Lesson Plan

Real-World Context	Possible Math Tools
Students divide into groups, and each group designs a beanbag toss game. The game must be fair enough to attract players, and challenging enough to keep them invested. Students use the resources at their disposal to design a carnival game, and use data to set an appropriate level of challenge by changing player accuracy. Students may brainstorm one of many different modeling problems:	
representation, addition	
- How big should the target be?	
- How far should a player stand from the target?	
- What kind of obstacles should be in the way?	

Relevant Common Core Standards:

CCSS.MATH.CONTENT.K.CC.C. 7

Compare two numbers between 1 and 10 presented as written numerals.
Task: Determine who had a higher score in the bean bag toss.

CCSS.MATH.CONTENT.K.OA.A. 2

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Task: Sum up the score of a bean bag toss game.

CCSS.MATH.CONTENT.1.MD.A. 2

Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.
Task: Measure the distance from thrower to target.
CCSS.MATH.CONTENT.1.MD.C. 4
Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.
Task: Compare the accuracy of contestants standing at different distances from the target.

Dive In:
Students begin exploring the topic.

Student Actions	Teacher Actions		
Students will explore the topic by answering questions such as: \bullet - What do you notice? What do you wonder?	What will you show/tell students to launch the real-world context and capture their interest? Allow students to talk about their experience with games, and ask what makes them fun. How can		
- What is interesting about this topic?		\quad	games be quantified? What can be added or
:---			
changed? Consider the beanbag toss specifically.			

Define the Problem:

Ideas are narrowed to a focused, mathematically relevant problem.

Student Actions	Teacher Actions		
Students will choose a focused problem that can be answered and justified with information and mathematics.	Guide students towards a focused problem that can be answered and justified with information and mathematics.		
Students should consider questions such as:	What are my expectations for the model? Will the whole class focus on the same problem, or will variation be allowed? Different groups should examine different qualities or rules of the game. The students can choose whichever one they want, as long as it can be make a model?		
- What quantities are required by the			
model? Which ones are provided?		\quad	mand varied.
:---			

Do the Math:
Iterate the model until it is done and can be evaluated.

Student Actions	Teacher Actions
Use mathematical tools to develop a model.	Note the mathematics that develops during model building. Mathematically justify all estimations and numerical values in model.
Use the model to suggest a solution. Record work.	What are some common misconceptions that could arise at this stage, and how might you address them? Students may not understand the purpose of taking data at several different settings. Point out the difference between an estimate and an exact value.
Address misconceptions individually or as a group.	
When are natural times to regroup?	
Once the students have some experience running	
tests, or when they're ready to interpret their data.	

Decide Whether You're Satisfied, and Declare Victory:
Evaluate your model and decide when the model is ready to be presented.

Student Actions	Teacher Actions
Students should be evaluating their model by asking questions such as: - If there is a rubric or checklist, see if you did everything. - Is your solution reasonable? Why or why not? - Is your solution useful for answering your question?	What components do you expect the students' models to include? A succinct description of how they designed their game, and how challenging it is. What will a useful model be able to do? Define some quality of the game, and show how it correlates with a player's rate of success. Define an ending point for your students' models, and set clear expectations. Guide students through reviewing their models by considering the questions on the left.

Demonstrate Solution:

Present and interpret your model that solves the problem.

Student Actions	Teacher Actions
Students will reflect, justify, and present	What expectations do you have for students' presentations?
their models by asking and answering	Groups should be able to reasonably explain how they chose their trials, and demonstrate how they questions such as:
	can adapt their game to various levels of challenge.

- Why would you recommend your model to someone?
- What mathematical tools did you use, and how did they help solve the problem?
- What did you change in your model throughout the modeling process?
- Are there situations where your solution wouldn't work or your model wouldn't apply?
- How would you need to change your model to apply to more situations?
- If you had more time, what else would you do?
- Are there any mathematical tools or pieces of information that would have been helpful to have?

Dive into Math Modeling

Revisit:

These questions may help you consider possible extensions to the problem. Tying the problem to more advanced math gives students a frame of reference for newer mathematical tools.

Q: When could you recall the math used in this lesson as a starting point or an example later in your curriculum?
A: The method of taking data can be recalled in future statistics lessons.

Q: Is there a time later in the year when you might come back to this real-world scenario with different mathematical tools? Remember that students sometimes reach for tools that are most familiar and it might take them a while to build confidence to use a new tool in a modeling situation.
A: Students who are well-versed in statistics may want to revisit this problem with better data, and even try to find linear relationships between certain qualities.

Q: \quad Throughout the year, will you be collecting new information about this scenario? Are there times you could use that information to reflect on and improve your model?
A: No, but students are encouraged to build bigger and more complicated games at home.

Q: Are there other similar scenarios where you could use the same kinds of models? What might change? What might stay the same?
A: This lesson introduces students to counting, comparing, and building a table of values. This also prepares students to work with bar graphs et. al. in grades 3-5.

For more resources on how to change parameters and constraints or how to extend this task to other grades, consider consulting the GAIMME report pages 136-139 http://www.siam.org/reports/gaimme.php.

Dive into Math Modeling!

