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This workbook is designed for MATH 119,
the Mathematics for Biology course at Radford
University.

It is expected that the students have a work-
ing knowledge of basic mathematics at a high
school level, but calculus, pre-calculus or trigonom-
etry are not required. The topics have been
selected based on their relevance for biology.
Logarithms and exponential are extremely use-
ful in many areas of biology, and probability
and the binomial distribution are included for
their use in genetics.

Difference equations are included because
they can be easily implemented in EXCEL or
other computing environments. This opens to
door to first simulations of population growth
without the Calculus machinery. Of course
Calculus or Linear Algebra are inevitable once
stability issues arise. Chapter 16 looks at first
order difference equations; another chapter with
examples of higher order difference equations
(Fibonacci numbers, Leslie population mod-
els) and systems of difference equations (SIR,
predator-prey) is planned. Examples, mind
you, not a detailed analysis, which would be
well beyond the scope of this workbook.

This workbook is not designed like an ordi-
nary math book where the concepts build log-
ically on top of each other, and one chapter is
a prerequisite for the next. For instance, most
students know how to cancel common factors,
expand an expression or solve simple simple
equations; and we use them from the onset,
while a detailed discussion of algebra opera-
tions or strategies for solving an equation fac-
toring will be presented much later.

Calculations are usually carried out with
highest possible precision, but intermediate re-
sults (to help the student follow the steps) and
final answers are rounded to a few decimal
places, because most of the time two or three
significant digits matter.

This is not a recipe book (as in ”take the
square root, double it, and add three to the an-
swer”). We emphasize the thoughts and ideas
which go into a particular concept, along with
pitfalls and common errors. In many cases we
will present different methods to solve a prob-
lem, and in the end the student has to select
the approach with which he or she is most com-
fortable.

On occasion the workbook goes past the
bare minimum of the course. These parts could
be considered further reading material for the
interested student, or they may serve as refer-
ence material.

In its first run the MATH 119 course was
taught using the text ”Quantitative Reason-
ing and the Environment” by Langkamp and
Hull. Some of their ideas, examples and ex-
ercises have been incorporated into this work-
book.

The graphs were produced with EXCEL,
Maple and Paint.

Many thanks to the biology faculty who
have let me audit their classes, and to those
who have contributed teaching material, and
to those who served as my sounding board for
this endeavor.
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1 Scientific Notation

In biology, we often have to deal with very
large or very small quantities. For instance,
the adult human body consists of approximately
37 trillion cells; rod shaped bacteria, bacilli,
are between 1 to 4 micrometers (microns) long;
drinking water may contain up to 10 parts per
billion of arsenic by EPA standards, and so on.
Scientific notation is a convenient way to ex-
press such numbers.

1.1 Scientific Notation

Definition (Scientific Notation): Every pos-
itive real number x > 0 can be written in the
form

x = a 10n

where the exponent n is an integer (whole num-
ber). The number 1 ≤ a < 10 is called the
mantissa, and the number n indicates the or-
der of magnitude.

Examples:

256 = 2.56 102

0.0035 = 3.5 10−3

6.9 = 6.9 100

The requirement that 1 ≤ a < 10 ensures
that scientific notation is unique. Otherwise
we could have 22 = 22 100 = 2.2 101 = 0.22 102.
For negative numbers we can just include a
negative sign, as in −414 = −4.14 102. If you
want to write x = 0 in scientific notation, you
have to allow for a = 0.

1.2 Significant Figures

Significant Digits (Figures): This is the
number of digits of the mantissa.

Examples:

256 = 2.56 102 3 significant digits

−0.45 = −4.5 10−1 2 significant digits

Usually you can determine the significant
digits by counting the digits left to right, ig-
noring leading zeros.

Trailing zeros are a little tricky. Undoubt-
edly,

256.0 = 256

The first number contains four significant dig-
its, the second only three. In scientific notation
we would write 2.560 102, and 2.56 102, respec-
tively. The first mantissa contains four digits,
the second only three.

Without scientific notation there remains a
bit of ambiguity when dealing with large num-
bers. For example, it is not possible to tell how
many significant digits the number

42, 600, 000, 000

contains. We have

42, 600, 000, 000 = 4.26 109 = 4.260 109

The number has at least three significant fig-
ures, but it could be more.

As we work applied problems, we should
keep the number of significant figures about
the same. For instance, in 423

22.7 , both, nu-
merator and denominator have three signifi-
cant digits. It makes no sense to write 423

22.7 =
18.63436123. This is pretending that we have
very high accuracy, and that we stand behind
the correctness of all of these ten digits. In-
stead we should round to three places and write

423

22.7
= 18.6
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1.3 Rounding

Rounding: Always round to the nearest.

Examples:
Round to two significant figures:

2.336 ≈ 2.3

2.383 ≈ 2.4

Round to three significant figures:

−22.469 ≈ −22.5
8

3
≈ 2.67

When rounding to the nearest, the cutoff
is five. Digits in the range 0 − 4 are rounded
down, digits in the range 5 − 9 are rounded
up. If the digit in question is exactly equal to
five, we need a tie breaker. For instance, the
number 2.35 is exactly in the middle between
2.3 and 2.4. A recommended strategy is to
round to even. Example:

2.35 ≈ 2.4

2.45 ≈ 2.4

2.55 ≈ 2.6

2.65 ≈ 2.6

We rounded to 2.4 or 2.6, rather than to 2.5.
In a more complicated calculation which in-

volves several steps, it is a good a idea to keep
the highest precision possible throughout, and
wait with rounding until the final answer is cal-
culated.

For simplicity’s sake we shall use ”=” from
here on, even when we are rounding, as in π =
3.142, or 10

7 = 1.4286. Use common sense when
deciding the number of significant figures!

1.4 Unit Prefixes

The major prefixes are listed in the Figure 1.

tera T one trillion 1012

giga G one billion 109

mega M one million 106

kilo k one thousand 103

hecto h one hundred 102

deca da ten 101

one 100

deci d one tenth 10−1

centi c one hundredth 10−2

milli m one thousandth 10−3

micro µ one millionth 10−6

nano n one billionth 10−9

pico p one trillionth 10−12

Figure 1: Unit Prefixes

As we go through the table, the powers of
ten change in increments of three. This is sim-
ilar to the way we group digits in blocks of
three. Example:

23, 400, 000, 000, 000

= 23.4 1012 = 23.4 trillion

There is also a fine tuning around unity. This
accommodates things like centimeter, or hec-
toliter, et cetera.

Caution: A billion may not equal a bil-
lion! The short scale, where a billion equals
109, is used in the U.S., Great Britain and
in the Arabic world. Continental Europe and
Latin America use the long scale, where a bil-
lion equals 1012, and 109 is called a milliard in
that number scale.

1.5 Calculator

The descriptions are given for TI calculators.
The labels of the keys may be different for
other brands, but the ideas are the same.
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Use the EE key to enter numbers given in
scientific notation. For example

2.34 10−5 becomes 2.34EE − 5

Calculators will switch to scientific nota-
tion when numbers become too large or too
small. On the TI-84+ the number 0.000234 is
shown as

2.34E − 4

which is to be interpreted as 2.34 10−4.
You can also change the MODE to SCI.

In this case all numbers will be displayed in
scientific notation. For instance

25, 000 becomes 2.5E4

The engineering mode ENG is very useful.
Here the powers of ten are incremented in steps
of three, and we can use the unit prefix table
directly. For example,

25, 000, 000 becomes 25E6

and the number is 25 million.

1.6 Worked Problems

1. Convert the given numbers to scientific
notation

(a) 8, 630, 000

(b) 0.004, 56

(c) 63.9 trillion

(d) 0.25 1011

Solutions:

(a) 8, 630, 000 = 8.63 106

Move the decimal point to the left
by six spaces.

(b) 0.004, 56 = 4.56 10−3

Move the decimal point to the right
by three spaces.

(c) From the table we obtain that a tril-
lion equals 109, and thus

63.9 trillion = 63.9 109

= 6.39 1010

The last step was necessary because
63.9 is not between 1 and 10.

(d)
0.25 1011 = 2.5 1010

2. Round the numbers to four significant
figures.

(a) 345, 678

(b) 0.0691

(c) 22.715

(d) π

(e)
22

7

Solutions:

(a) 345, 678 ≈ 345, 700
678 is rounded to 700.

(b) 0.0691 ≈ 0.06910
This problem is questionable, as the
original number only has three sig-
nificant figures.

(c) 22.715 ≈ 22.72
Round to even (2), rather than down
to 22.71.

(d) π = 3.141592 . . . ≈ 3.142

(e)
22

7
= 3.14285 . . . ≈ 3.143

3. Compute the expression and express the
result in scientific notation.

(a) 3.521 107 − 2.63 105

(b) 6.9 10−4 × 2.34 106

Solutions: Calculators will solve these prob-
lems just fine. Here we give some detail.
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(a) 3.521 107 − 2.63 105

We cannot subtract 2.63 from 3.521
directly, because the exponents are
different. Instead we change the last
term so that the exponent becomes
7 as well.

3.521 107 − 2.63 105

= 3.521 107 − 0.0263 107

= (3.521− 0.0263) 107

= 3.4947 107

≈ 3.495 107

The larger number had just four sig-
nificant figures, and we shouldn’t put
any faith in the fifth digit.

(b) 6.9 10−4 × 2.34 106

This is straight multiplication. Mul-
tiply mantissas and powers of ten
separately:

6.9 10−4 × 2.34 106

= 6.9× 10−4 × 2.34× 106

= 16.146× 102 ≈ 1.6 103

1.7 Exercises

1. Convert to scientific notation:

(a) 43, 000, 000, 000

(b) 0.000, 04

(c) 12

(d) 6

(e) 1
4

(f) 75.6 trillion

(g) 53 millionth

2. Compute the expressions, and express the
results in scientific notation. Round to
four significant digits, if necessary.

