The questions below are from Module 7 of the online genetics course Useful Genetics (www.usefulgenetics.com). They were developed by Rosie Redfield at the University of British Columbia (redfield@zoology.ubc.ca), with assistance from various TAs and feedback from many students. The lecture videos are also available on the YouTube Useful Genetics channel. The answers are indicated in bold.

Problem 1

A man has genotype A₁A₂. What gametes will many meioses produce, and in what proportions?

- a) ¼ A₁A₁, ½ A₁A₂, ¼ A₂A₂
- b) ¼ A₁, ½ A₁A₂, ¼ A₂
- c) ½ A₁, ½ A₂
- d) ¹/₃ A₁, ¹/₃ A₁A₂, ¹/₃ A₂
- e) None of the above
- f) More information is needed

Problem 2

A man has genotype $A_1A_1 G_1G_2$. The A and G genes are on the same chromosome. What gametes will many meioses produce, and in what proportions?

- a) ½ A₁A₁, ½ G₁G₂
- b) ¼ A₁A₁, ¼ A₁G₂, ¼ G₁G₂
- c) $\frac{1}{2} A_1 G_1, \frac{1}{2} A_1 G_2$
- d) $\frac{1}{2}$ A₁, $\frac{1}{4}$ G₁A₂, $\frac{1}{4}$ G₂
- e) None of the above
- f) More information is needed

Problem 3

A man has genotype $A_1A_1 G_1G_2$, meaning that he has two copies of the A_1 allele of gene A, and one copy each of the G_1 and G_2 alleles of gene G. The A and G genes are on **different** chromosomes. What gametes will many meioses produce, and in what proportions?

- a) ½ A₁A₁, ½ G₁G₂
- c) $\frac{1}{2} A_1 G_1, \frac{1}{2} A_1 G_2$
- d) $\frac{1}{2} A_1$, $\frac{1}{4} G_1 A_2$, $\frac{1}{4} G_2$
- e) More information is needed.

A man has genotype $A_1A_2 B_1B_2$. He has inherited the A_1 and B_1 alleles from his father and the A_2 and B_2 alleles from his mother. The A and B loci are on the **same** chromosome, close enough that crossovers are not a factor. What gametes will many meioses produce, and in what proportions?

- a) ½ A₁A₂, ½ B₁B₂
- b) ¼ A₁A₁, ¼ A₁B₂, ¼ A₂B₁, ¼ B₁B₂
- c) ½ A₁B₁, ½ A₂B₂
- d) ½ A₁B₂, ½ A₂A₁
- e) More information is needed

Problem 5

A woman has genotype $A_1A_1 G_1G_2$. The A and G genes are on the same chromosome. What gametes will a single meiosis produce?

- a) 2 A₁A₁, 2 G₁G₂
- $b) \ \ 1 \ A_1 A_1, \ 1 \ A_1 G_1, \ 1 \ A_1 G_2, \ 1 \ G_1 G_2 \\$
- c) $2 A_1G_1$, $2 A_1G_2$
- d) 2 A_1 , 1 G_1A_2 , 1 G_2
- e) More information is needed
- f) None of the above.

Problem 6

Genes can be mapped using the frequency of crossovers during meiosis. In flowers, this can be done by genotyping pollen. For a certain plant species you know where gene **F** is located on chromosome 1, but you don't know the location of gene **H**, so you genotype 100 pollen grains from a plant that is heterozygous at both *F* and *H* (alleles *F/f* and *H/h*).

Are these two genes on the same chromosome?

- a) Yes, because the numbers are similar.
- b) No, because the numbers are similar.
- c) No, because the numbers are not identical.
- d) No, because crossovers are rare.
- e) Can't tell because there could be multiple crossovers.

Genotype Number of Pollen FH 26 Fh 24

28

22

fH

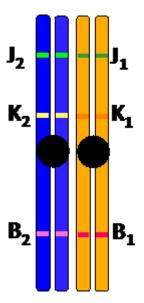
fh

In a genetic mapping project, the genotypes of 100 sperm from one man were determined at two loci, **D** and **E**, both known to be on chromosome 2. The man was heterozygous at both loci, with the alleles **D** and **d**, **E** and **e**.

Genotype	Number of sperm
D E	48
De	1
d E	4
d e	47

Which of these alleles are on the same homolog in the man? (Choose all that apply.)

- a) D and E
- b) D and d
- c) E and e
- d) D and e
- e) insufficient information
- f) None of the above choices are correct.

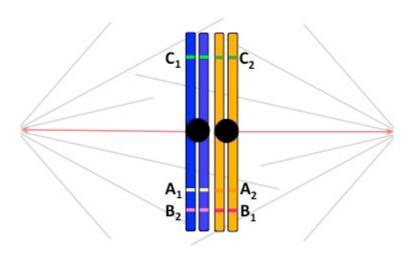

Problem 8

In a genetic mapping project, the genotypes of the sperm from one man were determined at three loci, X , Y , and Z , all known to be on chromosome 14. The man was heterozygous at all three loci, with the alleles X and x, Y and y, Z and z.		Number of Sperm
		1
		65
Which of these alleles are on the same homolog in the man? (Choose all that apply.)	XYz	21
	Xyz	15
a) X, Y, and Z	xYZ	16
b) X, Y and z c) X, y, and z	xyZ	21
d) x, Y, and Z	xYz	63
e) x, Y, and zf) Insufficient information	xyz	0

g) None of the above choices are correct.

Which gamete genotype(s) would be the most frequent products of this meiosis? (Choose all that apply.)

- a) J₁ K₁ B₁
- b) J₂ K₂ B₂
- c) $J_1 K_1 B_2$
- d) $J_1 K_2 B_1$
- e) $J_2 K_1 B_1$
- f) J₁ K₂ B₂
- g) None of the above choices are correct.

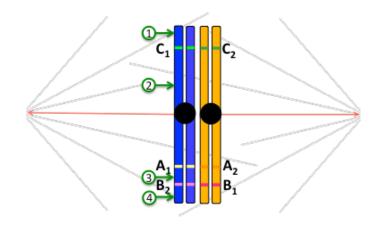


Problem 10

Which of the listed gamete genotype(s) would be the most frequent products of this meiosis?

(Choose all that apply.)

- a) $C_1A_1B_1$
- b) $C_2A_2B_2$
- c) $C_2A_2B_1$
- d) $C_1A_1B_2$
- e) $C_1A_2B_1$
- f) $C_2A_1B_2$
- g) None of the above choices are correct.


Problem 11

Using the image provided for Problem 10, which of the listed gamete genotype(s) would be the **least** frequent products of this meiosis? (Choose all that apply.)

- a) $C_1A_1B_1$
- b) $C_2A_2B_2$
- c) $C_2A_1B_1$
- d) $C_1A_1B_2$
- e) $C_1A_2B_1$
- f) $C_2A_1B_2$
- g) None of the above choices are correct.

Which of these gamete genotypes could be produced by a meiosis with a single crossover at position 3? (Choose all that apply.)

- a) $C_1 A_1 B_1$
- b) C₂ A₂ B₂
- c) C₁ A₁ B₂
- d) C₂ A₂ B₁
- e) C₂ A₁ B₁
- f) $C_1 A_2 B_2$
- g) $C_2 A_1 B_2$
- h) $C_1 A_2 B_1$
- i) None of the above choices are correct.

