412	3. These	data in	dicate that:		
413					
414	a.	additi	on of glycine betain	e has no effect on	growth rate.
415	b.	additi	on of glycine betain	e enhances growt	h only in unstressed bacteria.
416	с.	additi	on of glycine betain	e enhances growt	h only in severely salt-stressed
417		bacter	ia.		
418	d	additi	on of glycine betain	e enhances growt	h in both unstressed and severely salt-
419		stresse	ed bacteria.		
420					
421	To stu	idy the	uptake of glycine be	taine by L. mono	cytogenes, Ko et al. grew bacteria in
422	different cond	centratio	ons of NaCl or at dif	ferent temperatur	res. They then incubated the bacteria
423	under the sam	ne condi	itions in the presenc	e of radioactive [¹⁴ C]glycine betaine and measured the
424	rates of uptak	te. The	following figures sh	now the results.	
425					
426					

457 <u>Problem 4</u>

458 Area: Microbial Growth

459 Microorganism: Streptococcus thermophilus

- 460 Reference: Wa, Y., Zhang C., Sun, G., Qu. H., Chen, D., Huang, Y., and Gu, R. 2022. Effect of
 461 amino acids on free exopolysaccharide biosynthesis by *Streptococcus thermophilus* 937
 462 in chemically defined medium. Journal of Dairy Science 105:6460-6468.
- 463

The bacterium *Streptococcus thermophilus* is widely used by the dairy industry in the production of yogurt. It grows anaerobically by a process of fermentation and during its growth, it produces a mixture of extracellular polysaccharides that improve the viscosity, texture, and mouth-feel of the yogurt. These exopolysaccharides also act as probiotics and may be useful as antioxidants and anti-inflammatory agents. Wa et al. (J. Dairy Sci. 105: 6460-6468, 2022) recently studied the growth and extracellular polysaccharide formation by *S. thermophilus* in a chemically defined medium.

471

To study the growth of *Streptococcus thermophilus* under carefully controlled conditions,
Wa et al. first developed a chemically defined medium containing a mixture of 42 different

474 nutrients. The pH of the medium was adjusted to 6.7 and the solution sterilized by filtration.

The composition of the medium is shown in the next table.

476 **Table 1**. Composition of the chemically defined medium

Constituent	Concentration
Lactose	20 g/L
NH ₄ -citrate	0.6 g/L
Urea	0.24 g/L
l-Alanine	1 m <i>M</i>
l-Arginine	1 m <i>M</i>
l-Asparagine	1 m <i>M</i>
l-Aspartic acid	1 m <i>M</i>
l-Cysteine	1 m <i>M</i>
l-glutamate	1 m <i>M</i>
l-Glutamine	1 m <i>M</i>
Glycine	1 m <i>M</i>
l-Histidine	1 m <i>M</i>
l-Leucine	1 m <i>M</i>
l-Isoleucine	1 m <i>M</i>
l-Lysine	1 m <i>M</i>
l-Methionine	1 m <i>M</i>
l-Phenylalanine	1 m <i>M</i>
l-Proline	1 m <i>M</i>

Constituent	Concentration
1-Serine	1 m <i>M</i>
1-Threonine	1 m <i>M</i>
l-tryptophan	1 m <i>M</i>
l-Tyrosine	1 m <i>M</i>
l-Valine	1 m <i>M</i>
Ascorbic acid	0.5 g/L
Biotin	0.01 g/L
Calcium pantothenate	0.001 g/L
Folic acid	0.001 g/L
Niacin	0.001 g/L
Pyridoxine hydrochloride	0.005 g/L
Riboflavin	0.001 g/L
Thiamine hydrochloride	0.001 g/L
Uracil	0.01 g/L
Adenine	0.01 g/L
Guanine	0.01 g/L
Thymine	0.01 g/L
KH ₂ PO ₄	3 g/L
K ₂ HPO ₄	3 g/L
MgCl ₂	0.2 g/L
CaCl ₂	0.05 g/L
NaH ₂ PO ₄	30 m <i>M</i>
Na ₂ HPO ₄	30 m <i>M</i>
Na-acetate	1 g/L

478 1. Based on what you know about milk and its nutrients, what is the primary carbon source479 for the bacteria in this medium?

480		
481	a.	lactose
482	b.	urea
483	с.	ascorbic acid
484	d.	KH_2PO_4
485		

To study the growth and formation of exopolysaccharides in this medium, Wa et al. grew cultures of *Streptococcus thermophilus* at 42°C, some in the standard medium (CDM) and some in a modified medium in which the concentrations of the amino acids histidine, isoleucine, and glutamate were increased to 15 mM (CDM+ HIG). They periodically measured the turbidity of the cultures at 600 nm and the number of viable cells/ml. They also removed 5 ml samples for free exopolysaccharide analysis. The bacteria were removed from the 5 ml samples by centrifugation and the proteins precipitated with trichloroacetic acid. The polysaccharides in the 493 supernatant fraction were precipitated with ethanol, washed, and quantified using a colorimetric494 assay for sugars. The results are shown in the next figure.

- a. The addition of the extra amino acids had a small effect on both the number of viable cells/ml and the turbidity.
- b. The addition of the extra amino acids had a greater effect on the number of viable cells/ml than on the turbidity.
- c. The addition of the extra amino acids had a greater effect on turbidity than on the number of viable cells/ml.
 - d. The addition of the extra amino acids greatly increased the growth rate during exponential phase

523 524	4. I	Now look at panel A. What can you conclude from these data?
525	8	The addition of the extra amino acids increased the amount of exopolysaccharide
526		that was formed.
527	ł	The addition of the extra amino acids had no effect on the amount of
528		exopolysaccharide that was formed.
529	(. The addition of the extra amino acids decreased the amount of exopolysaccharide
530		that was formed.
531	(1. The addition of the extra amino acids shifted exopolysaccharide formation from
532		exponential phase to stationary phase.
533		
534	r.	To study the basis of these results, Wa et al. measured the levels of transcription of
535	several g	genes involved in exopolysaccharide formation. These genes were pgm, galM, galK,
536	galT, ga	<i>lU</i> , galE, epsA, and epsB. The next figure shows a comparison of the transcripts after
537	growth t	For 3 hours in CDM and CDM + HIG.

- bacteria growth in CDM + HIG.
- g. The level of transcription of the genes was variable but was consistently higher in CDM.
- 549h.The level of transcription of *epsA* and *epsB* was consistently lower than the other550genes.551

The metabolism of *Streptococcus thermophilus* like that of many lactic acid bacteria involves the uptake the lactose, the hydrolysis of lactose into D-glucose and D-galactose, and the formation of lactic acid as a product. Wa et al. measured concentration of lactic acid, lactose, and D-galactose in the medium of CDM and CDM + HIG cultures after 3 hours and 5 hours. The results are shown in the next figure.

558 559			a de la companya de l
560	6.	What o	do these result indicate about the metabolism of the bacteria in the two media?
561			
562		d.	After 3 hours, the bacteria in CDM have formed more lactic acid and degraded
303			more factose than those in CDM + HIG.
564 565		b.	After 3 hours, the bacteria in CDM + HIG have formed more lactic acid and degraded more lactose than those in CDM
505			
360 567		с.	After 5 hours, the differences in the concentrations of factic acid and factose
507		1	The concentration of D colorization of a constant floaters motole line
569		d.	The concentration of D-galactose is a good indicator of factose metabolism.
570	7.	In the	original paper. Wa et al. states that they found in a previous study that the addition
571		of hist	idine, isoleucine, and glutamate to the chemically defined medium led an increase
572		in turb	idity and to an increase in exopolysaccharide formation. Why might these three
573		amino	acids be specifically required?
574			
575		a.	These amino acids might be incorporated into the free exopolysaccharides.
576		b.	These amino acids might be converted to the sugars used in the free
577			exopolysaccharides.
578		c.	These amino acids might be degraded as additional nitrogen sources by the
579			bacteria.
580		d.	These amino acids might be taken up in small amounts by the bacteria and so this
581			limits growth.
582			

- 584 <u>Problem 5</u>
- 585
- 586 Area: Bacterial Metabolism
- 587 Microorganism: Xanthobacter flavus
- Reference: van den Burgh, E. R. E., van der Kooij, T. A. W., Dijkhuizen, L., and Meijer, W. G.
 1995. Fructosebisphosphatase isoenzymes of the chemoautotroph *Xanthobacter flavus*.
 Journal of Bacteriology 177: 5860-5864.
- 591

592 *Xanthobacter flavus* is a Gram-negative bacterium that can grow as either a

593 chemoheterotroph or a chemoautotroph. In either case, it uses the enzyme fructose-1,6-

bisphosphate phosphatase (FBPase) to catalyze the conversion of fructose-1,6-bisphosphate to

595 fructose-6-phosphate. During chemoheterotrophic metabolism, this reaction is important in the

596 formation of complex carbohydrates. During chemoautotrophic metabolism, this reaction is 597 important in the overall process of carbon assimilation. The reaction is shown in the following

598 figure.

599

605

In a series of experiments, van den Bergh et al. (Journal of Bacteriology 177: 5860-5864, 1995)
 showed that *X. flavus* synthesizes two different enzymes or isoenzymes catalyzing this reaction.