(a) 1.8 · 107 − 8 · 106

(b) 6.4 · 10−7 × 3.75 · 103

(c)
5.7 104

7.7 10−5

(d)
6 · 105 + 7.2 · 10−2

2.5 · 102 + 3 · 10−5

(e) (5 · 104)2

(f) (5 · 105)2

(g) (5 · 10−4)2

(h)
√

4.9 · 10−5

(i)
√

4.9 · 10−4

3. How many seconds are in a year? Use
scientific notation and round the result
to four significant digits.

Answers

1. (a) 4.3 · 1010

(b) 4 · 10−5

(c) 1.2 · 101

(d) 6 · 100

(e) 2.5 · 10−1

(f) 7.56 1013

(g) 5.3 10−5

2. (a) 107

(b) 2.4 · 10−3

(c) 7.043 · 108

(d) 2.4 · 103

(e) 2.5 · 109

(f) 2.5 · 1011

(g) 2.5 · 10−7

(h) 7 · 10−3

(i) 2.214 · 10−2

3. 3.154 · 107 seconds
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2 Metric System

The metric system, or more specifically SI units
(Système International d’Unités), dominates the
scientific literature. An adult human is about
1.7 meters tall; the green tree frog (Hyla cinerea)
is about 4 to 5 centimeters long; the common
vampire bat (Desmodus rotundus) weighs about
55 to 60 gram; blood sugar levels are measured
in milligram per deciliter, to name a few exam-
ples.

2.1 Basic Physical Units

Most physical units are composed of the three
basic units: length (L), time (T) and mass (M).
In the metric system these are measured in
meters (m), seconds (sec) and gram (g), re-
spectively. Other SI units are Ampere (A) for
electric current, Kelvin (K) for temperature,
mole (mol) for amount of substance and can-
dela (cd) for luminous intensity.

Historical Background:

1. Meter: The distance from the pole to the
equator is set as

10, 000 km = 107 m

which makes one meter a ten millionth of
that distance.

2. A second is based on the rotation of the
Earth. One revolution about its own axis
takes 24 hours, which is equivalent to

24× 60× 60 sec = 86, 400 sec

3. A kilogram is the mass of one liter (L) of
water (a liter is set as a one thousandth
of a cubic meter). A gram then is a one
thousandth of this quantity.

The definitions have since been updated to ob-
tain higher precision.

Compound Units are made up from the ba-
sic units by multiplication or division. The
most popular terms are summarized in the ta-
ble.

Area length × length L2

Volume area × length L3

Velocity
displacement

time

L

T

Acceleration
change of velocity

time

L

T 2

Flux
volume

time

L3

T

Density
mass

volume

M

L3

Force mass × acceleration
ML

T 2

Work force × displacement
ML2

T 2

Power
work

time

ML2

T 3

Pressure
force

area

M

LT 2

Figure 2: Compound Units

2.2 Metric Measurements

2.2.1 Length

Length is measured in meters (m). For large
distances use kilometers, where

1 m = 103 m = 1, 000 m

For small lengths centimeters (cm), millimeters
(mm) or microns (µm) are commonly used

1 cm = 10−2 m = 0.01 m
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1 mm = 10−3 m = 0.001 m

1 µm = 10−6 m = 0.000, 001 m

This boils down to knowing your prefixes.

2.2.2 Area

The basic unit is the square meter (sq. m or
m2), which is the area of a square where both
sides are one meter long.

Large areas are expressed in square kilome-
ters, the area of 1 km by 1 km square. Specif-
ically,

1 km2 = 1 km× 1 km

= 1, 000 m× 1, 000 m

= 1, 000, 000 m2 = 106 m2

Beware that a kilo of square meters (1,000 m2)
is NOT equivalent to a square kilometer!

A hectare (ha) is the area of a square of
size 100 m by 100 m. Therefore

1 ha = 100 m× 100 m

= 10, 000 m2 = 104 m2

1 km2 = 100 ha

Small areas can be expressed in square cen-
timeters or square millimeters:

1 cm2 = 1 cm× 1 cm

= 0.01 m× 0.01 m

= 0.000, 1 m2 = 10−4 m2

1 mm2 = 1 mm× 1 mm

= 0.001 m× 0.001 m

= 0.000, 001 m2 = 10−6 m2

It follows that

1 m2 = 10, 000 cm2

1 m2 = 1, 000, 000 mm2

1 cm2 = 100 mm2

2.2.3 Volume

The natural unit for volume is the cubic me-
ter (m3), which is the volume of a cube whose
sides are all one meter long. This unit is rather
large, and most useful applications use liters
(L), or even smaller quantities such as milliliters
(mL).

A liter is defined to the volume of the cube
whose sides are 10 cm long. In terms of cubic
meters we find (10 cm = 0.1 m)

1 L = 0.1 m× 0.1 m× 0.1 m

= 0.001 m3

and therefore 1 m3 = 1, 000L.

In reference cubic centimeters we see that

1 L = 10 cm× 10 cm× 10 cm

= 1, 000 cm3

Therefore

1 mL = 1 cm3

that is, a milliliter is the equivalent of a cubic
centimeter!

2.2.4 Velocity and Acceleration

Velocity is measured in meters per second (m/sec)
or in kilometers per hour (kmh or km/h), ac-
celeration is measured in meters per second
squared (m/sec2). This is meters per second
per second.

Important velocities:
The speed of sound is 344 m/sec.
The speed of light is 299,792,458 m/sec.

The acceleration due to gravity on Earth is
9.807 m/sec2.
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2.2.5 Flux

This quantity1 is the product of area and veloc-
ity, or equivalently, the ratio volume per time.

flux = area× velocity = L2 × L

T

=
L3

T
=

volume

time

Flux can be measured in liters per second.

Example: A small river with cross sectional
area of 20 m2, and average velocity of 2 m/sec
transports

20 m2 × 2 m/sec = 40
m3

sec

= 40, 000
L

sec

2.2.6 Mass

The basic unit for mass is a kilogram (kg),
which, under the appropriate conditions, equals
the mass of one liter of water.

A kilogram can be further partitioned into
grams (g) or milligrams (mg), where

1 g = 0.001 kg

1 mg = 0.001 g

or equivalently

1 kg = 1, 000 g

1 g = 1, 000 mg

For large masses we use the metric ton (tonne)

1 tonne = 1, 000 kg

1In the sequel we will use the term ”flux” in the
sense of a volumetric flow rate. In general terms, flux
is defined as the product of density and velocity. For
incompressible fluids (water, blood) these definitions
are equivalent.

2.2.7 Density

This is mass per volume, and usually density
is denoted by ρ. A common unit is gram per
cubic centimeter (g/cm3).

Notice that

g

cm3
=

kg

L
=

tonne

m3

The density of water is 1 g/cm3 = 1 kg/L,
the density of air is about 1.2 mg/L and the
density of the Earth is 5.52 g/cm3.

2.2.8 Force

Force is the product of mass and acceleration.
Its SI unit is Newton (N), which is defined as

1 N =
1 kg · 1 m

1 sec2

A much smaller unit for force is dyne, which is
defined as

1 dyne =
1 g · 1 cm

1 sec2

It follows that

1 N = 100, 000 dyne

The force of 1 kg on Earth is 9.81 N.

2.2.9 Work

Work is the product of force and displacement.
It is equivalent to energy, and to momentum
(mass times the square of the velocity). Com-
mon units for work are Joule (J), erg, Watt
hours (Wh) or calories. Definitions:

1 J = 1 N× 1 m (Newton meter)

1 erg = 1 dyne× 1 cm

1 Wh = 3, 600 J

1 cal = 4.1840 J
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Joule is considered the official SI unit, the
others are listed for convenience.

A calorie (cal) is the energy required to
raise the temperature of one gram of water by
one degree Celsius.

Beware that the calories listed on food items
are kilo calories (kcal), and they are sometimes
written as Cal, with an upper case C.

2.2.10 Power

Power is the ratio of work per time. The SI
unit for power is 1 Watt (W) = 1 Joule/sec.

One horsepower is the equivalent of 745.7
Watt.

While Watt is a measurement of power,
Watt hours (Wh) measure energy (power mul-
tiplied by time results in work).

Example: If you use a 25 Watt light bulb for
one hour, you use up 25 Watt hours, and the
energy consumption is

25 W× 1 h

=
25 J

sec
× 3, 600 sec = 90, 000 J

2.2.11 Pressure

Pressure is the ratio force per area, and its SI
unit is Pascal (Pa), defined as

1 Pa =
1 N

m2

In the medical field blood pressure is mea-
sured in mmHg (millimeter of mercury) and 1
mmHg = 133 Pa.

The tire pressure in your car should be about
32 PSI = 221,000 Pa = 221 kPa, and the at-
mospheric pressure at sea level is about 101
kPa.

2.2.12 Temperature

Biologists usually measure temperature2 in de-
grees Celsius. It was originally set so that wa-
ter freezes at 0oC and it boils at 100oC. The
relation to Kelvin (K) is that

K = oC + 273.15

2.3 Worked Problems

1. (a) How many millimeters make up a
kilometer?

(b) Convert 0.000,000,044 km to meters
and microns.

Solutions:

(a) 1 km = 1, 000 m = 1, 000, 000 mm

(b) 0.000, 000, 044 km = 0.000, 044 m
= 44 10−6 m = 44µm

2. (a) Convert 25,000 square meters to hectare.

(b) Is it reasonable that a leaf has area
30 million square millimeters? What
about 30 thousand square centime-
ters?

(c) How many cubic millimeters make
up a milliliter?

Solutions:

(a) 25, 000 m2 = 2.5× 10, 000 m2

= 2.5 ha

(b) 30 million square millimeters is the
area of a rectangle with sides 6,000
mm (= 6 m) and 5,000 mm (5 m).
This is unreasonably large for a leaf.
30, 000 mm2 = 150 mm × 200 mm,
which is a 15 cm by 20 cm rectangle,
a reasonable size for a big leaf.

2The official SI unit for temperature is Kelvin.
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Yes, leaves are not rectangular, but
we are just comparing sizes of leaves
to sizes of rectangles.

(c) 1 mm = 0.1 cm. Therefore

1 mm3 = (0.1 cm)3

= 0.001 cm3 = 0.001 mL

3. What is the flux trough a blood vessel
whose cross sectional area is 4 mm2 when
the blood passes through the vessel at 7
mm/sec?

