# **Beanbag Toss**



Learning Goals

| Grade Band       | 3-5                                                                                      |
|------------------|------------------------------------------------------------------------------------------|
| Possible Math    | Addition                                                                                 |
| Tools            | Division                                                                                 |
|                  | Percentages                                                                              |
| Real-World       | Students divide into groups, and each group designs a beanbag toss game. The game        |
| Context          | must be fair enough to attract players, and challenging enough to keep them invested.    |
|                  | Students use the resources at their disposal to design a carnival game, and use data to  |
|                  | set an appropriate level of challenge by changing player accuracy. Students may          |
|                  | brainstorm one of many different modeling problems:                                      |
|                  | <ul> <li>How big should the target be?</li> </ul>                                        |
|                  | <ul> <li>How far should a player stand from the target?</li> </ul>                       |
|                  | <ul> <li>What kind of obstacles should be in the way?</li> </ul>                         |
| Cross-Curricular | This lesson could be inspired by a field trip or icebreaking game; for example, students |
| Connections      | might create a carnival stand as a crafts project, and then consider how to improve      |
|                  | their game.                                                                              |

# **Relevant Common Core Standards:**

### CCSS.MATH.CONTENT.3.NF.A.1

Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b.

Task: Measure the height of an obstacle between the target and thrower with a fractional measuring tool.

### CCSS.MATH.CONTENT.3.MD.B.4

Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units - whole numbers, halves, or quarters.

### Task: Measure the height of an obstacle in between the target and thrower and compare heights with a graph.

### CCSS.MATH.CONTENT.3.MD.C.5

Recognize area as an attribute of plane figures and understand concepts of area measurement. Task: Determine how large a target should be to make the game challenging but not impossible.

### CCSS.MATH.CONTENT.4.NF.C.6

Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.

# Task: Convert the fractional height of an obstacle into a decimal that is easier to compare with other heights. Is 5/16 larger than 3/7?

This lesson was developed by Jody Britten, Marka Carson, Jacob Cordeiro, Misael Jimenez, and Erika Villegas-Jimenez Grant STEM-C-1441024 Last Edited Date: 7/31/17



Template developed at