- 6031.According to the basic system of enzyme classification, fructose-1,6-phosphate604phosphatase is an example of a:
- 606 a. oxidoreductase
- 607 b. hydrolase
- 608 c. lyase
- 609 d. isomerase 610
- 6112.The standard free energy values (G°') in kcal/mol for fructose-1,6-bisphosphate, water,612fructose-6-phosphate, and phosphate are given as -622, -57, -420, and -262, respectively.613Based on these values, the $\Delta G^{o'}$ for the reaction in the direction shown is:
- 614 615 a. - 1361 kcal/mol 616 b. + 3 kcal/mol 617 c. - 3 kcal/mol 618 d. - 723 kcal/mol 619 620
- 621

622	3.	The 1	role of fructose-1,6-bisphosphate phosphatase in the reaction is:
623			
624		a.	to make $\Delta G^{o'}$ more positive
625		b.	to make $\Delta G^{o'}$ more negative
626		c.	to decrease the activation energy
627		d.	to increase the activation energy
628			
629	4.	Bioc	hemically, fructose-1,6-bisphosphate phosphatase is a:
630			
631		a.	nucleic acid
632		b.	protein
633		c.	carbohydrate
634		d.	lipid
635			
c > c		T 4	and this communication detail and dear Dearch at all first success V

To study this enzyme in more detail, van den Bergh et al. first grew *X. flavus* in a medium containing methanol as the sole carbon source. Methanol can be used by these bacteria as a substrate for chemoautotrophic metabolism. They then disrupted the cells and subjected the resulting extract to column chromatography. The material coming off of the column was collected as a series of fractions and then assayed for fructose-1,6-bisphosphate phosphatase

641 activity. The results are shown in the following figure.

642

644

They then repeated this experiment with bacteria grown in a medium containing
succinate as the sole carbon source. Succinate can only be used as a substrate for
chemoheterotrophic metabolism. When the bacterial extract was analyzed by column
chromatography, only FBPase_I was present.

650	5.	These	These results suggest that:	
651				
652		a.	Both enzymes are involved in chemoautotrophic metabolism.	
653		b.	Both enzymes are involved in chemoheterotrophic metabolism.	
654		c.	FBPase _I is specifically involved in chemoautotrophic metabolism.	
655		d.	FBPaseII is specifically involved in chemoautotrophic metabolism.	
656				
657		van de	en Bergh then heated the two fractions containing fructose-1,6-bisphosphate	
658	phos	phosphatase at 51°C. They removed samples periodically and determined the amount of activity		

659 that was still left. The results are shown in the following figure.

time at 51°C

. These	e results indicate that:
a.	both fractions probably contain the same protein.
b.	both enzymes are equally heat sensitive.
с.	FBPase _I is more heat sensitive than FBPase _{II} .
d.	FBPase _{II} is more heat sensitive than FBPase _I .
van c	len Bergh et al. then determined the ability of two fractions to use the structurally
elated comp	bound sedoheptulose-1,7-bisphosphate as a substrate (this compound has 7 carbon
toms instea	d of 6). The ratio of the fructose-1,6-bisphosphate phosphatase activity to the
edoheptulos	se-1,7-bisphosphate phosphatase activity was 1.0 for FBPase _I and 0.5 for FBPase _{II} .
. These	e results indicate that:
a.	Both fractions contain the same enzyme.
b.	FBPase ₁ prefers fructose-1,6-bisphosphate as a substrate.
с.	FBPase _{II} prefers fructose-1,6-bisphosphate as a substrate.
d.	FBPase _{II} prefers sedoheptulose-1,7-bisphosphate as a substrate.
· · ·	These a. b. c. d. van d lated comp oms instea edoheptulos These a. b. c. d.

- 682 Area: Microbial Metabolism
- 683 Microorganism: Nitrosomonas europaea
- Reference: Deutch, C. E. 2013. L-Malate dehydrogenase activity in the reductive arm of the
 incomplete citric acid cycle of *Nitrosomonas europaea*. Antonie van Leeuwenhoek 104:
 645-655.
- 687 688 The bacterium Nitrosomonas europaea is an example of the "nitrifying bacteria" and can 689 obtain energy by the oxidation of ammonia to nitrite in the presence of oxygen as a terminal 690 electron acceptor. It is an autotroph that can fix carbon through the Calvin-Benson-Bassham 691 cycle and use it for all of its essential metabolites. When grown aerobically, N. europaea 692 expresses all of the enzymes of the citric acid cycle except for 2-oxoglutarate (2-ketoglutarate or 693 α -ketoglutarate) dehydrogenase. This includes the enzyme L-malate dehydrogenase, which 694 catalyzes the reversible interconversion of L-malate and oxaloacetate using NAD⁺/NADH or 695 NADP⁺/NADPH as the coenzyme electron carrier. This is shown in the following figure. 696

Deutch (Antonie van Leeuwenhoek 104: 645-655, 2013) studied the properties and metabolicfunctions of the MDH from *N. europaea*.

Figure 13.26 Oxidation of NH₃ and electron flow in ammoniaoxidizing bacteria. The reactants and the products of this reaction series are highlighted. The cytochrome c (Cyt c) in the periplasm is a different form of Cyt c than that in the membrane. AMO, ammonia monooxygenase; HAO, hydroxylamine oxidoreductase; Q, ubiquinone.

705		
706	1.	Based on this figure, what are the key steps in ammonia oxidation?
707		
708		a. ammonia to hydroxylamine to nitrate
709		b. ammonia to nitrite to nitrate
710		c. ammonia to hydroxylamine to nitrite
711		d. ammonia to nitrate to nitrite
712		
713	2.	The mechanism of ATP synthesis in the system is called:
714		
715		a. photophosphorylation
716		b. substrate-level phosphorylation
717		c. chemiosmotic or oxidative phosphorylation
718		d. spontaneous phosphorylation
719		

Deutch grew *N. europaea* in a chemically defined medium at 30°C, harvested the cells by centrifugation, disrupted the bacteria by three passages through a French pressure cell, and

prepared an extract by centrifugation at 105,000 x g in an ultracentrifuge. L-malate

723 dehydrogenase activity was measured at 340 nm in a double-beam UV-visible

spectrophotometer. This was done both in the reductive direction (oxaloacetate to L-malate) and
 in the oxidative direction. The next figure shows the results when the coenzyme and the pH of

the reactions was varied.

Fig. 2 Specific activities of L-malate dehydrogenase (MDH) from *N. europaea* as a function of buffer pH and coenzyme. **A** shows the specific activities in the reductive direction (oxaloacetate to L-malate) in the presence of NADH (*square*) or NADPH (*triangle*) in potassium phosphate buffers from pH 6.0 to 8.5. **B** shows the specific activities in the oxidative direction (L-malate to oxaloacetate) in the presence of NAD⁺ (*square*) or NADP⁺ (*triangle*) in potassium phosphate buffers from pH 6.0 to 8.5

728			
729	3.	Wha	t do these results indicate about the directionality and coenzyme preference of the N.
730		euro	peae enzyme?
731			•
732		a.	The enzyme has greater activity in the oxidative direction and prefers
733			NAD ⁺ /NADH as the coenzyme.
734		b.	The enzyme has greater activity in the reductive direction and prefers
735			NAD ⁺ /NADH as the coenzyme.
736		c.	The enzyme has greater activity in the oxidative direction and prefers
737			NADP ⁺ /NADPH as the coenzyme.
738		d.	The enzyme has greater activity in the reductive direction and prefers
739			NADP $^+$ /NADPH as the coenzyme.
740			
741	4.	Wha	t is the optimal pH for the reaction?
742			
743		a.	It is pH 6 for both the oxidative and reductive reactions.
744		b.	It is pH 8.5 for both the oxidative and reductive reactions.
745		c.	It is pH 8.5 in the reductive direction but 6.0 for the the oxidative direction.
746		d.	It is pH 6 in the reductive direction and pH 8.5 in the oxidative direction.
747			
748		To d	etermine if the reactions were sensitive to inhibition by the product, the reactions
749	were	done ir	the reductive direction (oxaloacetate to L-malate) in the presence of increasing
750	0000	antratio	ng of L molete (nonal A) on in the evidetive direction in the presence of increasing

concentrations of L-malate (panel A) or in the oxidative direction in the presence of increasingamounts of oxaloacetate (panel B).

Fig. 3 Product inhibition of L-malate dehydrogenase (MDH) from *N. europaea*. A shows the percent of the control activity in the reductive direction (oxaloacetate to L-malate) in the presence of increasing concentrations of L-malate. The specific activity of the uninhibited reaction was 16.08 nmoles \min^{-1} mg⁻¹. B shows the percent of the control activity in the oxidative direction (L-malate, to oxaloacetate) in the presence of increasing concentrations of oxaloacetate. The specific activity of the uninhibited reaction was 0.81 nmoles \min^{-1} mg⁻¹

753 5. What is indicated by these results? 754 755 Neither reaction is sensitive to product inhibition. a. The reaction in the reductive direction is more sensitive to product inhibition than 756 b. 757 the reaction in the oxidative direction. Both reactions are equally sensitive to product inhibition. 758 c. 759 The reaction in the oxidative direction is more sensitive to product inhibition than d. 760 the reaction in the oxidative direction. 761 762

In similar experiments, Deutch tested the effects of temperature and salt on the MDH
reactions. The results are shown in the next figure.

Fig. 4 Effects of temperature and salt concentration on the Lmalate dehydrogenase (MDH) from *N. europaea*. A The specific activities in the reductive direction (oxaloacetate to L-malate, *square*) or in the oxidative direction (L-malate to oxaloacetate, *triangle*) at temperatures from 10 °C to 65 °C. B The specific activities in the reductive direction (oxaloacetate to L-malate, *square*) or in the oxidative direction (L-malate to oxaloacetate, *triangle*) at NaCl concentrations from 0 to 1.0 M

770 771

		intungie) at NaCl concentrations from 0 to 1.0 M
6.	Wha	at can you conclude from these data?
	a.	The optimum temperature for both reactions is 50-55°C but only the reaction in. the oxidative direction increases significantly.
	b.	The reaction in the oxidative direction is stimulated by NaCl but the one in the reductive direction is not.
	с.	The reaction in the reductive direction is inhibited by NaCl but the one in the oxidative direction is not.
	d.	The optimum temperature for both reactions is 50-55°C but only the reaction in. the reductive direction increases significantly.