Solution:

4 mm2 × 7 mm/sec

= 28
mm3

sec
= 0.028

mL

sec

and it will take about 36 seconds for one
milliliter of blood to pass through the
vessel.

4. (a) What is the mass of 12 mL of water?

(b) What is the mass of one cubic meter
of water?

Solutions:

(a) The mass of one liter of water is 1
kg = 1,000 g. Multiply by 0.012 to
obtain 12 mL, and the mass is 12 g.

(b) The mass of one liter of water is 1
kg = 1,000 g. Multiply by 1,000 to
obtain a cubic meter; the resulting
mass is 1,000 kg = 1 tonne.

5. How many tonnes are in

(a) 23 kg,

(b) 5,709,000,000 mg?

Solutions:

(a) 23 kg = 0.025 tonnes

(b) 5,709,000,000 mg = 5,709,000 g
= 5,709 kg = 5.709 tonnes

6. What work is required to lift 75 kg by 5
cm?

Solution:
The force exerted by 75 kg on Earth is

F = 75kg× 9.81
m

sec2
= 736 N

Hence, the resulting work is

W = 736 N× 5 cm

= 736 N× 0.05 m = 36.8 J

7. A bird eats a worm containing 150 J of
energy. How many kcals (food) is that?

Solution: 1 cal = 4.1840 J. Therefore

150 J =
150

4.1840
cal

= 35.85 cal ≈ 0.036 kcal

8. (a) What physical quantity is obtained
when you divide velocity by accel-
eration?

(b) What physical quantity is obtained
when you multiply mass and the square
of a velocity?

Solutions:

(a)
velocity

acceleration
=

L/T

L/T 2
= T

The answer is time.

(b) mass× velocity2 = M ×
(
L

T

)2

=
ML2

T 2
= work
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2.4 Exercises

1. (a) Convert 2,000 mm to cm, to m and
to km.

(b) Convert 2.12 cm to meters.

(c) Convert 0.000,021 m to µm.

2. A fish measures 37.5 cm in length. Con-
vert the length to mm and to m.

3. Convert to meters and express the results
in scientific notation. Some values are
averages or crude approximations.

(a) 53 pm, the atomic radius of hydro-
gen,

(b) 600 nm, the wavelength of visible
light,

(c) 2 µm, size of bacteria,

(d) 100 µm, the thickness of human hair,

(e) 0.76 mm, the thickness of ID cards,

(f) 3 cm, the size of an acorn,

(g) 1.75 m, the height of a human,

(h) 42.2 km, the length of a marathon,

(i) 6,371 km, the radius of the Earth,

(j) 384,000 km, the distance to the moon,
and

(k) 150 million km, the distance to the
sun.

4. How many kilometers are covered by a 4
x 400m relay?

5. A particle moves 14 cm, and then 9 km,
and then 455 µm, and finally 87mm. Ex-
press the total distance in meters. Do not
round the result.

6. Hesperoyucca whipplei is among the fastest
growing plants on Earth, and it was recorded
to have grown 3.7m in 14 days. What is
the growth rate in mm per hour?

7. A base pair of DNA is approximately 0.340
nm long (1 nm = 1 nanometer = 0.000,000,001
m). The human genome is about 3.2 bil-
lion base pairs long. What is the length
of human DNA measured in meters?

8. How many square kilometers are the equiv-
alent of 4,000 hectares?

9. How many liters does a rectangular tank
with dimension 40 cm x 50 cm x 80 cm
hold?

10. How many milliliter of water fit into a
container of size 25mm x 25mm x 10mm?

11. A leaf has area 25 cm2. Convert the area
to square millimeters.

12. How many cubic millimeters fit into a
solid with volume 0.03 L?

13. How many cubic millimeters are contained
in one milliliter?

14. A roll of bandage is 10cm wide and 2.5m
long. What is its area?

15. How many 2.5 mL doses of a vaccine can
be obtained from 1.5 L?

16. How many liters of water fell on 5 hectares
of land when the rain was measured at
4cm?

17. Estimate the area of the leaf pictured in
the figure.
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18. The cross sectional area of a small stream
is 0.25 m2, and it flows at 0.2 m/sec. How
much water pases though the creek each
second?

19. True/False: The mass of one milliliter of
water is one gram.

20. How many grams are the equivalent of
0.045 tonnes?

21. How much do 4 cubic centimeters of wa-
ter weigh?

22. An African elephant weighed in at 6.8
tonnes. Convert the weight to kilogram
and to gram.

23. A liver cell has mass 0.000,000,003,5 g.

(a) Convert this mass to mg and µg.

(b) How many cells make up one gram
of liver tissue?

24. What (compound) unit is obtained when
force is divided by pressure?

25. What (compound) unit is obtained when
force is multiplied by velocity?

26. What physical unit could be measured in

(a) kilogram per liter?

(b) millimeter per day?

(c) cm per minute squared (cm/sec2)?

(d) kg per meter per hour squared ( kg
m hr2

)?

27. (a) What work is required to raise 55
kg by 6 m?

(b) How much power is required to raise
55 kg by 6 m in 12 seconds?

28. Calculate how much energy in Joules and
in megajoules your body has effectively
released into the environment if you go
for a run and burn 600 Calories. (Re-
member Calorie 6= calorie)

29. A cubic meter of gold has a mass of 19.3
tonnes. What is the density of gold in
g/cm3 (gram per cubic centimeter)?

30. An engineering website records the den-
sity of diamonds as 3,500 kg/m3.

(a) Convert this value to g/cm3.

(b) What is the volume of a 7 carat di-
amond? Use: 1 carat = 200 mg.

31. What is the pressure exerted by 100 dyne
on 5 cm2?

32. Gasoline has a density of about 0.74 kg/L.
What is the volume of 10 grams of gaso-
line?

33. Use scientific notation to express

(a) 12 milligram in gram

(b) 42.2 kilometers in meters (distance
of a marathon)

(c) 29 tonnes in gram

(d) 0.062 mL in liters

(e) 20 µm in meters

34. Find convenient units for the quantities
below. Example: 4.8·10−7 m = 0.48µm =
480 nm.

15



(a) 3.2 · 108g

(b) 0.5 · 10−4L

(c) 8.8 · 108µm

(d) 2.5 · 107m2

(e) 4 · 10−10m3

Answers

1. (a) 2,000 mm = 200 cm = 2 m = 0.002
km

(b) 0.0212 m

(c) 21 µm

2. 375 mm = 0.37 5m

3. (a) 5.3 · 10−11 m

(b) 6 · 10−7 m

(c) 2 · 10−6 m

(d) 10−4 m

(e) 7.6 · 10−4 m

(f) 3 · 10−2 m

(g) 1.75 · 100 m

(h) 4.22 · 104 m

(i) 6.371 · 106 m

(j) 3.84 · 108 m

(k) 1.5 · 1011 m

4. 1.6 km

5. 9,000.227,455 m

6. 11 mm/hr

7. ≈ 1.1 m

8. 40 sq km

9. 160 L

10. 6.25 mL

11. 2,500 mm2

12. 30,000 mm3

13. 1000

14. 2,500 cm2 = 0.25 m2

15. 600

16. 2,000,000 L

17. About 21 cm2

18. 50 L

19. True

20. 45,000 g

21. 4 g

22. 6,800 kg = 6,800,000 g

23. (a) 0.000,003,5 mg = 0.003,5 µg

(b) 286 million cells

24. area

25. power

26. (a) density

(b) velocity

(c) acceleration

(d) pressure

27. (a) 3,237 J

(b) 270 W

28. 2,510,400 J = 2.5104 MJ

29. 19.3 g/cm3

30. (a) 3.5 g/cm3

(b) 0.4 mL

31. 2 Pa

32. 13.5 mL
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33. (a) 1.2 · 10−3g

(b) 4.22 · 104m

(c) 2.9 · 106g

(d) 6.2 · 10−2L

(e) 2 · 10−5

34. (a) 320 tonnes

(b) 0.05 mL

(c) 880m = 0.88 km

(d) 25 km2

(e) 0.4 mm3

3 Unit Conversion

Unit conversion is routine in biological work.
For instance, it is reported that sailfish (Istio-
phorus) can swim 100 m in 4.8 seconds. How
fast is this measured in miles per hour? Or,
in a field study you determine that the aver-
age weight of tree squirrels in a state park is
is 1 lb and 5 oz. What is the equivalent value
in gram? Or, you may have to figure out how
many 4 mg doses of a vaccine can be obtain
from a 1.5 gal supply.

This section will cover unit conversion meth-
ods. Before we get to the techniques, we will
summarize the important relationships in ta-
bles. Conversion within the metric system was
touched upon in the previous section and mas-
tery of unit prefixes goes a long way for such
problems.

3.1 Customary U.S. Units

Historically, the common units used in the U.S.
today were derived from British (imperial) units.
They are closely related, but not quite identi-
cal.

1 ft = 12 in
1 yd = 3 ft
1 mi = 5,280 ft
1 mi = 1,760 yd

1 acre = 43,560 ft2

1 mi2 = 640 acres

1 gal = 4 qts
1 qt = 32 oz
1 ft3 = 7.480,519 gal

1 barrel = 42 gal

1 lb = 16 oz
1 ton = 2,000 lb

Figure 3: U.S. Units

Notice that the term ounce is used as a
volume unit and as a mass unit. We speak of
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fluid ounces when talking about volumes, and
of dry ounces for masses.

Other customary units in the U.S. include
horsepower (hp) and British thermal units (BTU).
One horsepower (hp) is the power required to
raise 550 lb at the rate of 1 ft/sec against grav-
ity, and one BTU is the energy needed to raise
the temperature of 1 lb of water by one degree
Fahrenheit.

3.2 U.S. and Metric Units

The data are summarized in two tables.

Things that are commonly expressed in feet
or yards should be converted to meters, miles
should be converted to kilometers, and inches
to centimeters. Areas of the size of acres should
be expressed in hectares, a liter is about a
quart, a pound is about one half of a kilogram,
and imperial and metric tonnes are about the
same.

