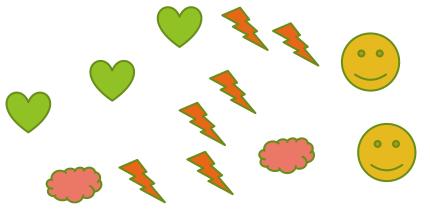
ABUNDANCE & DIVERSITY OF SPECIES

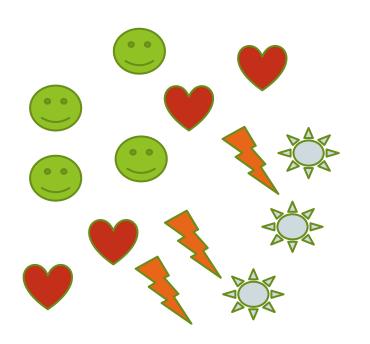

Justin Wied, Lab TA

RWSC 3310 - WILDLIFE MANAGEMENT TECHNIQUES

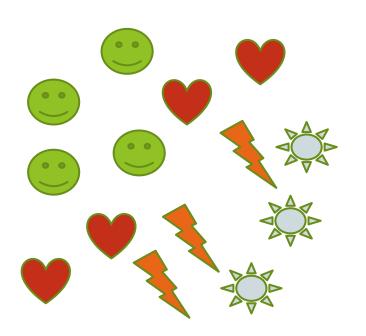
Texas A&M University-Kingsville

AUTECOLOGY & SYNECOLOGY

- Aut- (itself), Syn- (together)
- Populations (autecology)
 - One species
 - One location
 - One time
- Communities (synecology)
 - Assemblage of species
 - One location
 - One time


SPECIES ABUNDANCE

- Rare
- Common
- Abundant
- Community assemblages
 - Many common
 - ► Few rare
 - Few abundant


SPECIES RICHNESS

- Total number of species in each community
- Both communities have 4 species
 - Species richness is equal for both communities

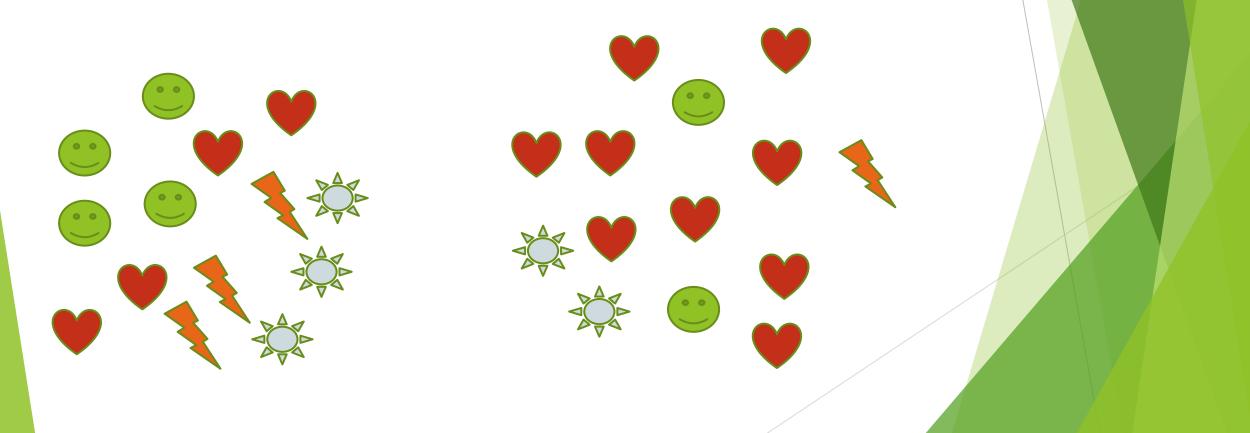
SPECIES RICHNESS

- $\blacktriangleright \quad D = \frac{s}{\sqrt{N}}$
- S = number of species present in sample
- N = total number of individual organisms

SPECIES RICHNESS

- Community A
- 14 total individuals (N)
- 4 species present (s)

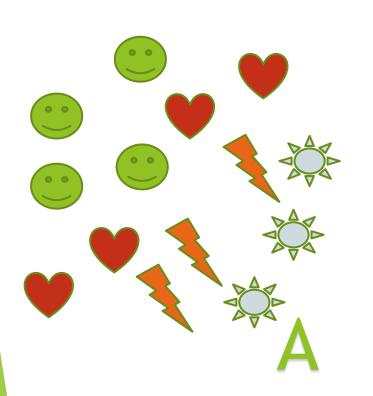
$$D = \frac{4}{\sqrt{14}} = \frac{4}{3.74} = 1.07$$