777 To determine if the MDH reaction was affected by other metabolites including those of the citric acid cycle, the reactions were tested in the presence of 1 mM or 10 mM concentrations 778 779 of various compounds. The results are shown in the next table.

780

Metabolite	Percent of control activity ^a			
	Conc. (mM)	OAA→ L-malate	L-malate→ OAA	
Acetyl-CoA	10	86.9 ± 4.4	nd ^b	
	1	104 ± 3.2	111 ± 0	
L-Aspartate	10	89.2 ± 1.2	92.9 ± 6.7	
	1	102 ± 3.8	103 ± 5.0	
Citrate	10	102 ± 7.4	111 ± 0	
	1	97.6 ± 11.9	103 ± 4.0	
Fumarate	10	101 ± 1.6	104 ± 7.6	
	1	98.9 ± 4.2	107 ± 2.5	
Glyceraldehyde-3-P	10	60.8 ± 2.2	nd	
	1	99.9 ± 4.8	91.6 ± 3.9	
L-Lactate	10	115 ± 7.4	98.5 ± 2.5	
	1	107 ± 0.9	nd	
2-Oxoglutarate	10	69.8 ± 6.4	86.1 ± 11.7	
	1	105 ± 12.2	108 ± 0	
Phosphoenolpyruvate	10	61.9 ± 2.9	75.0 ± 4.0	
	1	88.2 ± 1.4	100 ± 0	
3-Phosphoglycerate	10	101 ± 4.1	nd	
	1	115 ± 2.3	106 ± 7.8	
Pyruvate	10	90.4 ± 4.0	100 ± 11.2	
	1	97.8 ± 4.3	100 ± 11.8	
Succinate	10	90.8 ± 3.3	107 ± 3.2	
	1	90.5 ± 4.4	103 ± 4.0	

Table 1 Effect of metabolites on the activities of the L-malate dehydrogenase from N. europaea

^a Activities were expressed as mean percentages of control reactions±one standard deviation for replicate reactions with the same S₁₀₅ preparation at 25 °C on the same day. The average specific activity for the control reactions in the reductive direction was 15.03 nmoles $min^{-1} mg^{-1}$. The average specific activity for the control reactions in the oxidative direction was 1.11 nmoles min⁻¹ mg⁻¹

^b A few potential effectors were not tested at every concentration because the compound was limited or because the particular S105 fraction was exhausted

- 782 7. What is the most obvious conclusion from these data?
 - There are major differences in the sensitivities of the reactions to all of the a. compounds.
 - There are no differences in the sensitivities of the reactions to all of the b. compounds.
- There are small differences in the sensitivities of the reactions to all of the 788 c. 789 compounds.
- 790 d. There are some differences in the sensitivities of the reactions to 2-oxoglutarate 791 and phosphoenolpyruvate.

787

792 The absence of absence of 2-oxoglutarate dehydrogenase activity in N. europaea means 793 that the enzymes which normally work in a cyclic fashion in the TCA cycle function as two 794 branches. This is shown in the next figure. Pyruvate formed during glycolysis can still be 795 converted to acetyl-CoA and combined with oxaloacetate to form citrate. Citrate can go on to 796 form isocitrate and 2-ketoglutarate (α -ketoglutarate or 2-oxoglutarate). This is a key 797 intermediate in the formation of many amino acids. On the other hand, oxaloacetate can be 798 converted by L-malate dehydrogenase to L-malate, which then be converted to fumarate, 799 succinate, and succinyl-CoA. These also lead to key metabolites. The loss of 2-oxoglutarate 800 dehydrogenase is not fatal to the cells.

801

- 804 8. Given that 2-oxoglutarate dehydrogenase is missing in *N. europaea*, in which direction
 805 would you expect the MDH reaction occur? Are the results consistent with your
 806 prediction?
- 807 808 809
 - a. the reductive direction yesb. the oxidative direction yes
- 810 c. both directions would be important no
- 811 d. the enzyme would no longer be necessary no
- 812 813

814	Proble	<u>m 7</u>		
815				
816	Area: Microbial Genetics			
817	Microorganism: Vibrio vulnificus			
818	Refere	ence: M	cDougald, D, Simpson, M. L., Oliver J. D., and Hudson M. C. 1994.	
819		Transf	formation of Vibrio vulnificus by electroporation. Current Microbiology 28: 289-	
820		291.		
821				
822		Vibrio	vulnificus is a Gram-negative pathogenic bacterium found in the ocean. Most	
823	cases of	of V. vu	<i>Inificus</i> infection result from consumption of raw ovsters or severe wounds that	
824	have b	een exr	posed to sea water. The bacteria multiply outside of the gastrointestinal tract and	
825	produc	ce sever	al extracellular protein toxins. V. vulnificus produces compounds that bind iron	
826	and ca	n grow	by fermentation of lactose. To study the genetics of this microorganism in more	
827	detail.	McDoi	Igald et al. (Current Microbiol. 28: 289-291, 1994) attempted to introduce plasmid	
828	DNA i	into the	bacteria by transformation.	
829				
830	1.	Based	on the information given. V. vulnificus exerts its primary pathogenic effects	
831		throug	th the formation of:	
832				
833		a.	endotoxins.	
834		b.	exotoxins.	
835		с.	proteolytic enzymes	
836		d.	hypersensitivity reactions.	
837		u .	nypersensitivity reactions.	
838	2	From	the information given, it appears that V <i>vulnificus</i> can grow.	
839		110111		
840		a	only anaerobically	
841		b.	only aerobically	
842		с.	both aerobically and anaerobically.	
843		d.	photosynthetically	
844		u.		
845		To tes	t for transformation. McDougald et al. first extracted plasmid DNAs carrying genes	
846	for resistance to tetracycline or kanamycin from several strains of <i>F</i> coli. When the plasmid			
847	DNAs were mixed with V yulnificus and the bacteria spread on agar plates containing			
848	tetracycline or kanamycin no antibiotic resistant colonies were found. McDougald et al. then			
849	tried a	technic	use called electroporation in which the plasmid DNA/bacteria mixture was	
850	expose	ed to a s	series of high-voltage electrical shocks before plating. In this case, antibiotic-	
851	resistant colonies were recovered upon plating			
852	1051514		ines were recovered upon planing.	
853	3	These	results indicate that V vulnificus is susceptible to:	
854	5.	These	results indicate that <i>v. vanageus</i> is susceptible to:	
855		a.	conjugation	
856		b.	both natural transformation and artificial	
857		с.	only natural transformation	
858		d.	only artificial transformation	
859				
507				

McDougald et al. then determined the number of antibiotic- resistant transformants as a
function of DNA concentration for two strains of *V. vulnificus*. The results are shown below.

Strain	DNA concentration (µg/ml)	Transformants
MO6	2	1.7
	10	3.3
	50	25.0
	100	28.3
LC2	2	1.7
	10	3.3
	50	43.3
	100	75.0

Table 3. Effect of plasmid DNA concentration	on transformation
efficiency utilizing pRT291	

863			
864	4.	These	e results suggest that:
865			
866		a.	the efficiency of transformation is not affected by the DNA concentration.
867		b.	the efficiency of transformation decreases with DNA concentration.
868		c.	the efficiency of transformation increases equally with DNA concentration for
869			both strains.
870		d.	the efficiency of transformation increases with DNA concentration for both
871			strains but reaches saturation sooner with MO6.
872			
873		To de	etermine if the efficiency of transformation is affected by the composition of the

To determine if the efficiency of transformation is affected by the composition of the growth medium, McDougald et al. compared the efficiency of transformation after growth in a rich medium (HI) or in a minimal medium (BSM) supplemented with glucose and glycine betaine, an osmotically compatible solute. The results are shown in the following table.

> Table 4. Effect of growth medium on transformation efficiency of Vibrio vulnificus MO6 with pRT291

Medium ^a	Transformants/µg
HI	none
1% BSM + 0.2% glucose	1.8
1% BSM + $0.4%$ glucose	66.0
1% BSM + 0.4% glucose + 5 mM glycine betaine	240.0

^a All cultures were grown overnight at 37°C with aeration.

881	5.	Thes	e results suggest that transformation is most efficient in the presence of:
882			
883		a.	BSM medium.
884		b.	BSM medium + glucose.
885		c.	BSM medium + glucose + glycine betaine
886		d.	BSM medium + glycine betaine
887			
888		McD	Dougald et al. found that V. vulnificus has two distinct colony types depending on the
889	amou	nt of e	xtracellular polysaccharide formed: opaque colonies, which have a lot of
890	polys	acchar	ides, and translucent colonies, which have little polysaccharide. They then made two
891	obser	vations	s: 1) addition of glucose to the BSM medium caused the bacteria to form translucent
892	colon	ies, an	d 2) translucent colonies were transformed much more efficiently than opaque
893	colon	ies.	
894			
895	6.	Thes	e observations suggest that:
896			
897		a.	extracellular capsules promote DNA uptake and transformation.
898		b.	extracellular capsules have no effect on DNA uptake and transformation.
899		c.	extracellular capsules inhibit DNA uptake and transformation.
900		d.	extracellular capsules make the bacteria resistant to antibiotics.
901			1
902			

903 <u>Problem 8</u>

- 904 Area: Microbial Genetics
- 905 Microorganism: *Staphylococcus aureus*
- Reference: Wang, H., Ma, K., Shen, J., Fang, M., Pei, H., Li, Y., Zhu, C., Shu, F., Li, B., and
 Xue, T. 2023. Genes associated with desiccation stress in foodborne *Staphylococcus aureus* as revealed by transposon insertion mutagenesis. Food Research International
 163: 112271. doi: 10.1016/j.foodres.2022.112271
- 910

911 The Gram-positive bacterium *Staphylococcus aureus* is an important human pathogen that causes a variety of opportunistic infections. Many of the sources of infection are sites in the 912 913 food supply chain, and infections due to strains of S. aureus that are methicillin- or vancomycin-914 resistant can be particularly severe. One important aspect of food preservation is drying because 915 the removal of water can limit bacterial growth. However, S. aureus has the ability to survive desiccation, and while some of the genes involved in desiccation tolerance have been identified, 916 917 many have not. To search for additional genes that might contribute to the virulence of S. aureus 918 in this way, Wang et al. used transposon mutagenesis to inactivate random genes in this 919 microorganism. Transposons are mobile genetic elements that can move between DNA 920 molecules and often carry genes for antibiotic resistance. They used a fragment of Tn551 921 carrying a gene for erythromycin resistance. This is shown in the next figure. Insertion of this 922 DNA sequence into an existing gene would disrupt it and make the host organism resistant to this 923 antibiotic.