1 m = 3.280,840 ft
1 m = 1.093,613 yd

1 km = 0.621,371 mi
1 cm = 0.393,701 in

1 m2 = 10.764 ft2

1 km2 = 0.386,102 mi2

1 ha = 2.471,054 acres

1 L = 1.056,688 qt
1 L = 0.264,172 gal

1 kg = 2.204,623 lb
1 g = 0.035,274 oz

1 tonne = 1.102,311 tons

Figure 4: U.S. to Metric

For temperature conversions we have

oC =
5

9
( oF− 32o)

oF = 1.8 oC + 32o

K = oC + 273.15

1 ft = 0.3048 m
1 yd = 0.9144 m
1 mi = 1.609,344 km
1 in = 2.54 cm

1 ft2 = 0.092,903 m2

1 mi2 = 2.589,988 km2

1 acre = 0.404,686 ha

1 qt = 0.946,353 L
1 gal = 3.785,412 L

1 lb = 0.453,592 kg
1 oz = 28.349,523 g

1 ton = 0.907,185 tonnes

Figure 5: Metric to U.S.

Finally, we note that

1 BTU = 1, 055.056 J

1 cal = 4.184 J

1 hp = 745.7 W

BTU stands for British thermal unit and hp is
horsepower.

3.3 Conversion Methods

There are basically three methods that can be
applied to convert between units. We illustrate
all three for the problem of converting 72 km/h
to m/sec. Further examples are given in the
next section.

3.3.1 Substitution

Example:

72 km

hr
=

72× 1, 000 m

3, 600 sec
= 20 m/sec

As the name indicates, 1 km was substituted
by 1,000 m, and one hour was replaced by 3,600
seconds.
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3.3.2 Conversion Ratios

This is probably the most popular conversion
method.

Example:

72 km

hr

=
72 km

hr
× 1, 000 m

km
× 1 hr

60 min
× 1 min

60 sec

=
72× 1, 000 m

60× 60 sec
= 20 m/sec

The same calculation is frequently expressed
in box form:

72 km 1, 000 m 1 hr 1 min

hr km 60 min 60 sec

The idea behind this method is multiplica-
tion by 1. For instance,

1 km = 1, 000 m

and therefore

1, 000 m

1 km
= 1

The same goes for

1 hour

60 min
= 1 or

1 min

60 sec
= 1

3.3.3 Conversion Factors

All values found in the conversion tables are
conversion factors.

In our example we have to calculate factor
for conversion from km/h to m/sec ourselves
(substitution).

km

hr
=

1, 000 m

3, 600 sec
=

5 m

18 sec
= 0.278 m/sec

Once the factor is established, we can calculate

72 km/h = 72× 0.278 m/sec = 20 m/sec

3.4 Worked Problems

1. Sports: How many acres are in an NFL
football field (playing area plus end zones)?

Solution (Conversion Ratios): A football
field is 100 yards long and 160 feet wide,
and the end zones are 10 yards each.

(100 + 2× 10) yards× 160 feet

= 19, 200 · yd · ft · 3 ft

yd
· acres

43, 560 ft2

= 1.32 acres

2. Highway: How many miles are the equiv-
alent of 500 feet?

Solution (Conversion Ratios):

500 ft = 500 ft× mi

5, 280 ft

=
500

5, 280
mi = 0.0947 mi

≈ 0.1 mi

3. Land Management: Convert square
miles to hectares. What is the conver-
sion factor?

Solution:

(1 mi)2 = (1, 609 m)2 = 1.6092 m2

= 2, 588, 881 m2 · ha

10, 000 m2

≈ 259 ha

Thus, to convert from square miles to
hectares, you should multiply by 259.

4. Volume: Convert 0.3 cubic inches to
milliliters.

Solution:

0.3 in2 = 0.3× (2.54 cm)3

= 0.3× 2.543 cm3

= 4.91 mL
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Recall that cubic centimeters and milliliters
are identical.

5. Pediatrics: A baby is born at 7 lb. and
9 oz. Express the birth weight in gram.

Solution:

7 lb + 9 oz = (7× 16 + 9) oz

= 121 oz× 28.35 g

oz
= 3, 430 g

6. Temperature Conversion

(a) Pediatrics: A child is running a
temperature of 102.5 degrees Fahren-
heit. What is the equivalent Celsius
value?

(b) Culinary: A recipe for a loaf of
bread calls for 220 degrees Celsius
baking temperature. What is the
American stove stetting?

Solutions:

(a) C = 5
9 (102.5− 32) = 39.2

(b) F = 1.8 · 220 + 32 = 428

7. Engineering: How much power is re-
quired to raise two tons by five feet in
two seconds?

Solution: The force is

F = 2 tons · 9.81 m/sec2

= 2 · 1, 102.3 · 9.81
kg m

sec2

= 21, 627 N

The distance is 5 ft = 1.524 m. Hence,
the power is given by

P =
21, 627 N · 1.524 m

2 sec
= 16, 480 W

= 16, 480 W · 1 hp

745.7 W
= 22.1 hp

The answer is 16,480 Watts, which is the
equivalent of 22.1 horsepower.

8. Medical: A person’s blood sugar is mea-
sured at 6 mmol/L (millimol per liter).
Convert this value to mg/dL (milligram
per deciliter).

Solution: mg/dL is the customary unit
for blood sugar in the medical field. A
deciliter is one tenth of a liter.

We need a little chemistry background
to solve this problem. Glucose C6H12O6

has atomic mass 180 Da3. Therefore one
mol of glucose has mass 180 g (=180,000
mg), and substitution results in

6 mmol

L
=

0.006 mol

10 dL
· 180, 000 mg

mol

=
1080 mg

10 dL
= 108 mg/dL

3.5 Exercises

Use scientific notation, if necessary.

1. How many fluid ounces are in a cubic
foot?

2. How many miles are in 1500 feet?

3. Convert 4 million inches to miles.

4. Your lab animals need 3 ounces of a liq-
uid food supplement each day. How long
will a five gallon supply last?

5. How many dry ounces make up 0.7 tons?

6. Convert 0.3 acre feet to gallons. Acre
foot is a volume unit commonly used for
large amounts of water.

3The respective atomic mass values are 12 Da for
carbon, 1 Da for hydrogen and 16 Da for oxygen. Thus,
glucose has atomic mass 6× 12 Da +12× 1 Da +6× 16
Da = 180 Da.
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7. Federal law has reserved 100 acres of land
to be left unharvested. If the trees grow
at a density of 3 trees/1000 sq feet, how
many trees have been protected from log-
ging?

8. Doctors suggest to drink 8 cups of water
per day. How many milliliters is this?

9. A 12 inch ruler is how many centimeters
long?

10. Buffalo Mountain in Floyd County is 3,971
feet above sea level. What is its elevation
expressed in meters?

11. How many milliliters are in a gallon of
milk?

12. How many acres are in a 1 kilometer by
3 kilometer enclosure?

13. The average density of the Earth is 5.52
g/cm3. What is this density in (a) kg/m3,
(b) lb/ft3?

14. Bob has a maximum speed of 14 mph,
Eric has a maximum speed of 8 m/sec,
John’s maximum speed is 100 ft/min, and
Ted has a maximum speed of 800 km/day.
Who is the fastest?

15. The current land speed record was set
by Andy Green with a Thrust SSS, and
he reached 1224 kmh, and thus he be-
came the first driver of a land vehicle to
break the sound barrier. Suppose you
could sustain this speed, and the roads
were cleared off, how long would it take
to drive the 2,790 miles from L.A. to New
York City?

16. Find the largest value of the following
masses: 0.1 pounds, 2 ounces, 30 grams,
and 0.02 kilograms.

17. A particular chemical has been shown to
have beneficiary effects on human cog-
nitive ability at dosages of 60µg per kg
of body weight. However, this very same
chemical is harmful at dosages over 100µg
per kg of body weight. What is a healthy
dosage for a patient weighing 120 lbs?
What dosage is harmful?

18. (a) Convert 32oF, 70oF, 0oF and 1000oF
to Celsius.

(b) Convert 25oC, 37oC,−12oC and 300oC
to Fahrenheit.

(c) At what temperature do you get the
same value on the Fahrenheit and
on the Celsius scale?

19. (a) Find the conversion factor from mmol/L
to mg/dL for glucose. I. e. convert
1 mmol/L to mg/dL.

(b) Use the result from part (a) to ex-
press

i. 7.5 mmol/L

ii. 4 mmol/L

in mg/dL.

(c) What A patient’s glucose level is 153
mg/dL. What is the equivalent in
mmol/L?

Answers

1. 957.5 oz.

2. 0.284 miles

3. 63.1 miles

4. 213 days

5. 22,400 oz.

6. 97,755 gal.

7. 13,068 trees
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8. 1,893 mL

9. 30.48 cm

10. 1,210 m

11. 3,785.4 mL

12. 741.3 acres

13. (a) 5,520 kg/m3 (b) 345 lbs/ft3

14. Ted

15. 3 hr 40 min 6 sec

16. 2 oz

17. 3.266 mg and 5.443 mg

18. (a) 0oC, 21.6oC, -17.8oC and 537.80oC.

(b) 77oF, 98.6oF, 10.4oF and 572oF

(c) -40oC = -40oF

19. (a) 1 mmol/L = 18 mg/dL

(b) (i) 135 mg/dL (ii) 27 mg/dL

(c) 8.5 mmol/L

4 A Little Geometry

The surface area to volume ratio is an impor-
tant concept in biology.

Leafs have a large surface area in relation
to their volume, the surface area of apples is
small compared to their volumes. A large sur-
face area means a lot of interaction to the sur-
rounding environment, which is beneficial for
photosynthesis (sun light), but it also means a
lot of exposure to the elements such as heat or
extreme cold.

On a cellular level all nutrients must en-
ter though the plasma membrane, and waste
leaves that way. The size of the surface area
limits the size (volume) of the cell: A cell can-
not survive if it doesn’t receive enough nour-
ishment.

In this section we review some basics of ge-
ometry.