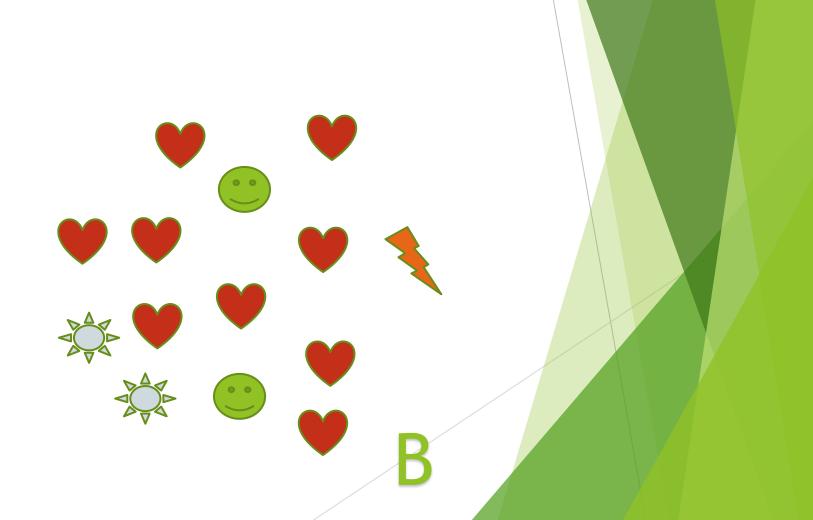

- Community B
- ▶ 14 total individuals (N)
- 4 species present (s)

$$D = \frac{4}{\sqrt{14}} = \frac{4}{3.74} = 1.07$$

Species richness is the same in both communities!

SPECIES EVENNESS


- Relative abundance of each species to others
 - ▶ In other words, how equal are the numbers of each species
- One abundant species can reduce diversity of the community



SPECIES DIVERSITY

- How many species are present?
- How evenly represented is each species?
 - Does one population dominate the community?
- ▶ To answer this, we have to calculate richness but include evenness
- Shannon-Weiner Index
- $H' = \sum (p_i)(|\ln p_i|)$
 - \blacktriangleright $p_i = proportion of individuals of a species to all individuals$
 - $|\ln(p_i)| = absolute \ value \ of \ natural \log of \ p_i$

 $\blacktriangleright \quad H' = \sum (p_i)(|\ln p_i|)$

Community A 14 individuals total (N) 4, so $(p_i = \frac{4}{14} = 0.29)$, thus $|\ln p_i| = |\ln 0.29| = 1.24$, and $0.29 \times 1.24 = 0.36$ 4, so $(p_i = \frac{4}{14} = 0.29)$, thus $|\ln p_i| = |\ln 0.29| = 1.24$, and $0.29 \times 1.24 = 0.36$ 3, so $(p_i = \frac{3}{14} = 0.21)$, thus $|\ln p_i| = |\ln 0.21| = 1.56$, and $0.21 \times 1.56 = 0.33$ 5, so $(p_i = \frac{3}{14} = 0.21)$, thus $|\ln p_i| = |\ln 0.21| = 1.56$, and $0.21 \times 1.56 = 0.33$

And finally, H' = 0.36 + 0.36 + 0.33 + 0.33 = 1.38

The Shannon Index of Community A is 1.38

Community B 14 individuals total (N) 2, so $(p_i = \frac{2}{14} = 0.14)$, thus $|\ln p_i| = |\ln 0.14| = 1.97$, and $0.14 \times 1.97 = 0.28$ 9, so $(p_i = \frac{9}{14} = 0.64)$, thus $|\ln p_i| = |\ln 0.64| = 0.45$, and $0.64 \times 0.45 = 0.29$ 1, so $(p_i = \frac{1}{14} = 0.07)$, thus $|\ln p_i| = |\ln 0.07| = 2.66$, and $0.07 \times 2.66 = 0.19$ 2, so $(p_i = \frac{2}{14} = 0.14)$, thus $|\ln p_i| = |\ln 0.14| = 1.97$, and $0.14 \times 1.97 = 0.28$

And finally, H' = 0.28 + 0.29 + 0.19 + 0.28 = 1.04

The Shannon Index of Community A is 1.04

- So, Community A (1.38) > Community B (1.04)
- Community A has a higher diversity
 - Each species has an even amount on individuals
- Community B has a lower diversity
 - One species is abundant, while the others are rare