Tn551

924	orf2	27 orf43	
925			
926	1. Why i	s water so essent	ial to the survival of a living organism?
927			
928	a.	Water is the only	ly source of the elements hydrogen and oxygen.
929	b.	Water common	ly is used as an electron donor for metabolic processes.
930	с.	Cells are about	70% water and cellular biochemicals and structures are dissolved
931		in water.	
932	d.	Cells can active	ly transport water across the cell membrane.
933			
934	To car	ry out transposoi	n mutagenesis, Wang et al. introduced a plasmid called pBTn into
935	a wild type str	rain of S. aureus	called RMSA24 by electroporation. This plasmid carried a copy
936	of Tn 551 and	l had additional g	gene causing resistance to the antibiotic chloramphenicol. The
937	bacteria were	grown at 30°C ir	to stationary phase in a rich medium called tryptic soy broth
938	containing bo	th erythromycin	and chloramphenicol. They were then diluted into fresh medium
939	containing on	ly erythromycin	and incubated at 42°C to cause loss of the plasmid. Colonies were
940	recovered on	agar plates conta	ining erythromycin and stored as glycerol stocks at -80°C.
941			
942			

943	2.	Wha	t is the simplest definition of a plasmid?
944			
945		a.	It is a small circular DNA that can be maintained in the cytoplasm of a host cell
946			and contribute to its phenotype.
947		b.	It is a long linear DNA that can be maintained in the cytoplasm of a host cell by
948			recombination with the main chromosome.
949		c.	It is a small circular RNA that can be maintained in the cytoplasm of a host cell
950			and contribute to its phenotype.
951		d.	It is a large protein that can contribute to the phenotype of a host cell.
952			
953		To re	ecover strains that might be more sensitive to desiccation, Wang et al. subjected the
954	erythr	romyci	n-resistant isolates to three rounds of treatment. Overnight cultures were diluted into
955	3 ml o	of fresh	h broth to give an OD_{600} of about 0.05 and incubated at 37°C until the OD_{600} reached
956	1.0. 5	50 µl sa	amples were then transferred to 48 well plastic tissue culture plates and dried at 37°C
957	for fo	ur day	s. The viable cell count was then determined and those mutants with lower viable
958	count	s than	the parent strain were identified. These mutants were then subjected to two more
959	round	ls of de	siccation treatment. The bacteria with significantly lower rates of survival were then
960	charae	cterize	d further.
961			
962	3.	Wha	t would you expect to see in the wells of the plastic tissue culture plates after 4 days?
963			
964		a.	a thick layer of bacterial culture
965		b.	a thin film of medium containing live bacteria
966		c.	a thin film of medium containing both live and dead bacteria
967		d.	a concentrated mass of dead bacteria
968			
969		In th	is experiment, Wang et al. initially found 3154 mutants that were erythromycin
970	resista	ant. A	fter the first round of desiccation screening, this number was reduced to 232 and
971	after t	the sec	ond and third rounds, the number was reduced to 18. Of these, 8 mutants with
972	insert	ions at	different sites were identified by PCR analysis and sequencing. All of these mutants

showed a greater sensitivity to desiccation than the parent strain. The genes in these are listed in
the following table.

Mutant strains	Gene name/ ID	Length of gene (bp)	Predicted protein function
M 1334	NLG45_01240	924	U32 family peptidase
M 2377	NLG45_11885	804	CHAP domain-containing protein
M 2233	NLG45_11580	969	YdcF family protein
M 2302	NLG45_06760	570	RNA polymerase sigma factor
M 2040	NLG45_12715	1374	EVE domain-containing protein
M 1640	NLG45_10515	1812	acetyltransferase
M 1870	fmtB	7422	LPXTG-anchored DUF1542 repeat protein FmtB
M 2130	NLG45_04065	522	CvpA family protein

Table 3	
Identified trans	sposon insertion site

977 4. What conclusion can you draw from these data? 978 979 A very large number of genes is involved in desiccation sensitivity. a. 980 b. A small number of genes with similar functions is involved in desiccation 981 sensitivity. 982 A small number of genes with different functions is involved in desiccation c. 983 sensitivity. 984 d. There is no genetic basis to desiccation sensitivity or tolerance. 985 986 To characterize these mutants, the parent strain and the mutants were subject to 987 desiccation treatment. The results are shown in the next figure.

Fig. 1. Effects of desiccation stress for 4 days on the survival rate of *S. aureus* RMSA24 and its mutants. (A) Colony-forming unit statistics of *S. aureus* RMSA24 and its mutants before desiccation treatment. (B) Colony-forming unit statistics of *S. aureus* RMSA24 and its mutants after desiccation treatment. (C) Survival rate of *S. aureus* RMSA24 and its mutants before and after desiccation treatment. * represents P < 0.05; ** represents P < 0.01.

988			
989	5.	What	t do these results indicate?
990			
991		a.	The survival of the mutants before the treatment was significantly lower than the
992			parent strain.
993		b.	The survival of the mutants after the treatment was significantly lower than the
994			parent strain.
995		c.	The survival of the mutants after the treatment was significantly higher than the
996			parent strain.
997		d.	The survival of all of the mutants after the treatment was the same.
998			
999		The g	genome of <i>S. aureus</i> has been completely sequenced. The following figure shows
1000	the p	ositions	s of the new mutants in this genome.
1001	1		

Fig. 2. The identified transposon insertion sites on the RMSA24 genome (the sequence moves clockwise).

1014 shown in the next figure.

1017 7. These results show that: 1018 1019 the mutants all grow slower than the parent strain. a. 1020 b. the mutants vary but all grow slower than the parent strain. the mutants vary but all grow faster than the parent strain. 1021 c. the mutants do not differ from the parent strain. 1022 d. 1023

1024 Desiccation tolerance has sometimes been found to be related to the ability of the bacteria 1025 to form biofilms. Wang et al. tested for biofilm formation inoculating the wells of microtiter 1026 plates with the bacteria, incubating them for 24 hours, and then staining the adherent bacteria 1027 with crystal violet. The results are shown in the next figure.

1028

Fig. 4. Detection of biofilm formation in *S. aureus* RMSA24 and its mutants. (A) A photograph of biofilms in the 96-well plates after staining with Crystal Violet. (B) The cells adhered to 96-well plates after staining with 0.1 % Crystal Violet and dissolving in 33 % glacial acetic acid, measured by optical density at 492 nm. *** represents P < 0.001.

1029 1030 1031 These results indicated that: 8. 1032 1033 the mutants all formed more biofilm than the parent strain. a. 1034 the mutants all formed less biofilm than the parent strain. b. 1035 c. only mutant M2130 formed more biofilm than the parent strain. 1036 d. only mutant M2130 formed less biofilm than the parent strain. 1037 1038 Finally, Wang et al. measured the levels of transcription of the genes in the mutant strains 1039 when the bacteria were not stress by desiccation and when they were stressed. The results are 1040 shown in the next figure. 1041 1042 1043 1044 1045

Fig. 6. Comparative measurement of the transcriptional level of relevant mutant genes of RMSA24 with or without desiccation stress. * represents P < 0.05, ** represents P < 0.01; *** represents P < 0.001; ns (no significant difference).

1047 1048		
1049	Thes	se results indicate that:
1050		
1051	a.	all of the genes increase in expression during desiccation.
1052	b.	all of the genes decrease in expression during desiccation.
1053	с.	the genes NLG45_11580, NLG45_06760, and NLG45_10515 all increase in
1054		expression during desiccation.
1055	d.	the genes NLG45_01240, NLG45_12715, and NLG45_104065 all increase in
1056		expression.

1057	Probl	lem 9	
1058			
1059	Area	: Micro	bial Ecology
1060	Micro	oorgani	ism: Rhizobium meliloti
1061	Refe	rence: I	Hornez, JP., Timinouni M., Defives, C., and Derieux, JC. 1994. Unaffected
1062		nodu	lation and nitrogen fixation in carbohydrate pleotropic mutants of <i>Rhizobium</i>
1063		melil	loti. Current Microbiology 28:225-229.
1064			
1065		Rhiz	<i>obium meliloti</i> is a Gram-negative bacterium that forms nodules in the roots of
1066	alfalf	a plant	s. Fixation of nitrogen in these nodules provides ammonium as a nitrogen source for
1067	both	the bac	teria and the plants. To identify the compounds used as carbon sources by the
1068	bacte	ria in tl	he plants, Hornez et al. isolated a mutant of <i>R. meliloti</i> that could not take up and
1069	degra	ide moi	nosaccharides. They then tested this mutant for its ability to cause nodulation and
1070	nitrog	gen fixa	ation in alfalfa.
1071			
1072	1.	Nitro	ogen fixation in root nodules is an example of:
1073			
1074		a.	commensalism
1075		b.	mutualism
1076		c.	competition
1077		d.	predation
1078	-		
1079	2.	The	initial stage of infection of alfalfa by <i>Rhizobium</i> involves:
1080			
1081		a.	penetration of the stem by insects.
1082		b.	entry of the bacteria through the leaves.
1083		c.	formation of infection threads in root hairs.
1084		d.	penetration of the root by insects.
1085	3	The	enzyme that carries out the nitrogen fixation reaction usually contains:
1087	5.	The	enzyme that earnes out the introgen invation reaction usually contains.
1088		a.	nitrogenase
1089		b.	nitrogenase + nitrogenase reductase
1090		с.	nitrogenase + nitrogenase reductase + ferredoxin
1091		d.	nitrogenase reductase + ferredoxin
1092			
1093		Horr	nez et al. began with a wild-type strain of <i>R. meliloti</i> designated M5N1 and isolated a
1094	muta	nt calle	d 2-10 by mutagenesis in the laboratory. When they compared the ability of the
1095	parer	ntal stra	in and the mutant to grow in a minimal medium with various compounds as carbon
1096	sourc	es, the	y obtained the results shown in the following table.
1097		•	
1098			
1099			
1100			
1101			
1102			