4.1 Two Dimensions: Area and Perime-
ter

The simplest two-dimensional object is a
rectangle. If the sides are denoted by a and
b, respectively, the area A becomes

A = ab

and the perimeter p is

p = 2a+ 2b
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For the special case of a square (a = b = x)
we find that

A = x2 and p = 4x

The area A of a triangle is one half of the
product of base and height:

A =
1

2
ch

and the perimeter p is

p = a+ b+ c

For right triangles, and for those triangles
only, we have the famous Pythagorean formula

c2 = a2 + b2

where c is the hypothenuse (the leg opposite
the right angle). For such triangles one can
use the remaining sides as base and height re-
spectively, and the area becomes

A =
ab

2

The number π is ubiquitous when dealing
with circles and spheres. Is is defined as the
ratio between circumference and diameter of a
circle

π =
circumference

diameter
= 3.141, 592, 653, . . .

which remains the same, regardless of the size
of the circle.

The area A of a circle with radius r is

A = πr2

and its circumference c is given by

c = 2πr

If the diameter d is used, we find that

d = 2r

c = πd

A =
π d2

4

The units for areas must be the square of a
length, such as square foot, square centimeters,
et cetera.

4.2 Three Dimensions: Volume and
Surface Area

The three-dimensional counterpart of a rect-
angle is a box. Its volume V is given by the
product

V = abc
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and the surface area consists of six rectangular
faces with total area

S = 2(ab+ bc+ ca)

For the special case of a cube (a = b = c =
x) we have

V = x3 and S = 6x2

A sphere with radius r has volume

V =
4

3
πr3

and surface area

S = 4πr2

A circular cylinder is shaped like a can.
It is determined by the radius r of the circles
on top and bottom, and by its height h. The
volume v of the cylinder is given by

V = πr2h

and its surface area S is

S = 2πr2 + 2πrh = 2πr(r + h)

The term 2πr2 accounts for the areas of the
bottom piece and the lid, and the term 2πrh
measures the lateral surface area.

Finally we look at a cone. Its has a cir-
cular base with radius r, and a height h. The
lateral length l from the tip to the base perime-
ter is connected to the other quantities (right
triangle, Pythagoras)

l2 = r2 + h2

The volume of such a cone is given by

V =
1

3
πr2h

and its surface area is

S = πr2 + πrl

Volumes can be measured in cubic feet, cu-
bic meters, and more importantly liters. Look
for the third powers of length units.

4.3 Doubling Lengths and Surface Area
to Volume Ratios

It is easy to see that the area of a square grows
by a factor of 4 if the sides are doubled.
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This can also be formally verified. We use x
for the original length of the sides and x′ = 2x
for the new length. Then the respective areas
are

A = x2

A′ = (x′)2 = (2x)2 = 4x2 = 4A

For circles it is not that obvious to tell by
what factor the area is increased when the ra-
dius (or the diameter) is doubled. A formal
calculation with r and r′ = 2r as radii shows
that

A′ = π(r′)2 = π(2r)2

= π4r2 = 4A

As a rule of thumb, we see that the area
quadruples when the sides or the radius of an
object are doubled. This is a characteristic of
the two dimensional space (note that 4 = 22).

Things change in three dimensions. When
we double the sides of a cube, the volume will
become an eightfold of its original size. For
instance, if you have a set of dice, all the same
size, and you want to build a die one whose
sides are twice as long, you need eight dice for
your construction.

In an abstract calculation we find that

V ′ = (x′)3 = (2x)3

= 8x3 = 8V

and a similar computation can be used to see
that the volume of a sphere also raises by an
eightfold when the radius is doubled. This is a
feature of three-dimensional objects (8 = 23).

The surface area to volume ratio of a
three-dimensional object is defined as

SV R =
surface area

volume
=

S

V

For a cube whose sides have length x, we have
V = x3 and S = 6x2. Hence

SV R =
S

V
=

6x2

x3
=

6

x

and we can calculate the surface area to volume
ratio directly.

When the sides of the cube are doubled,
the new surface area is S′ = 4S and the new
volume becomes V ′ = 8V , as we saw above.
Therefore, the new surface area to volume ratio
is

SV R′ =
S′

V ′
=

4S

8V

=
1

2

S

V
=

1

2
SV R

and which is one half of the original ratio.

4.4 Angular Speed and Centrifuges

The angular speed measures how fast some-
thing is revolving. This could be a search light
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at an airport, the crankshaft in a car, an old
vinyl record or a centrifuge, to name a few ex-
amples.

One full rotation is 360o, which in radians
equals 2π = 6.283.... We shall denote angular
speed by ω, and we will express it in radians
per time.

Example: A search light makes one full rev-
olution every 6 seconds. The angular speed
becomes

ω =
2π

5 sec
= 1.257/sec

Example: The engine in a car revolves at
3,500 rpm (revolutions per minute). The an-
gular speed becomes

ω =
3, 500 · 2π

60 sec
= 366.5/sec

In centrifuges we generate an acceleration
(which becomes a force when applied to a mass).
The parameters of importance are the radius
of the rotor r, the angular speed ω and the rel-
ative centrifugal force RCF , which relates the
acceleration of the centrifuge to that of gravity.
It is computed as

RCF =
ω2r

g

where g = 9.8 m/sec2 is the constant of gravity.

Example: A bucket of water is attached to a
rope so that the combined length of arm and
rope is r = 1.5 m. You spin the bucket such
that one revolution takes 1.5 seconds. Here the
angular speed is

ω =
2π

1.5 sec
=

4π

3
/ sec

and the relative centrifugal force becomes

RCF =
ω2r

g
=

16π2

9 sec2 · 1.5 m
9.8 m
sec2

=
16 · π2 · 1.5

9 · 9.8
= 2.69

This is more than double the gravitational force,
which is enough to keep the water from leaving
the bucket in an up-side down position.

Centrifuges are used to separate cell mate-
rial, and in order to isolate a certain substance,
you have to adjust the rpm setting to obtain
the correct RCF. Suppose that the rotor has
radius r cm, and that rpm is the rpm setting.
Then

ω =
rpm · 2π

60 sec
=

rpm · π
30 sec

and

RCF =
rpm2 ·π2

900 sec2 · r cm
9.8 m
sec2

=
π2 rpm2 r

900 · 9.8 · 100
= 1.119 10−5 rpm2r

Therefore

rpm2 = 89365.3
RCF

r
≈ 90, 000

RCF

r

and

rpm ≈ 300

√
RCF

r

Example: The radius of the JA-20 rotor in a
Beckman J2-21 centrifuge is 10.8 cm. Isolation
of chloroplasts requires a RCF of 1,300. The
proper rpm selection is

rpm = 300

√
1, 300

10.8
= 3, 291 ≈ 3, 300

4.5 Worked Problems

1. The diameter of a quarter, as in a 25
cent coin, is 24.26 mm, its thickness is
1.75 mm, and its mass is 5.670 g.

(a) What is the area of each of the faces?
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(b) What is the volume of a quarter?

(c) What is its density?

Solutions:

(a) We are looking for the area of a cir-
cle. The diameter is 24.26 mm; thus
the radius is 12.13 mm, and the area
becomes

A = π(12.13 mm)2

= 462.2 mm2 = 4.622cm2

(b) This is the volume of a cylinder. We
have just computed the area of its
base, and multiplication by the height
yields the desired result (1.75 mm =
0.175 cm)

V = 4.622cm2 × 0.175 cm

= 0.809 cm3 = 0.809 mL

(c) Density is mass per volume, and we
obtain

ρ =
5.670 g

0.809 mL
= 7.01 g/mL

2. The bacterium Escherichia coli (E coli)
is shaped like a rod (bacillus) and it is
about 3 µm long and 1 µm in diame-
ter. Use a cylindrical model to answer
the questions below.

(a) What are the volume and the sur-
face area?

(b) What is the surface area to volume
ratio?

(c) What is the mass of a single cell if
we assume that the density is ρ =
1.1 g/mL?

Solutions:

(a) We have r = 0.5µm and h = 3µm.
Thus

V = π · 0.52 · 3µm3

= 2.356µm3

and

S = 2π · 0.5(0.5 + 3)µm2

= 11.00µm2

(b)

SV R =
11.00µm2

2.356µm3
= 4.67/µm

(c) Mass = density × volume. Thus

m = 1.1 g/mL× 2.356 µm3

= 2.6 g
µm3

mL

The tricky part is to simplify the
ratio of cubic microns to milliliters
(cubic centimeters). Since

1µm = 0.001 mm

= 0.000, 1 cm = 10−4 cm

it follows that

1µm3 =
(
10−4

)3
cm3

= 10−12 cm3

and that

µm3

mL
= 10−12

Therefore the mass of the cell is

m = 2.6 10−12 g = 2.6 pg

Here pg stands for picogram.
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3. Repeat the exercise for a eukaryotic cell,
assuming that the cell is shaped like a
sphere with radius 24µm.

(a) What are the volume and the sur-
face area?

(b) What is the surface area to volume
ratio?

(c) What is the mass of a single cell if
we assume that the density is ρ =
1.1 g/mL?

Solution:

(a) Here r = 12µm and from the for-
mulas for spheres we find

V =
4

3
π(12µm)3

= 7, 238 µm3

and

S = 4π(12µm)2

= 1, 810µm2

(b)

SV R =
1, 810µm2

7, 238 µm3
= 0.25/µm

In comparison to the bacterium we
see that the surface area to volume
ratio is much smaller for our eukary-
ote. This requires a higher degree
sophistication on part of eukaryotic
cell in order move matter around in-
side the cell, and to pass it through
the plasma membrane.

(c) The mass of the cell becomes (mul-
tiply mass and density)

m = 1.1 g/mL× 7, 238 µm3

= 7, 962 g
µm3

mL
= 7, 962× 10−12 g

= 7.962 10−9 g ≈ 8 ng

Here we are dealing in nanograms.

4. Find a formula for the surface area to
volume ratio for a sphere.

Solution: We apply the formulas for a
sphere and obtain

SV R =
4πr2

4
3 πr

3
=

3

r

Here are some useful applications of this
result:

(a) For the eukaryotic cell with r = 12µm
we get SV R = 3

12µm = 0.25/µm,
which confirms the result of the pre-
vious exercise.

(b) The formula shows that doubling the
radius will reduce the surface area
to volume ratio by 50%.

