Resources

Resource Image

Genetic Code

Author(s): Anton E Weisstein

Truman State University

84 total view(s), 31 download(s)

0 comment(s) (Post a comment)

Summary:
This Excel workbook allows the user to recreate the steps in breaking the genetic code. The user enters the sequence of repetitive synthetic mRNA strands, which are translated in vitro to produce repetitive polypeptides.

Licensed under CC Attribution-NonCommercial-ShareAlike 4.0 International according to these terms

Version 1.0 - published on 17 Aug 2024 doi:10.25334/FB7F-XQ32 - cite this

Overview

This workbook allows the user to recreate the steps in breaking the genetic code. The user enters the sequence of repetitive synthetic mRNA strands, which are translated in vitro to produce repetitive polypeptides. The user must then deduce the underlying genetic code. An instructor can set the workbook to use the actual genetic code, a random code using the same triplet format as the actual code, or an entirely different kind of proposed genetic code.

Popular Text Citations

Osawa, S. 1995. Evolution of the genetic code. Oxford University Press: Oxford, UK.

Jungck, J. R. 1984. The adaptationist programme in molecular evolution. The origins of genetic code. Pp. 345-364 in Matsuno, K.; Dose, K.; Harada, K.; Rohlfing, D. L., eds., Molecular Evolution and Protobiology. Plenum Press: New York.

Ratner, V. A., et al. 1996. Molecular Evolution. Biomathematics Volume 24. Springer_Verlag: New York. See chapter 3.2: Noise immunity of the genetic code and texts, pp.44-50.

Research Articles

Bertman, M. O.; Jungck, J. R. 1978. Some unresolved mathematical problems in genetic coding. Notices of the American Mathematical Society 25:A-174.

Bertman, M. O.; Jungck, J. R. 1979. Group graph of the genetic code. Journal of Heredity 70:379-384.

Cedergren, R.; Miramontes, P. 1996. The puzzling origin of the genetic code. Trends on the Biochemical Sciences 21:199-200.

Crick, F. H. C.; Barnett, L.; Brenner, S.; Watts-Tobin, R. J. 1961. General nature of the genetic code for proteins. Nature 192:1227-1232.

Jimenez-Montano, M. A., et al. 1995. On the hypercube structure of the genetic code. In Lim, A.; Cantor, C. R., eds., BioInformatics and Genome Research. World Scientific: Singapore, p.445.

Jimenez-Montano, M. A., et al. 1996. The hypercube structure of the genetic code explains conservative and non-conservative amino acid substitutions in vivo and in vitro. BioSystems 39:117-125.

Jungck, J. R. 1978. The genetic code as a periodic table. Journal of Molecular Evolution 11:211-224.

Shepard, J. C. 1981. Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proceedings of the National Academy of Sciences USA 78:1596-1600.

Education Research & Pedagogical Materials

Bergland, M. 1996. DNA Electrophoresis. The BioQUEST Library IV:(Extended Learning Resources): University of Maryland – College Park.

Jungck, J. R. 1977. Complementarity and coding. Journal of College Science Teaching 7:27-28.

Jungck, J. R.; Friedman, R. M. 1984. Mathematical tools for molecular genetics data: an annotated bibliography. Bulletin of Mathematical Biology 46:699-744.

Gilbert, D. 1996. SeqApp, SeqPup, Dotty Plotter, GelFragSizer, GenBank Search, and LoopDLoop/LoopViewer. The BioQUEST Library IV:(Support Materials Archive): University of Maryland – College Park.

Citation

Researchers should cite this work as follows:

Fundamental Mathematical Concepts

Fundamental Mathematical Concepts
Crick-Griffith-Orgel Comma-Free Coding Theory

Developed By

Developed by
Francis H. C. Crick, J. S. Griffith, Leslie E. Orgel

Primary Reference

Crick, F. H. C.; Griffith, J. S.; Orgel, L. E. 1957. Codes without commas. Proceedings of the National Academy of Sciences US 43:416-421.