	Growth ^a		
Carbon sources	M5N1	2.10	
glucose	+ (4)	-	
fructose	+ (4)	-	
galactose	+ (5)	-	
mannitol	+ (4.5)	-	
sorbitol	+ (4.5)	-	
xylose	+ nd ·	-	
ribose	+ nd	-	
arabinose	+ nd	-	
succinate	+ (4)	+ (4)	
fumarate	+ (3)	+ (3)	
malate	+ (4)	+(3.5)	
lactate	+(2.5)	+ (2)	
glutamate	+ nd	+ nd	
Arts			

Table 2. Growth of parental M5N1 and mutant strains on several carbon sources

^{*a*} Cells were grown in minimal medium with 0.1% carbon sources. Generation times (indicated in parentheses) were determined by measurement of absorbance at 600 nm. Data are mean values of two experiments. nd, not determined; +, growth; -, no growth.

- 1103 1104 4. Which statement is best supported by these data? 1105 1106 The parental strain uses only monosaccharides as carbon sources. a. The parental strain uses only organic acids as carbon sources. 1107 b. 1108 The mutant strain uses only monosaccharides as carbon sources. c. 1109 d. The mutant strain uses only organic acids as carbon sources. 1110 1111 Hornez et al. then compared the growth the strains M5N1 and 2-10 in a minimal medium
- 1112 containing both glucose and succinate. They obtained the results shown in the following graph. 1113
 - A 4000

1115	5.	These	results indicate that:
1116			
1117		a.	the growth rate of the parental strain is the same with either glucose or succinate.
1118		b.	the growth rate of the parental strain with succinate as the carbon source is faster
1119			than that of the mutant.
1120		с.	the parental strain first uses glucose as the carbon source and then uses succinate
1121			as the carbon source.
1122		d.	the parental strain first uses succinate as the carbon source and then uses glucose
1123			as the carbon source.
1124			
1125		Horne	z then tested the ability of the parental strain and the mutant to form nodules within
1126	alfa	lfa roots a	nd fix nitrogen. The results are shown in the following table.
1127			

Strain	Nitrogenase activity (nmol ethylene produced/h per plant)	Mean plant dry weight (mg)
M5N1	28.3	27.6
2.10	20.8	21.3

Table 3. Nitrogen fixation activity of alfalfa nodules after

1128 1129 1130 6. These data indicate that: 1131 1132 nitrogen fixation does not occur in nodules formed by the mutant. a. 1133 b. nitrogen fixation does occurs at the same rate in nodules formed by both the mutant and the parent. 1134 nitrogen fixation in nodules formed by the mutant occurs at about 2/3 the rate of 1135 c. the parent. 1136 1137 d. nitrogen fixation and plant dry weight show no correlation. 1138 1139 7. Based on these results, it can be concluded that: 1140 1141 a. organic acids can serve as sole carbon sources for nitrogen fixation. only monosaccharides can serve as carbon sources for nitrogen fixation. 1142 b. monosaccharides are required as carbon sources for nitrogen fixation. 1143 c. only organic acids can serve as carbon sources for nitrogen fixation. 1144 d. 1145 1146

1147 <u>Problem 10</u>

- 1148 Area: Microbial Ecology
- 1149 Microorganism: Bacillus gelatini
- 1150 Reference: Flores, P. A. M., Correa-Llantén, and Blaney, J. M. 2018. A thermophilic
- 1151 microorganism from Deception Island, Antarctica with a thermostable glutamate
- 1152 dehydrogenase activity. Biological Research 51(1):55. doi: 10.1186/s40659-018-0206-3.
- 1154 Environmental conditions at the poles of the planet Earth are more extreme than in more 1155 temperate regions. The Antarctic region at the southern pole is mainly cold, but it is far from 1156 uniform and contains areas that are hot due to volcanic activity. Deception Island is one of seven 1157 islands that constitute the South Shetland archipelago. The island is horseshoe in shape due to 1158 the collapse of the central part of a volcano. This shown in the following figure.
- 1159

1153

1160 1161

Flores et al. ((Biol. Res. 51: 55, 2018) recently describe the isolation and characterization of a
novel thermophilic bacterium from this island. They collected soil samples during a Chilean
research expedition from the geothermal site "Cerro Caliente." The temperature and pH at this

1165 site were 75 to 95°C and pH 5.5, respectively.

- 1166 1. Thermophilic microorganisms are usually defined as those that grow:
- 1167
- a. at 0 to 20° C with an optimum at 15° C.
- 1168 a. at 0 to 20° C with an optimum at 15° C. 1169 b. at 10 to 45° C with an optimum at 37° C.
- 1170 c. at 35 to 80° C with an optimum at 65°C.
- 1171 d. at 65 to 110° C with an optimum at 95°C.
- 1172

Flores et al. added 2 g samples of soil from this site to liquid tryptic soy broth and incubated them at 50°C and 70°C. The samples were serially diluted and plated on solid medium. Individual colonies were isolated and purified. The organism of most interest was labelled PID15. DNA from this microbe was isolated and the gene for the 16S ribosomal RNA amplified by PCR and sequenced. The following figure shows the phylogenetic position of this bacterium to several other organisms.

1179

1180

1181
1182 2. Why are 16S rRNA sequences commonly used to identify bacteria and define their phylogenetic relationships?

1184 1185 They are found in all living organisms. a. 1186 They are found in all prokaryotic organisms. b. They are found only in all Gram-positive organisms. 1187 c. 1188 d. They are found in all eukaryotic organisms. 1189 1190 3. Based on this result, which bacterium is most closely related to PID15? 1191 1192 Bacillus cereus a. 1193 Bacillus licheniformis b. 1194 c. Bacillus gelatini Escherichia coli 1195 d. 1196

0.02

1197 To further characterize the new isolated, Flores et al. subjected it to a series of standard 1198 test and compared it to *Bacillus gelatini*. The results are shown in the next table.

- **Table 1**
- 1200 Biochemical characterization of by API20 E kit (bioMérieux, Inc.) and confirmed by tube assay