(c) Suppose you have an estimate of the
minimum surface to volume ratio,
which a cell can handle. Then you
can calculate the maximum radius
of a spherical cell from

r =
3

SV R

5. A dump truck can carry about 10 cubic
yards of dirt.

(a) Given that dirt has a density of 1.6
g/cm3, what is the weight (mass) of
one truck load?

(b) Excavation for a building site re-
quires the removal of
(42ft)x(29ft)x(8ft) of dirt. How many
truck loads are required?

Solutions:
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(a) First we convert 10 cubic yards to
cubic centimeters:

10 yd2 = 10× (91.44 cm)3

= 7.646 106 cm3

Hence, the mass becomes (volume
times density)

m = 7.646 106 cm3 × 1.6
g

cm3

= 12.2 106 g = 12.2 103 kg

= 12.2 tonnes = 13.5 tons

(b) The volume of dirt on our site is

V = 42× 29× 6 ft3

= 7, 308 ft3 × yd3

27 ft2

= 270.67 yd3

Thus, approximately 27 loads are
required. It’s up to the driver to
decide what to do about the extra
0.67 cubic yards.

6. Oil Spill. A circular oil spill in the Gulf
of Mexico covers 24 square miles.

(a) What is the diameter of the pol-
luted area?

(b) Suppose that on average the oil layer
is an eighth of an inch thick, how
many gallons have been spilled?

Solutions:
With wind and ocean currents, a real oil
spill will never look like a circle; we just
use this model as an approximate shape.

(a) We know the area, and we want to
determine radius and diameter.

24 mi2 = A = πr2

Therefore

r2 =
24 mi2

π
= 7.64 mi2

and

r =
√

7.64 mi2 = 2.76 mi

The diameter is twice the radius:
d = 5.5 miles.

(b) Asking for gallons means that we
are looking for a volume. We are
dealing with a huge circle covered
with a layer of oil. Thus the for-
mula for the volume of a cylinder
applies (this cylinder is very flat).

V = 24 mi2 × 1

8
in

We still have to convert the product
of square miles and inches to gal-
lons. We use feet as a common com-
parison unit for miles and inches,
and then convert to gallons and bar-
rels.

V =
24

8
mi2 × in

= 3× (5, 280 ft)2 × 1

12
ft

= 6.97 106 ft3 × 7.48 gal

ft3

= 52.1 106 gal

= 1.24 106 barrels

= 1.24 million barrels

One barrel equals 42 gallons.

7. Water Resources. A river is 1,800 feet
wide and the average depth is 20 feet.
If the water flows at 2.5 mph on aver-
age, then how many gallons flow down
the river each second?
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Solution:
The flux is the area of the cross section
(rectangle) multiplied by the velocity.

F = 1, 800 ft× 20 ft× 2.5
mi

hour

= 90, 000 ft2 mi

hr

Substituting 1 mi = 5,280 ft and 1 hr =
3,600 sec we obtain

F =
90, 000× 5, 280

3, 600

ft3

sec

= 132, 000
ft3

sec
× 7.48 gal

ft3

= 987, 000 × gal

sec

Roughly, this river transports a million
gallons of water each second!

8. An artificial pond in a zoo has a circu-
lar boundary with a 40 meter diameter.
The depth decreases linearly from zero to
5 meters in the center. How much water
does it contain? Assume that it is shaped
like a cone (up-side down).

Solution:
The data for the cone are r = 20 m and
h = 5 m. Thus, the volume becomes

V =
1

3
π(20 m)2 5 m

= 2, 094 m3

This is the equivalent of about 2 million
liters.

9. The Rotor is an amusement park ride.
It consists of a large upright barrel spin-
ning at fast rates. Once the barrel has
attained full speed, the floor is retracted,
leaving the riders stuck to the wall of the
drum. At the end of the ride cycle, the

drum slows down and gravity takes over,
and the riders slide down the wall slowly.

Suppose that you stand 3 meters from
the center and that the barrel makes 30
revolutions per minute.

(a) How fast are you moving, and

(b) what relative centrifugal force (RCF)
do you experience?

Solution:

(a) The circumference of the rotor is
2π ·3 m and you travel this distance
30 times in a minute, which makes
for a speed of

s =
2π · 3 · 30 m

60 sec
= 3π m/sec

The speed is 9.425 m/sec, which con-
verted to miles per hour becomes
21.1 mph.

(b) The angular speed is ω = 30·2π
60 sec =

π
sec , and therefore

RCF =
π2

sec2 · 3 m
9.8 m
sec2

= 3.018

Three times the acceleration of grav-
ity will keep the riders glued to the
wall!

4.6 Exercises

1. A circular plot at a garden show has cir-
cumference 75 ft. What is its area?

2. (a) By how much does the area of a
square change, if all sides are in-
creased by a factor of 5?

(b) By how much does the volume of
a cube change, if all sides are in-
creased by a factor of 5?
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3. A farmer puts up a fence with perimeter
2,500 ft to enclose a pasture. Assuming
that the pasture is shaped like a square,
how many acres is it?

4. Use 1 L = 1,000 cm3.

(a) A cube is to hold one liter, how long
are the sides?

(b) A sphere is to hold one liter, what
is its diameter?

5. Find a formula for the surface area to
volume ratio of a circular cylinder.

6. An ant travels along the perimeter of a
circle at a speed of 1.6 cm per second.
What is the area of the circle if it takes
the ant 3 minutes to complete one loop?
Express the result in square meters.

7. A cylindrical test tube has diameter 1
cm. How tall is the column of liquid,
measured from the bottom, if you fill the
test tube with 6 mL of a liquid?

8. The distance from the equator to the pole
is 10,000 km. What is the surface area of
the Earth, assuming that it is a perfect
sphere?

9. 40 million gallons of oil were spilled into
the ocean during the Odyssey Oil Spill
off the coast of Nova Scotia in 1988. As-
suming that the layer of oil was 1/2 inch
thick on average, what area did it cover?

10. A pond is shaped like a cone. Its diam-
eter across is 56m and the depth in the
center is 5m.

(a) What is the surface area of the the
water?

(b) How many liters does the pond con-
tain?

11. Suppose that a eukaryotic cell has the
shape of a cube whose sides are 24 µm
each.

(a) What are the volume and the sur-
face area?

(b) What is the surface to volume ratio?

(c) What is the mass of the cell, as-
suming that the cell density is ρ =
1.1 g/mL?

12. The cross sectional area of a small creek
is 2,500 cm2, and its average flow rate is
0.4 m/sec. How many liters of water pass
through the creek each hour?

13. How long will it take for 0.1L of blood to
pass through a vessel with diameter 3mm
if the average flow rate is 12mm/sec?

14. How fast do second hand, the minute
hand and the hour hand move on a clock?
Express your answers in revolutions per
minute and in radians per hour.

15. An object attached to a rope is spun with
radius 10 m, and such that it takes four
seconds for one revolution.

(a) What is the relative centrifugal force?

(b) What is the RCF if the object spins
twice as fast?

(c) What is the RFC if the radius is in-
creased to 20 m (and it still takes 4
seconds for one revolution)?

16. The radius of the rotor in your centrifuge
is 12.3 cm. It takes 10,000 RCF to isolate
mitochondria. What is the required rpm
setting?
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Answers

1. 447.6 sq. ft.

2. (a) 25 times as large

(b) 125 times more

3. 9 acres

4. (a) 10 cm (b) 6.2 cm

5. SV R =
2(r + h)

rh
= 2

(
1

r
+

1

h

)
6. 0.66 m2

7. 7.6 cm

8. 509.3 million km2

9. 4.603 square miles

10. (a) 2,463 m2 (b) 4.105 million liters

11. (a) 13,824 µm3 and 3,456 µm2

(b) 0.25/µm

(c) 15.2 ng

12. 360,000 L

13. 19 min 39 sec

14. Second hand: 1 rpm and 377 radians per
hour.
Minute hand: 1/60 rpm and 6.28 radians
per hour.
Hour hand: 1/720 rpm and 0.524 radians
per hour.

15. (a) 2.515

(b) 10.1

(c) 5.03

16. 8,553 rpm

5 A Little Algebra

The computations in the first sections involved
some routine algebra. In this section we will
review some basic algebra. Most of it should
be familiar material.

The binomial formula

(p+ q)2 = p2 + 2pq + q2

is related to the Hardy-Weinberg Law from ge-
netics.

5.1 General Laws

The commutative and associative laws are the
basic rules of arithmetic. They work for addi-
tion

a+ b = b+ a

(a+ b) + c = a+ (b+ c)

and for multiplication

a · b = b · a
(a · b) · c = a · (b · c)

There is nothing difficult here (3 + 8 = 8 + 3).

The associative laws allow us to group terms
anyway we like it. Since (a+b)+c = a+(b+c),
we might just omit the parentheses and write
a + b + c. The same goes for multiplication:
(a · b) · c = a · (b · c) = a · b · c

The distributive law connects addition and
multiplication:

a · (b+ c) = a · b+ a · c

In all formulas the letters a, b, c are vari-
ables. You may replace them by any numbers
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Figure 6: a · (b+ c) = a · b+ a · c

of your liking, and the equations will always
work out.

The multiplication symbol · is usually omit-
ted. Everybody knows that 3x means 3 · x.

The equality symbol (=) means that two
expressions have the same value. It should
never be used as a mathematical punctuation
symbol, separating different trains of thought!
A hanging equality sign usually makes refer-
ence to a previous expression, as in

x2 − 49 = x2 − 7x+ 7x− 49

= x(x− 7) + 7(x− 7)

= (x+ 7)(x− 7)

The chain of equalities is to long to be fitted
into a single line, and we have to break it up.

We return to the distributive law. If you
read it from left to right, it tells you how to
expand an expression; when read from right to
left, it is the factoring rule. The equality sign
is a two-way street! For example, going left to
right in

4y(x+ 2) = 4xy + 8y

we distribute the 4y with x and 2, while going
right to left we extract the common term y
from both expressions.

