Assessment Guide for SIMIODE Remote Teaching Module:

Introduction to Modeling

Learning Goals: Students will understand that...

- 1. A differential equation model is the embodiment of a dynamic pattern which allows us to predict the future. Knowing multiple ways to interpret a differential equation can help us solve/analyze it effectively and skillfully apply it as a model.
- 2. Knowing multiple ways to interpret a differential equation can help you solve/analyze it effectively and skillfully apply it as a model.
- 3. Key characteristics of a differential equation determine the validity of solution methods and analytical techniques
- 4. Crucial understanding of a differential equation model can be found more readily in visualization of the shape and behavior than the algebraic form of the solution

Questions for students to keep considering throughout this module:

- 1. What is the purpose for solving this (diff. eq.)?
- 2. How is this method built upon mathematical theory?
- 3. What characteristics of this (diff. eq.) are important?
- 4. What does it mean for this (diff. eq.) model to fit?

Additional Assessment Questions (quiz/exam)

Note: the modeling project is a significant assessment of these learning goals

1. [Show a graph of student collected data or from the template] For the dataset graphed below, circle the best fitting initial value problem for the susceptible population. Justify. [fill in your own values for N,a,b>0]

$$(1) S'(t) = aS(N-S), S(0) = N-1$$

- (2) S'(t) = -aS(N-S), S(0) = N-1 [Correct]
- (3) S'(t) = at(t-b), S(0) = 1
- (4) S'(t) = aS(S-N), S(0) = 1
- 2. List two things this model ignores which are relevant to an actual cold spreading in a dorm. Justify their relevance.

[Many valid answers, including: Spread of the infection from/to other locations outside the residence hall. Immunity from the virus. Recovery from the virus (possibly leading to immunity).]

Module Project

The assignment for this module is a project where students model data that is generated via group simulation over Zoom, analyze that data, and present their results. The simulation represents the spread of the common cold throughout a floor of a residence hall under various social/hygienic scenarios. This project is meant to introduce the idea of a differential equation model and investigate the impact of heightened hygiene and decreased interactions on the spread of an infectious disease. The focus of this simulation is on the common cold, a recurring, but mild, disease. The analysis and conclusions, however, can be extended to other more serious infectious diseases like the COVID-19 pandemic.

The simulation could be done outside of class using personal Zoom accounts or implemented in a socially-distanced class within Zoom breakout sessions. Either way, all the students become familiar with the full modeling experience from data collection to completion. What students learn from this experience is then solidified by organizing and communicating their results through a presentation (again recorded from their screens, using software such as Zoom or Screencastify).

The time the simulation portion takes depends heavily upon how many scenarios are assigned for students to complete. Personally, I would assign 4 runs (Normal and scenarios A, B, and C) for each pair and spend about 50 minutes during one class session for the simulation phase. Then, I would assign the analysis and discussion phases to be done outside class time.

Rubric for Modeling Project:

Students should complete the project with a presentation from a wiki in your LMS, from slides, or equivalent. This presentation is preferably a screen & webcam recording using software such as the Chrome extension <u>Screencastify</u>. The following rubric scores the project out of 50 points, meant to be equivalent in value to about two week's work of homework or half of an exam.

The Project Rubric is an analytic version which is optimal for efficient grading and implementation in a Learning Management System (LMS). The Project Scoring Guide is a more traditional version of the rubric with room for personal comments.

Project Rubric				
Simulation			Pts	
0 No data waa	1 Insufficient data	2 Dequired emount of data is	earnea	
0 No data was	a insufficient data	2 Required amount of data is		
O Spreadsheat is not	2 Spreadsheat is filled	2 Spreadsheat is filled out		
filled out	2 Spreadsheet is filled	orreatly		
0 Individual did not	2 Individual	5 Individual succeeded in their		
o maiviauai did noi	5 Individual	<i>5 Individual</i> succeeded in their group motor		
Model Development	participated	Tote and assisted then group mates		
0 No montion of	2 Salaction process of	5 Selection of model is clearly		
soloction process	model is clearly stated	instified using visualizations		
0 Model is not	2 Model solution is	5 Solution of model is correctly		
o would is not	2 Would solution is	demonstrated and implemented		
A polygig	confectly used	demonstrated and implemented		
Allarysis	2 Initial actimates of	4 Initial parameter estimates are		
of peremotors	2 Initial estimates of	4 Initial parameter estimates are		
0 Pagrassion of	2 Pagrassion of model	4 Pagression of model slope		
model slope function	2 Regression of model	function is implemented and		
is not implemented	implemented correctly	interpreted correctly		
correctly	implemented correctly	Interpreted correctly		
0 No parameters were	1 Optimization of key	3 Optimization of key		
ontimized	norameter(s) is	5 Optimization of Key parameter(s) is accurate to 3 sig		
optimized	accurate to 3 sig fig	fig for each data run and clearly		
	for one data run	explained		
Discussion				
0 No summary of	2 Results are clearly	3 Results are clearly summarized		
results	summarized	and their significance correctly		
1054105	Summunicu	interpreted (e.g. R^2/RMSE)		
0 No discussion	1 Discussion questions	3 Discussion questions are all		
questions are	are all answered	thoughtfully answered and include		
answered		specifics		
0 Discussion does not	2 Discussion	4 Discussion demonstrates		
demonstrate any	demonstrates some	complete understanding of the		
understanding of the	understanding of the	simulation and subject matter		
simulation or subject	simulation and subject	5		
matter	matter			
Presentation				
0 No clear	2 Has clear	3 Organization is functional and		
organization	organization	professional		
0 Not within time	1 Is within time limit	3 Is focused, well-rehearsed, and		
limit		within time limit		
0 Individual did not	2 Individual	4 Individual spoke clearly and		
contribute to the	participated	contributed well to presentation		
presentation	significantly			
Total	50			

Project Scoring Guide					
Component	Pts	Comments	Pts		
	Possible		Earned		
Simulation					
Required amount of data is	2				
collected					
Spreadsheet is filled out	3				
correctly					
Individual contributed well in	5				
simulation/recording role					
Model Development					
Selection of model is clearly	5				
justified using visualizations					
Solution of model is correctly	5				
demonstrated and implemented					
Analysis					
Initial parameter estimates are	4				
logically justified					
Correct regression with model	3				
slope function					
Correct local/global optimization	3				
of key parameter(s)					
Discussion					
Clearly summarized results and	3				
correctly interpreted their					
significance (R^2/SSE/RMSE)					
Completely answered discussion	3				
questions, including specifics					
Demonstrated a good	4				
understanding of the simulation					
and subject matter					
-					
Presentation					
Organized slides / wiki well	3				
Presented in a focused/practiced	3				
way within the time limit					
Individual spoke clearly and	4				
contributed well to presentation					
Total	50				