Characteristics + + Gram + + Temperature of growth (°C) 45–65 40–60 PH growth range 6.0–11. +0–10.0 Motility + + Amino acid degradation + + I-Arginine dehydrolase (-) (-) I-Arginine decarboxylase + (-) I-Ornithine decarboxylase + (-) I-Ornithine decarboxylase + (-) Indole (-) (-) Indole (-) (-) Metabolism - (-) Hugh-Leifson (oxidation) + + Methyl red (-) (-) Catalase + + Oxidase (-) (-) Voges Proskauer (-) (-) I-galactosidase (-) (-) Grame (-) (-) I-Gutorse + Grame (-) (-) I-galactosid	Biochemical test	PID15	B. gelatini (DSM 15865)
Gram++Temperature of growth (°C)45–6540–60PH growth range6.0–11.04.0–10.0Motility++Amino acid degradation-(~)I-Arginine dehydrolase(~)(~)I-Lysine decarboxylase+(~)I-Ornithine decarboxylase+(~)Tryptophan deaminase(~)(~)Indole(~)(~)Metabolism-(~)Hugh-Leifson (oxidation)++Hugh-Leifson (fermentatio)(~)(~)Catalase(~)(~)Voges Proskauer(~)(~)Kotroh(~)(~)Hydrolysis of-(~)Gelatinase++Starch(~)(~)Goldcose+Vd-Mannitol+VGalactose+VGibose+VGalactose+VHose+(~)Hibose+(~)Hibose+(~)Hibose+(~)Hibose+(~)Hibose+(~)Hibose+(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~)(~)Hibose(~) </td <td>Characteristics</td> <td></td> <td></td>	Characteristics		
Temperature of growth (°C) 45–65 40–60 PH growth range 6.0–11.0 4.0–10.0 Motility + + Amino acid degradation - - I-Arginine dehydrolase (-) (-) I-Lysine decarboxylase + (-) I-Omithine decarboxylase + (-) Tryptophan deaminase (-) (-) Indole (-) (-) Metabolism - (-) Hugh-Leifson (oxidation) + + Methyl red (-) (-) Catalase + + Oxidase (-) (-) Voges Proskauer (-) (-) Hydrolysis of (-) (-) Gelatinase + + Starch (-) (-) G-Balcosidase (-) (-) G-Balcose + V Galactose + V Galactose + (-)	Gram	+	+
pH growth range6.0–11.0 + .0–10.0Motility++Amino acid degradation-I-Arginine dehydrolase(-)(-)I-Lysine decarboxylase+(-)I-Ornithine decarboxylase+(-)Iryptophan deaminase(-)(-)Indole(-)(-)Metabolism-(-)Hugh-Leifson (oxidation)++Hugh-Leifson (fermentation)(-)(-)Katabase++Oxidase(-)(-)Kotidase(-)(-)Voges Proskauer(-)(-)Belatinase++Starch(-)(-)Galactosidase(-)(-)Galactose+VGalactose+VGalactose+VI-Starch(-)(-)Ribose+VGalactose+VI-Starch(-)(-)I-Starch(-)(-)I-Starch(-)(-)I-Starch+VI-Starch+VI-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-)I-Starcose+(-) <trr>I-Starcose<td>Temperature of growth (°C)</td><td>45–65</td><td>40-60</td></trr>	Temperature of growth (°C)	45–65	40-60
Motility + + Amino acid degradation - I-Arginine dehydrolase (-) (-) I-Lysine decarboxylase + (-) I-Ornithine decarboxylase + (-) Tryptophan deaminase (-) (-) Indole (-) (-) Metabolism - (-) Hugh-Leifson (oxidation) + + Hugh-Leifson (fermentation) (-) (-) Catalase + + Oxidase (-) (-) Katch (-) (-) Hydrolysis of (-) (-) Gelatinase + + Starch (-) (-) β-galactosidase (-) (-) Galactose + V d-Mannitol + V Galactose + (-) Ribose + (-) Litter (-) (-) (Ditarte reduction (-) (-) <td>pH growth range</td> <td>6.0–11.0</td> <td>4.0-10.0</td>	pH growth range	6.0–11.0	4.0-10.0
Amino acid degradation I-Arginine dehydrolase ($-$) I-Lysine decarboxylase + I-Ornithine decarboxylase + I-Ornithine decarboxylase + Tryptophan deaminase ($-$) Indole ($-$) Metabolism - Hugh-Leifson (oxidation) + Hugh-Leifson (fermentation) ($-$) Catalase + Oxidase ($-$) Voges Proskauer ($-$) Voges Proskauer ($-$) Hydrolysis of - Gelatinase + Starch ($-$) $-$ Starch ($-$) Gilactosidase + Galactosidase + Galactose + Kibose + Kibose + Kibose + Questores + Kibose + Questores + Questores + Questores + Questores + Questores +	Motility	+	+
$ -Arginine dehydrolase(-)(-) -Lysine decarboxylase+(-) -Ornithine decarboxylase+(-)Tryptophan deaminase(-)(-)Indole(-)(-)Indole(-)(-)Metabolism++Hugh-Leifson (oxidation)++Hugh-Leifson (fermentation)(-)(-)Catalase++Oxidase(-)(-)Catalase++Oxidase(-)(-)Voges Proskauer(-)(-)Hydrolysis of (-)Gelatinase++Starch(-)(-)\beta-galactosidase(-)(-)d-Ghucose+Vd-Mannitol+Vd-Sucrose+(-)Ribose+(-)H_2S production(-)(-)Mirate reduction(-)(-)Mirate reduction(-)$	Amino acid degradation		
I-Lysine decarboxylase+($-$)I-Ornithine decarboxylase+($-$)Tryptophan deaminase($-$)($-$)Indole($-$)($-$)Metabolism++Hugh-Leifson (oxidation)++Hugh-Leifson (fermentation)($-$)($-$)Methyl red($-$)($-$)Catalase++Oxidase($-$)($-$)Voges Proskauer($-$)($-$)Hydrolysis of-($-$)Gelatinase++Starch($-$)($-$) β -galactosidase($-$)($-$)Carbon source-($-$)Citrate($-$)($-$)d-Glucose+Vd-Mannitol+VGalactose+($-$)Ikiose+($-$)Nitrate reduction($-$)($-$)Urease($-$)($-$)Nitrate reduction($-$)($-$) <td>l-Arginine dehydrolase</td> <td>(-)</td> <td>(-)</td>	l-Arginine dehydrolase	(-)	(-)
1-Ornithine decarboxylase + (-) Tryptophan deaminase (-) (-) Indole (-) (-) Metabolism - + Hugh-Leifson (oxidation) + + Hugh-Leifson (fermentation) (-) (-) Methyl red (-) (-) Catalase + + Oxidase (-) (-) Voges Proskauer (-) (-) Hydrolysis of (-) (-) Gelatinase + + Starch (-) (-) β -galactosidase (-) (-) Citrate (-) (-) d-Mannitol + V Galactose + V d-Sucrose + (-) Ikose + V d-Sucrose + (-) Ikose + <td< td=""><td>l-Lysine decarboxylase</td><td>+</td><td>(-)</td></td<>	l-Lysine decarboxylase	+	(-)
Tryptophan deaminase $(-)$ $(-)$ Indole $(-)$ $(-)$ Metabolism $+$ $+$ Hugh-Leifson (oxidation) $+$ $+$ Hugh-Leifson (fermentation) $(-)$ $(-)$ Methyl red $(-)$ $(-)$ Catalase $+$ $+$ Oxidase $(-)$ $(-)$ Voges Proskauer $(-)$ $(-)$ Hydrolysis of $(-)$ $(-)$ Gelatinase $+$ $+$ Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Citrate $(-)$ $(-)$ Galactose $+$ V d-Mannitol $+$ V d-Sucrose $+$ $(-)$ Ribose $+$ $(-)$ Lactose $+$ $(-)$ Ditactose $+$ $(-)$ Urase $(-)$ $(-)$	l-Ornithine decarboxylase	+	(-)
Indole $(-)$ $(-)$ Metabolism + Hugh-Leifson (oxidation) + + Hugh-Leifson (fermentation) $(-)$ $(-)$ Methyl red $(-)$ $(-)$ Catalase + + Oxidase $(-)$ $(-)$ Voges Proskauer $(-)$ $(-)$ Hydrolysis of $(-)$ $(-)$ Gelatinase + + Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Galucose + V d-Mannitol + V Galactose + $(-)$ Ribose + $(-)$ Itactose + $(-)$ Hatomanitol + $(-)$ Ribose + $(-)$ Itactose + $(-)$ Hatomanitol + $(-)$ Hatomanitol + $(-)$ Itactose + $(-)$ Itactose + $(-)$ Itactose	Tryptophan deaminase	(-)	(-)
MetabolismHugh-Leifson (oxidation)++Hugh-Leifson (fermentation)($-$)($-$)Methyl red($-$)($-$)Catalase++Oxidase($-$)($-$)Voges Proskauer($-$)($-$)Hydrolysis of($-$)($-$)Gelatinase++Starch($-$)($-$) β -galactosidase($-$)($-$)Carbon source($-$)($-$)Citrate($-$)($-$)d-Glucose+Vd-Mannitol+VGalactose+($-$)Lactose+($-$)Lactose+($-$)H2S production($-$)($-$)Nitrate reduction($-$)($-$)Urease($-$)($-$)Urease($-$)($-$)	Indole	(-)	(-)
Hugh-Leifson (oxidation)++Hugh-Leifson (fermentation)($-$)($-$)Methyl red($-$)($-$)Catalase++Oxidase($-$)($-$)Voges Proskauer($-$)($-$)Hydrolysis of($-$)($-$)Gelatinase++Starch($-$)($-$) β -galactosidase($-$)($-$)Carbon source($-$)($-$)Citrate($-$)($-$)d-Glucose+Vd-Mannitol+VGalactose+($-$)Ribose+($-$)Lactose+($-$)H2S production($-$)($-$)Nitrate reduction($-$)($-$)Urease($-$)($-$)	Metabolism		
Hugh-Leifson (fermentation) ($-$)($-$)Methyl red($-$)($-$)Catalase++Oxidase($-$)($-$)Voges Proskauer($-$)($-$)Voges Proskauer($-$)($-$)Hydrolysis of($-$)($-$)Gelatinase++Starch($-$)($-$) β -galactosidase($-$)($-$)Carbon source($-$)($-$)Citrate($-$)($-$)d-Mannitol+Vd-Mannitol+VGalactose+($-$)Ribose+($-$)Lactose+($-$)H_2S production($-$)($-$)Nitrate reduction($-$)($-$)Urease($-$)($-$)	Hugh-Leifson (oxidation)	+	+
Methyl red $(-)$ $(-)$ Catalase + + Oxidase $(-)$ $(-)$ Voges Proskauer $(-)$ $(-)$ Hydrolysis of $(-)$ $(-)$ Gelatinase + + Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Carbon source $(-)$ $(-)$ Citrate $(-)$ $(-)$ d-Glucose + V d-Mannitol + V Galactose + $(-)$ Ribose + $(-)$ Lactose + $(-)$ H_2S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Hugh-Leifson (fermentation)	(-)	(-)
Catalase + + Oxidase ($-$) ($-$) Voges Proskauer ($-$) ($-$) Hydrolysis of - ($-$) Gelatinase + + Starch ($-$) ($-$) β -galactosidase ($-$) ($-$) Carbon source - ($-$) Citrate ($-$) ($-$) d-Glucose + V d-Mannitol + V Galactose + ($-$) Ribose + ($-$) H_2S production ($-$) ($-$) Nitrate reduction ($-$) ($-$) Nitrate reduction ($-$) ($-$)	Methyl red	(-)	(-)
Oxidase $(-)$ $(-)$ Voges Proskauer $(-)$ $(-)$ Hydrolysis of $(-)$ $(-)$ Gelatinase $+$ $+$ Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Carbon source $(-)$ $(-)$ Citrate $(-)$ $(-)$ d-Glucose $+$ V d-Mannitol $+$ V Galactose $+$ $(-)$ Ribose $+$ $(-)$ Lactose $+$ $(-)$ Dthers $+$ $(-)$ Nitrate reduction $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Catalase	+	+
Voges Proskauer $(-)$ $(-)$ Hydrolysis ofGelatinase++Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Carbon source $(-)$ $(-)$ Citrate $(-)$ $(-)$ d-Glucose+Vd-Mannitol+VGalactose+ $(-)$ Ribose+Vd-Sucrose+ $(-)$ Lactose+ $(-)$ Dthers- $(-)$ H2S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Oxidase	(-)	(-)
Hydrolysis ofGelatinase++Starch(-)(-) β -galactosidase(-)(-)Carbon source(-)(-)Citrate(-)(-)d-Glucose+Vd-Mannitol+VGalactose+(-)Ribose+(-)Lactose+(-)Lactose+(-)H2S production(-)(-)Nitrate reduction(-)(-)Urease(-)(-)	Voges Proskauer	(-)	(-)
Gelatinase++Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Carbon source $(-)$ $(-)$ Citrate $(-)$ $(-)$ d-Glucose+Vd-Mannitol+VGalactose+ $(-)$ Ribose+ $(-)$ Lactose+ $(-)$ Dthers- $(-)$ H ₂ S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Hydrolysis of		
Starch $(-)$ $(-)$ β -galactosidase $(-)$ $(-)$ Carbon source $(-)$ $(-)$ Citrate $(-)$ $(-)$ d-Glucose $+$ Vd-Mannitol $+$ VGalactose $+$ $(-)$ Ribose $+$ Vd-Sucrose $+$ $(-)$ Lactose $+$ $(-)$ Dthers $+$ $(-)$ Nitrate reduction $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Gelatinase	+	+
β-galactosidase(-)(-)Carbon source(-)(-)Citrate(-)(-)d-Glucose+Vd-Mannitol+VGalactose+(-)Ribose+Vd-Sucrose+(-)Lactose+(-)DthersH2S production(-)(-)Nitrate reduction(-)(-)Urease(-)(-)	Starch	(-)	(-)
Carbon source ($-$) ($-$) Citrate ($-$) ($-$) d-Glucose + V d-Mannitol + V Galactose + ($-$) Ribose + V d-Sucrose + ($-$) Lactose + ($-$) H ₂ S production ($-$) ($-$) Nitrate reduction ($-$) ($-$) Urease ($-$) ($-$)	β-galactosidase	(-)	(-)
Citrate $(-)$ $(-)$ d-Glucose + V d-Mannitol + V Galactose + $(-)$ Ribose + $(-)$ Actorse + $(-)$ Lactose + $(-)$ Dthers - $(-)$ Mirate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Carbon source		
d-Glucose+Vd-Mannitol+VGalactose+(-)Ribose+Vd-Sucrose+(-)Lactose+(-)OthersH2S production(-)(-)Nitrate reduction(-)(-)Urease(-)(-)	Citrate	(-)	(-)
d-Mannitol+VGalactose+ $(-)$ Ribose+Vd-Sucrose+ $(-)$ Lactose+ $(-)$ OthersH2S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	d-Glucose	+	V
Galactose + $(-)$ Ribose + V d-Sucrose + $(-)$ Lactose + $(-)$ Others - $(-)$ Mitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	d-Mannitol	+	V
Ribose + V d-Sucrose + (-) Lactose + (-) Others - - H2S production (-) (-) Nitrate reduction (-) (-) Urease (-) (-)	Galactose	+	(-)
d-Sucrose + $(-)$ Lactose + $(-)$ Others - - H ₂ S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Ribose	+	V
Lactose + $(-)$ Others - - H ₂ S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	d-Sucrose	+	(-)
Others H_2S production(-)Nitrate reduction(-)Urease(-)	Lactose	+	(-)
H_2S production $(-)$ $(-)$ Nitrate reduction $(-)$ $(-)$ Urease $(-)$ $(-)$	Others		
Nitrate reduction(-)(-)Urease(-)(-)	H ₂ S production	(-)	(-)
Urease (-) (-)	Nitrate reduction	(-)	(-)
	Urease	(-)	(-)