As a very common special case of the dis-
tributive law we note the formula

a+ ra = (1 + r) a

Examples:

1. You add 18% tip to a $ 45 restaurant bill.
What is the total amount due?

45 + 0.18 · 45 = (1 + 0.18) · 45

= 1.18 · 45

The point is not so much that the total
bill is $53.10, but that we can find this
amount directly by multiplying the tab
by 1.18 (rather than taking 18% first and
than adding it to the total).

2. A $300 recliner is reduced by 40%. How
much do you have to pay?
Rather taking 40% of 300 and then sub-
tract it from 300, you can find the sales
price by taking 60% of 300:

300−0.4·300 = (1−0.4)·300 = 0.6·300

The sales price is $180, of course.

3. A population of 800 bugs increases by
25%. The new population is

800 + 0.25 · 800 = 1.25 · 800 = 1, 000

The growth factor is 1 + r = 1.25

Subtraction is the inverse of addition. Specif-
ically, if a and b are given numbers, then the
number x with the property that

a = b+ x

is defined to be x = a− b. Similarly, division
is the inverse of multiplication. If a and b are
given, then x = a÷ b is the number such that

a = b · x

This shows that division by zero is not permit-
ted. Because if a 6= 0 and b = 0, we get the
contradiction a = 0 · x = 0, no matter what
value we take for x, and if both are zero, i.e.
if a = 0 and b = 0, then any number x will do
the trick.

33



5.1.1 Fractions

A fraction is the result of a division:

a

b
= a÷ b

We have two important special cases

a

1
= a and

a

a
= 1

Addition (or subtraction) of fractions de-
mands that the denominators are identical, in
which case

a

c
+

b

c
=

a+ b

c

Multiplication and division of fractions abide
by the following rules

a

b
· c
d

=
ac

bd
a

b
÷ c

d
=

a b

c d
=

ad

bc

You multiply fractions by multiplication of the
respective numerators and denominators; divi-
sion of fractions follows a cross-multiplication.

Again, there are important special cases:
Number times fraction

a · b
c

=
ab

c

Cancelation of common factors

ac

bc
=

a

b

You may also interpret this law as stating that
multiplication of a fraction by the same num-
ber in numerator and denominator does not
change its value.
Three locations of a minus sign

−a
b

=
a

−b
= −a

b

Examples:

1.
8

3
· 6

4
=

48

12
=

4 · 12

12
= 4

2.
4x

3
· x

2

6
=

4x · 6
3x2

=
8

x

3.
3

4
− 2

3
=

9

12
− 8

12
=

1

12

4.
x− 1

x

x+ 1
=

x2 − 1

x(x+ 1)
=

(x− 1)(x+ 1)

x(x+ 1)

=
x− 1

x
= 1− 1

x

5.1.2 Hierarchy of Operations

Hypothetically the quantity 3 + 5 · 6 could be
either

(3 + 5)× 6 = 8× 6 = 48

or
3 + (5× 6) = 3 + 30 = 33

Which is correct, 48 or 33?
There is a convention about the order in

which algebraic operations are carried out. In
terms of priority we have the hierarchy

1. exponents

2. multiplication, division

3. addition, subtraction

Use parentheses if you want to break the order.
Operations with the same priority are usually
carried out left to right.

You may know this principle by the acronym
PEMDAS (parentheses, exponents, multiplica-
tion, division, addition, subtraction).

In our example the answer 33 is correct. If
we mean the calculation, which leads to 48, we
have to write (3 + 5) · 6.

We have used PEMDAS before without mak-
ing a big fuss about it. For instance, in the dis-
tributive law the expression a · b+ a · c means
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(a · b) + (a · c), but knowing the order of oper-
ations, the parentheses are superfluous.

Your calculator knows the order of op-
erations. If you enter

3 + 5 ∗ 6 =

it will respond with 33.

But there are pitfalls! The calculator will
compute what you type in, and not what you
mean. Here are some typical errors:

1.
20

2 + 3
If you type

20÷ 2 + 3 =

the calculator interprets this as

(20÷ 2) + 3 = 10 + 3 = 13

as division has priority over addition. The
correct way is to use parentheses

20÷ (2 + 3) =

which will produce the right answer.

2.
42

3 · 7
Obviously, 42

3·7 = 42
21 = 2. If you enter

42÷ 3 · 7 =

the calculator will respond with 98, be-
cause (equal priority, left to right)

42÷ 3 · 7 = 14 · 7 = 98

The correct way to enter the expression
is

42÷ (3 · 7) =

5.2 FOIL, Binomial Formulas and the
Pascal Triangle

Repeated application of the distributive law re-
sults in the famous foil formula:

(a+ b)(c+ d) = a(c+ d) + b(c+ d)

= ac+ ad+ bc+ bd

= F + O + I + L

If a = c and b = d, the FOIL-result be-
comes

(a+ b)2 = a2 + 2ab+ b2

and if b is replaced by −b it follows that

(a− b)2 = a2 + 2a(−b) + (−b)2

= a2 − 2ab+ b2

Figure 7: (a+ b)2 = a2 + 2ab+ b2

If in the FOIL formula a = c and d = −b,
the middle terms will cancel and we find that

(a+ b)(a− b) = a2 − b2

The last three results are known as bino-
mial formulas. If you are comfortable with
them, you can avoid lengthy FOIL-exercises:

(x+ 5)2 = x2 + 10x+ 25

(8− x)2 = 64− 16x+ x2

9− x2 = 32 − x2 = (3− x)(3 + x)
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Figure 8: a2 − b2 = (a− b)(a+ b)

Higher order binomial formulas can be con-
firmed by repeated multiplication and FOIL-
expansions. The third order binomial formulas
are

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

(a− b)3 = a3 − 3a2b+ 3ab2 − b3

a3 − b3 = (a− b)(a2 + ab+ b2)

5.2.1 Pascal’s Triangle

Pascal’s triangle is a useful tool when working
with binomial formulas.

If you look at the formula

(a+ b)2 = a2 + 2ab+ b2

you should notice that the powers of a decrease
as you move from left to right, while those of
b increase. When you add the exponents, the
sum always equals 2 (use b0 = 1 and a0 = 1),
and the pattern of coefficients 1-2-1 describes
the formula completely.

The same can be observed in

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

Here the exponents add to 3, and the coeffi-
cients exhibit a 1-3-3-1 pattern. Hence, if we
knew the pattern of the coefficients, we could

Figure 9: Pascal’s Triangle

easily write a formula for (a+b)n for any power
n, and Pascal’s triangle will do just that.

The Pascal triangle looks like a pyramid,
with ones on the outside. The numbers on
the inside are obtained by adding the numbers
which are directly above the space in the pre-
vious line.

For instance, if you look at the figure and
you take the line beginning with

1 6 15 20 . . .

you see that 6 is obtained by adding 1 and 5,
which are located above the 6, and then take
15=5+10, 20=10+10, and so on. Just add the
two numbers, which are directly above.

Inspection of the Pascal triangle reveals that
the coefficients of (a+ b)2 show up in the third
line, those of (a+b)3 in the fourth. As it turns
out, the coefficients of (a+b)n are the values in
the n-th line, provided that you start counting
with zero. For instance

(a+ b)6

= a6 + 6a5b+ 15a4b2 + 20a3b3

+15a2b4 + 6ab5 + b6
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or

(x− 3)4

= x4 + 4x3(−3) + 6x2(−3)2

+4x(−3)3 + (−3)4

= x4 − 12x3 + 54x2 − 108x+ 81

FOIL it, if you don’t trust these results!

5.3 Hardy-Weinberg Equilibrium

We divert from the algebra review for a mo-
ment, and look at a biological application.

The Hardy-Weinberg Law has its origin in
population genetics. Instead of studying ge-
netics for just one individual organism, we keep
track of all alleles for a particular gene in the
population.

Suppose that a gene has alleles A and a.
We denote by p the proportion of the allele A
in the population, and by q the proportion of
the allele a. Then, by design, we must have

p+ q = 1

Let’s say that for example the allele A has

Figure 10: Punnett Square

frequency p = 0.6 = 60% and that a has fre-
quency q = 0.4 = 40%. If mating was solely
based on the laws of probability, than the chances

that a gamete has genotype AA is 36% (60%
from the egg and 60% from the sperm). The
genotype Aa can occur in two ways: Allele A
comes from the egg (60% probability), and a
comes from the sperm (40% probability), or
vice versa. In each case the probability is 0.24 =
0.6 · 0.4 and overall, the genotype Aa has fre-
quency 42% . Finally, genotype aa has fre-
quency 16% = 0.42.

This reasoning works for any values of p
and q, and we can summarize the result as

Genotype Frequency

AA p2

Aa 2pq
aa q2

Since p + q = 1, it follows from the binomial
formula that

p2 + 2pq + q2 = (p+ q)2 = 12 = 1

This is the Hardy-Weinberg principle. If the
relative frequencies of genotypes follow this equa-
tion, we say that the population is in Hardy-
Weinberg equilibrium.

Recall, that the distribution of genotypes
was based on probabilities alone. This pre-
sumes that there are no mutations, there is
no natural selection and no gene flow, that
mating is random and that the population is
large enough to justify probabilistic reasoning.
When the population is in Hardy-Weinberg equi-
librium it is not evolving with respect to that
gene.

Example: Wildflowers. A study of wild-
flowers on a meadow finds 320 red flowers (geno-
type RR), 160 pink flowers (Rr), and 20 white
flowers (rr).

Genotype Phenotype Freq. Perc.

RR red 320 64%
Rr pink 160 32%
rr white 20 4%

500 100%
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The data are summarized in the table. Here
the alleles R and W determine the color. First
we calculate the frequency of the alleles in the
population. Red flowers carry two R alleles,
pink flowers only have one R allele. Therefore

R : 320 · 2 + 160 = 800

r : 160 + 2 · 20 = 200

The values for p and q become

p =
800

1000
= 0.8 and

q =
200

1000
= 0.2

It now follows that

p2 = 0.82 = 0.64 = 64%

2pq = 2 · 0.8 · 0.2 = 0.32 = 32%

q2 = 0.22 = 0.04 = 4%

Since the predicted percentages match the ob-
servations, we conclude that the population is
in Hardy Weinberg equilibrium.

Example: Rock Mice. In a study of rock
mice researchers counted 374 brown mice (BB),
344 tan mice (Bb) and 32 white mice (bb).