1201	4.	Based	d on these data, which is the most obvious difference between PID15 and <i>Bacillus</i>
1202		gelati	ini?
1203			
1204		a.	PID15 is Gram-positive and Bacillus gelatini is Gram-negative?
1205		b.	PID15 is motile and <i>Bacillus gelatini</i> is nonmotile?
1206		c.	PID15 can utilize more sugars as carbon sources than <i>Bacillus gelatini</i> .
1207		d.	PID15 grows by fermentation and <i>Bacillus gelatini</i> grows by respiration.
1208			
1209		To ch	aracterize the bacterium microscopically, Flores examined the cells by both
1210	scann	ing and	transmission electron microscopy. The results are shown in the next figures.

- 1217 5. Based on these results, the organism is best described as a(n):
- 12181219a.1220b.b.bacillus1221c.spirillum1222dactinomycete1223

1224 One of the reasons Flores et al. were interested in isolating bacteria from this unusual site 1225 is that extremophiles often have promising applications in biotechnology. They looked 1226 specifically at the enzyme L-glutamate dehydrogenase, which catalyzes the following reaction

- 1227 called oxidative deamination:
- 1228

 $\begin{array}{c} 1229 \\ 1230 \\ 12$

1233

- 1235 1236 a. The enzyme from both microorganisms shows activity at 37°C and 50°C.
- b. The enzyme PID15 shows activity at 37°C and 50°C but that from GWE1 only has activity at 37°C.
- 1239c.The enzyme GWE1 shows activity at 37°C and 50°C but that from PID15 only1240has activity at 37°C.
- 1241d.The enzyme GWE1 shows activity at 37°C and 50°C but that from PID15 only1242has activity at 50°C.

1244 To study the formation of L-glutamate dehydrogenase by PID15, Flores et al. grew a 1245 culture at 50°C and periodically measured the optical density of the culture (OD_{600}) and the 1246 specific activity of the enzyme. The results are shown in the next figure.

1250 7. What can you conclude from these data?

- a. The bacteria show a normal growth pattern and enzyme activity is highest during exponential phase.
- b. The bacteria show a normal growth pattern and enzyme activity is highest during stationary phase.
 - c. The bacteria show an abnormal growth pattern and enzyme activity is highest during exponential phase.
 - d. The bacteria show an abnormal growth pattern and enzyme activity is highest during stationary phase.

Problem	<u>n 11</u>
Area: M Microon Referen	licrobial Pathogenesis ganism: <i>Vibrio cholerae</i> ce: Sengupta, T. K., Sengupta, D. K., and Ghose, A. C. 1993. A 20-kDa pilus protein with haemagglutination and intestinal adherence properties expressed by a clinical isolate of non-01 <i>Vibrio cholerae</i> . FEMS Microbiology Letters 112: 237-242.
<i>cholera</i> alters m recently host tiss	The gastrointestinal disease cholera is caused by the Gram-negative bacterium <i>Vibrio</i> <i>e</i> . This bacterium colonizes the mucosa of the small intestine and produces a toxin that embrane permeability. Sengupta et al. (FEMS Microbiol. Lett. 112: 237-241, 1993) described an unusual clinical isolate of <i>V. cholerae</i> and studied its ability to attach to sues.
1. ·	Which of the following structures in the Gram-negative envelope is <u>least likely</u> to be involved in cell adhesion.
	 a. cell membrane b. outer membrane c. S-layer d. pili

Sengupta et al. first compared the ability of the bacteria to cause hemagglutination (the
aggregation of red blood cells) and to bind to isolated rabbit intestinal slices after growth in two
different media: tryptic soy broth (TSB) and tris-buffered salts medium (T medium). The results
are shown in the following table.

1289	growth medium	hemagglutinating activity	adhesion index
1290 1291	TSB	128	12.9
1292	T medium	4	2.0
1293			

1294	2.	Thes	e results indicate that:			
1295						
1296		a.	the bacteria cannot	cause hemag	gglutination.	
1297		b.	the bacteria cannot	adhere to in	testinal cells.	
1298		с.	hemagglutination a	nd adhesion	are greater after growth in	TSB.
1299		d.	hemagglutination a	nd adhesion	are greater after growth in	T medium.
1300			00		2 2	
1301		Whe	n Sengupta et al. anal	vzed the lipo	polysaccharide profiles of	the bacteria after
1302	grow	th in TS	SB or T medium, they	found no sig	gnificant differences. How	ever, when they
1303	analy	zed the	protein profiles of the	e cell envelo	pes after growth in each m	edium, they obtained
1304	the fo	ollowin	g results (a - indicates	a protein of	a certain mass was absent.	a + indicates a protein
1305	of a c	certain i	mass was present).	I	,	1
1306			r , ,			
1307		prote	in molecular mass	TSB	T medium	
1308		<u> </u>				
1309		1	66.000	_	+	
1310		2	55,000	_	+	
1311		3	47,000	+	+	
1312		4	39,000	+	+	
1312		5	28,000	+	+	
1314		6	20,000	+	_	
1314		0	20,000	I		
1315	3	Thes	e results indicate that			
1310	5.	11105	e results indicate that.			
1317		9	the protein compos	ition of the c	ell envelope is the same u	nder all growth
1310		и.	conditions		en envelope is the same u	
1317		h	the protein compos	ition of the c	ell envelope is completely	different in the two
1320		υ.	media		en envelope is completely	different in the two
1321		C	there are more diff	erent protein	s in the cell envelope after	growth in TSB
1322		d.	there are more diff	erent protein	s in the cell envelope after	growth in T medium
1323		u.	there are more unit	erent protein	s in the cen envelope arter	growth in T meanum.
1324		Sena	unta et al then tried t	o determine	which of these proteins wa	s important in adhesion
1325	of V	cholor	upta et al. then they t	They isolated	protein 1 (66 000 daltons) protein $4(39,000)$
1320	dalta	re) and	$\frac{1}{2}$ notain 6 (20 000 da	ltong) and us	ad each preparation to mal	, protein 4 (39,000
1327	bind	to that i	narticular protein Th	av then teste	d the effects of these antibility	e antibodies that would odies on the ability of V
1320	ohol	to that j	particular protein. In adhara ta rabbit intast	inglations 7	The results are shown below	Solies on the ability of v.
1329	choie		autiere to rabbit fillest.	illai siices. I	he results are shown below	v.
1221		addit	iona		adhesion index	
1331		addit	<u>1011S</u>		adhesion index	
1332		V -1	-lever huffer		12.0	
1333		V. Ch	<i>lolerae</i> + buller		12.9	
1334		V. Ch	colerae + antibodies to	protein 1	12.8	
1333		V. Ch	boierae + antibodies to	protein 4	12.9	
1336		V. ch	<i>noierae</i> + antibodies to	o protein 6	1.2	
133/						
1338						
1339						

- 1340 4. From this, one can conclude that: 1341 1342 protein 1 (66,000) is important in adhesion. a. 1343 b. protein 4 (39,000) is important in adhesion. protein 6 (20,000) is important in adhesion. 1344 c. none of the proteins is important in adhesion. 1345 d. 1346 1347
- 1347To identify the portion of the cell envelope with which protein 6 (20,000) was associated,1348they linked the antibodies specific to protein 6 to gold particles and used these particles to "stain"
- the bacteria for electron microscopy. The results are diagrammed below, where the dots
- 1350 represent the gold particles:1351

1352 1353	From	this, one can concluded that protein 6 is:
1354		
1355	a.	a pilin
1356	b.	a flagellin
1357	с.	an integral outer membrane protein
1358	d.	a peripheral
1359		
1360		

1361 Problem 12

1362 Area: Microbial Pathogenesis

- 1363 Microorganism: Aeromonas trota
- 1364 Reference: Takahashi, E., Ozaki, H, Fujii, Y., Kobayashi, H., Yamanaka, H., Arimoto, S., Negishi T., and Okamoto, K. 2014. Properties of hemolysin and protease produced by 1365 Aeromonas trota. PloS One 9(3):e91149. doi: 10.1371/journal.pone.0091149. 1366
- 1367

1368 Bacteria of the genus Aeromonas are commonly found in aquatic habitats including fresh 1369 water, brackish water, and seawater. Many species can cause wound infections or sporadic 1370 diarrhea. A. trota, which has been previously called A. enteropelogenes, is a mesophilic species that is ampicillin sensitive but difficult to treat because is forms an enzyme called a β -lactamase 1371 1372 that can degrade this antibiotic. A. trota was previously shown to cause diarrhea in an animal 1373 model. Takahashi et al. (PloS One 9(3):e91149, 2014) described the properties of a hemolytic 1374 protein (hemolysin) and a protease from this microorganism.

- 1375 1376 Several strains of A. trota were isolated from patients with diarrhea or from environmental water and soil. A type strain (ATCC 49657) was also obtained from the 1377 1378 American Type Culture Collection. The bacteria were grown in nutrient broth medium at 37°C 1379 with aeration.
- 1380 1381 What are the characteristics of diarrhea as a clinical disease of humans? 1. 1382 1383 the appearance of small red pustules on the surface of the skin. a. the occurrence of loose, watery, and more frequent bowel movements. 1384 b. 1385 c. the sudden onset of memory loss or mental confusion. 1386 d. the presence of muscle tremors. 1387

1388 To test for the ability of A. trota to form proteins that might lyse red blood cells or 1389 breakdown proteins, various strains were grown in liquid nutrient broth for 20 hours and 2 µl portions spotted onto nutrient agar plates supplemented with either 5% sheep erythrocytes or 1% 1390 1391 skim milk. The plates were incubated at 37oC for 24 hours the presence or absence of areas of 1392 clearing observed around the bacterial spots. E. coli HB101 and A. sobria 288 were used as 1393 controls. The results are shown in the next figure.

1394

	<i>E.coli</i> HB101	As288	At ATCC 49657	
At701	At702	At703	At704	At705
At706	At707	At708	At709	At710
At711	At712	At713	At714	At715
	At716	At717	At404	

1397	2.	Look	first at the three controls at the top of the plates. What can you see?
1398			
1399		a.	HB101, As288, and At49657 all formed distinct zones of clearing on both types
1400			of medium.
1401		b.	As288 and At49657 both formed distinct zones of clearing on both types of
1402			medium.
1403		c.	As288 formed distinct zones of clearing on both types of medium but At49657
1404			only showed clearing on the plate with red blood cells.
1405		d.	As288 formed distinct zones of clearing on both types of medium but At49657
1406			only showed distinct clearing on the plate with skim milk.
1407			
1408	3.	Now	look at the look the spots for the various A. trota isolates. What can you conclude
1409		from	these data?
1410			
1411		a.	All of the isolates formed distinct zones of clearing on both types of medium.
1412		b.	None of the isolates formed distinct zones of clearing on both types of medium.
1413		c.	At701 formed distinct zones of clearing on both types of medium but At708
1414			showed no zones of clearing.
1415		d.	At707 formed a distinct zones of clearing on the blood agar plate but no clearing
1416			on the skim milk plate.
1417			
1418		To de	etermine if the proteins causing hemolysis could be formed and released when the
1419	bacte	ria were	e grown in liquid, medium, A. trota 701, A. trota 49657, and A. sobria 288 were
1420	cultiv	vated in	nutrient broth at 37oC. Samples were removed at 6, 12, and 24 hours and
1421	centr	ifuged a	at 15,000 x g for 5 min. The supernatant (culture fluid) was decanted and saved.
1422	The c	cell pelle	et was suspended in buffer and the bacteria disrupted by sonication. Each sample
1423	was t	hen test	ed for hemolytic activity with the results shown in the next figure.
1424			
1425			

1435

1444

1426

4. What can you conclude from these data?

- 1430a.A. sobria 288 forms a hemolysin that is released into the medium early during1431growth but it is not retained in the cells.
- b. *A. trota* 49657 forms a hemolysin that is released into the medium early during growth but it is not retained in the cells.
 c. *A. trota* 49657 and *A. trota* 701 form more hemolysins when it is grown in liquid
 - c. *A. trota* 49657 and *A. trota* 701 form more hemolysins when it is grown in liquid medium than when they are grown on agar plates.
- 1436d.A. trota 701 forms more hemolysis than A. trota 49657 when it is grown in liquid1437medium.1438
- 1439To compare the genes for the hemolysins, the *alh* genes from *A. sobria*, *A. trota* 49657,1440and *A. trota* 701 were amplified by PCR and sequenced. The genes from *A. trota* 49657 and *A. trota* 701 showed 61.9% sequence identity and 93% sequence similarity to that of *A. sobria*.
- 14421443 5. What does the observation contribute to this analysis?
- 1445 a. It does contribute at all.
- 1446b.It suggests that amino acid replacements in the A. trota protein have led to a1447decrease in activity.
- 1448c.It suggests that amino acid replacements in the A. trota protein have prevented its1449release from the cells.
- 1450d.It suggests that amino acids are not important in determining the activity of the1451protein.

- To determine if the hemolysin from *A. trota* 701 has toxin activity, suspensions of the bacteria containing a total of 3×10^7 cells mixed with either preimmune serum or serum containing hemolysin antibodies were injected into loops of mouse intestine. The mice were killed after 3 hours and the weights of the intestinal loops determined. The results are shown in the next figure. The open bars show samples treated with preimmune serum and the filled bar show samples treated with hemolysin antibodies.
- 1459

1460

1461 1462

1463

1466

1467

2 6. What can you conclude from these data?

- 1464 a. The protein from *A. trota* 701 in an enterotoxin.
- b. The protein from *A. trota* 701 not an enterotoxin but the antibodies against it are.
 - c. The protein from *A. trota* 701 is an enterotoxin but only when combined with the antibodies against it
- 1468 d. The mouse model is not a valid test for a toxin.

14691470Takahashi et al. then followed up on the experiment with skim milk agar by testing for1471the presence of a gene coding for a serine protease. The various *A. trota* isolates, the control1472strains used before, and another control called *A. hydrophila* 453 were grown on nutrient agar1473plates at 37°C for 24 hours. The bacteria were then transferred to a Hybond-N nylon membrane,1474lysed, and the DNA denatured. The spots were then process and tested using synthetic probes1475specific to serine protease and metalloprotease genes of *A. sobria*. Hybridization was observed1476by a chemical assay. The results are shown in the next figure.

		Α					в									
			ø	O	0				•				<i>E.coli</i> HB101	As288	Ah453	
		9		۲	•	Ø	0			5	٢	At ATCC 49657	At701	At702	At703	At704
		Ø	۲	۲	9	۲		$\langle \varphi \rangle$	- 92	0		At705	At706	At707	At708	At709
		ø	۲	•	Ø	۲				10		At710	At711	At712	At713	At714
1478		۲	9	۲	2				-96			At715	At716	At717	At404	
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508	7. of <i>A. tr</i> culture azocas 8.	What c metalle a. b. c. d. When b cota usin es super- ein (a co plates, a. b. c. d.	loes the prote <i>E. co</i> None All o 17 of gene Takah ng ant natant olored the ma what the g the tr medi the si medi	hese da ase ge <i>li</i> and of the f the A the 19 but no ashi e ibodie s or th l polyr might enome anscri a. ynthes a. tability a.	ata ind nes in A. sole $A. rotaA. trotaA. trotaA. trotaand t al. ats agaie cellner) asthe A.you weso f thption ofis of th$	licate a these l oria con monas i isolat ota iso etallopi tempte nst the lysates s a sub trota s vant to he bacte of the hem e hemo	bout the bacterian strains es con lates a cotease d to fin protei . They strate. strains study n eria in nemoly olysis olysis a	he pres a? both ge s conta tain bo nd the gene. nd the gene. nd the n from y also did sh next? liquid ysis an and pro	sence of nes. ain bot oth gen ATCO serine a A. son could i ow goo cultur d prote rotease	of the s h gene les. C 4965 protea bria, th not de od zon res and ease go activit	serine es. 7 stra: ase act hey co tect a p nes of c l solid enes ir ities in ies in	protease in conta tivity in ould not protease clearing media. h liquid o h liquid o liquid cu	e and in a ser the liqu find it activit on skin cultures ultures	ine pro uid cult either i cy use m milk s and so and so and so	otease tures n the agar olid olid lid	