First we determine p and q. We have

B : 374 · 2 + 344 = 1092

b : 3440 + 2 · 32 = 408

With 750 mice we have a total of 1,500 alleles
and the frequencies are

p =
1092

5000
= 0.728 and

q =
408

1500
= 0.272

The equilibrium percentages are

p2 = 0.7282 = 53.0%

2pq = 39.6%

q2 = 7.4%

We compare observation and predictions in
a table.

observed H W equilib.

BB brown 373 49.9% 53.0% 397.5
Bb tan 344 45.9% 39.6% 297.0
bb white 32 4.2% 7.4% 55.5

750 100% 100% 750

The side-by-side comparison shows that the
observed tan phenotype is over-represented, com-
pared to the Hardy Weinberg predictions, at
the expense of the other phenotypes, and we
have a heterozygous advantage.

Further analysis is required to determine
whether the findings are statistically signifi-
cant, or whether they can be explained by chance
alone.

Example: PKU. Phenylketonuria (PKU) is
a recessive disease. When left untreated it can
lead to brain damage, or even death. In the
United States one in 15,000 babies is born with
PKU (for Caucasian babies the ratio is worse,
it is 1:10,000).

We assume that the population is in Hardy
Weinberg equilibrium in regard to PKU. If A
is the dominant allele, and a is the recessive
allele, we know that aa has frequency

q2 =
1

15, 000

Thus,

q =

√
1

15, 000
= 0.008, 165

and consequently,

p = 1− q = 0.991, 835

The relative frequency of Aa then becomes

2pq = 0.0162

and we conclude that about 1.62% of the pop-
ulation are heterozygotes, they carry the PKU
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allele without showing symptoms of the dis-
ease.

5.4 Exponents

For any number a and any positive integer we
have the familiar definition

an = a · a · a · · · a︸ ︷︷ ︸
n factors

For example,

54 = 5 · 5 · 5 · 5 = 625

or(
−5

4

)3

=

(
−5

4

)
×
(
−5

4

)
×
(
−5

4

)
= −53

43
= −125

64
= −1.953, 125

The special case a1 = a is obvious, but worth
mentioning.

There are two fundamental rules for expo-
nents, and we begin by looking at examples.
First we have

53 · 54 = (5 · 5 · 5 · 5) · (5 · 5 · 5 · 5) = 58

and we see that in a product and we add the
exponents. Secondly(

53
)4

= (·5 · 5 · 5) · (5 · 5 · 5) · (5 · 5 · 5) · (5 · 5 · 5)

= 512

tell us that when the exponents are stacked,
we multiply them.

The associative law lets us disregard the
parentheses, and there is nothing special about
the numbers 3, 4 and 5. The underlying basic
laws for exponents are

aman = am+n

(am)n = amn

Routine applications of these rules are cal-
culations such as

106 · 109 = 1015 or

(x2)2 = x4

Our definition of an did require that n must
be a positive integer. If we want to use n = 0,
or allow for negative exponents, we need to
expand our definition, and we should do it in
such a way, that the basic laws remain valid.

We begin with a0 and set x = a0. Then

ax = a · a0 = a1+0 = a

Division by a shows that x = 1, and we get
a0 = x = 1. This only works if a 6= 0 and we
say that 00 is undefined4.

Now we look at negative exponents. Let
a 6= 0 and set x = a−n. Then

xan = a−nan = a−n+n = a0 = 1

Therefore,

a−n = x =
1

an

The important special case n = −1 results in

a−1 =
1

an
and

(
a

b

)−1

=
b

a

There is a host of other rules governing op-
erations with exponents. But they can be eas-
ily derived from the basic concepts. For in-
stance, We have

am

an
= am · 1

an
= am · a−n = am−n

4If a = 0, the equation becomes

0 · x = 0

and x could be any real number. For this reason we
say that 00 is undefined. Many formulas and results in
Calculus become easier to state if the convention 00 = 1
is used. See whether your calculator has an opinion on
this.
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as well as

(ab)n = (ab) · (ab) · · · (ab)
= (a · a · · · a) · (b · b · · · b) = anbn

and (
a

b

)n
=

a

b
· a
b
· · · a

b

=
a · a · · · a
b · b · · · b

=
an

bn

Examples:

1. (4 · 105)2 = 42 · (105)2 = 16 · 1010

= 1.6 · 10 · 1010 = 1.6 · 1011

2.
3−4

38
= 3−4−8 = 3−12

3.

(
3

5x2

)0

= 1

4.

(
3

x2

)4

=
34

(x2)4
=

81

x8

5.4.1 Fractional Exponents

It is not uncommon to encounter expressions
like 124/3, 101.2 or 0.25−1/2. Your calculator
will give you numerical values for any of these.
Why? How does the calculator evaluate these
expressions?

Again, we need to come up with a definition
which is consistent with the basic rules.

First we look at an example, and we set
x = 121/3. Then

x3 =
(
121/3

)3
= 12

1
3
·3 = 121 = 12

Thus, x3 = 12, and therefore x must be the
cubed root of 12:

121/3 = x =
3
√

12

If we were interested in 124/3, we could com-
pute

124/3 = (121/3)4 = (
3
√

12)4

There is nothing special about 12, 3 and 4,
and as a general rule we find that

a1/n = n
√
a

and that

am/n = n
√
am =

(
n
√
a
)m

If n = 2, we are taking a square root, and
we know that in this case a cannot be negative.
On the other hand, it is possible to take cubed
roots of negative numbers as in

3
√
−64 = −4

because (−4)3 = −64. We don’t want to get
too technical here, and we adopt the philoso-
phy that when in doubt we take a ≥ 0.

It is worthwhile to point out that there is
no ± when you compute square roots. For in-
stance,

√
25 = 5 and not

√
25 = ±5. Undoubt-

edly, the equation

x2 = 25

is solved by either x = 5 or by x = −5, but this
is a different story. When we talk about the
square root, we mean the principal root, and
this is the non-negative answer. Your calcula-
tor sees it this way too, there is no ± popping
up when you compute things like

√
25.

For the other introductory examples we find
that

101.2 = 106/5 =
(

5
√

10
)6

= 1.5856

= 15.85

and

0.25−1/2 = (0.25−1)1/2 = 41/2 =
√

4

= 2
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Most calculators use caret key ∧ to take
exponents. If your calculator does not have a
(convenient) key to take the n-th order root
of a number, you can always use the 1/n-th
power as an alternative, as in

5
√

10 = 101/5 = 100.2 = 1.585

5.5 Worked Problems

1. A population of 16,000 bees declines by
12.5%. What is the new population?

Solution:

16, 000− 0.125 · 16, 000

= (1− 0.125) · 16, 000

= 0.875 · 16, 000

= 14, 000

The new population is 14,000 bees and
the multiplier is 0.875.

2. Expand the expression −3(4− x).

Solution:

−3(4− x) = −12 + 3x

Don’t forget to distribute the negative
sign.

3. Factor the expression x2y2 − 3xy3

Solution: Both terms have one factor of
x and two factors of y in common:

x2y2 − 3xy3

= x · x · y · y − 3 · x · y · y · y · y
= x · y · y(x− 3 · y · y)

= xy(x− 3y)

You don’t need to show this much detail
in your work! We only did this once to
illustrate the details.

4. Expand and simplify the expression

(x− 2)(x+ 2)(x2 + 4)

Solution:

(x− 2)(x+ 2)(x2 + 4)

= [(x− 2)(x+ 2)] (x2 + 4)

=
[
x2 + 2x− 2x− 4

]
(x2 + 4)

= (x2 − 4)(x2 + 4)

= x4 + 4x2 − 4x2 − 16

= x4 − 16

The solution becomes much shorter if you
apply the formula (a−b)(a+b) = a2−b2
(twice).

5. Simplify the expression

(a)
3

8
− 1

6

(b)
25x3 + 15x

10x2

(c)
x+ 1

x

x
− 1

x2
.

Solutions

(a) Here the least common denomina-
tor is 24, and we have

3

8
− 1

6
=

3 · 3
8 · 3

− 1 · 4
6 · 4

=
9

24
− 4

24
=

9− 4

24
=

5

24

(b) The numerator has the common fac-
tor 5x, and we take advantage of it.

25x3 + 15x

10x2

=
5x(5x2 + 3)

(5x)(2x)
=

5x2 + 3

2x

=
5x2

2x
+

3

2x
=

5x

2
+

3

2x
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Both answers, 5x2+3
2x and 5x

2 + 3
2x are

acceptable solutions of the problem.

(c) As a first step, we multiply numer-
ator and denominator in the first
term by x. This will get rid of the
double fraction, and it also gener-
ates a common denominator for the
two fractions. The rest is straight-
forward.

x+ 1
x

x
− 1

x2

=

(
x+ 1

x

)
x

x2
− 1

x2

=
x2 + 1

x2
− 1

x2
=

x2 + 1− 1

x2

= 1

The problem is even simpler once
you realize that

x+ 1
x

x
= 1 +

1

x2

6. Expand the expressions.

(a) (2.4 + x)2

(b) (2x− 1)3

(c) (10 + x)4

Solutions: We apply the binomial formu-
las. Feel free to FOIL and check the re-
sults.

(a) (2.4 + x)2

= 2.42 + 2 · 2.4 · x+ x2

= 5.76 + 4.8x+ x2

(b) (2x− 1)3

= (2x)3 − 3(2x)2 + 3(2x)− 1

= 8x3 − 12x2 + 6x− 1

(c) (10 + x)4

= 104 + 4 103x+ 6 102x2

+4 10x3 + x4

= 10, 000 + 4, 000x+ 600x2

+10x3 + x4

7. Simplify

(a) (5 · 10−1)−2

(b)
x5y−2z

x3y5z3

(c)
18x3

yz
÷ 9z2

x2y

Solutions:

(a) (5 · 10−1)−2 = 5−2 · (10−1)−2

= 1
52
· 102 = 100

25 = 4

After all, 5 · 10−1 = 5
10 = 1

2 and
(1

2)−2 = 22 = 4.

(b) Collect the powers for each variable
separately:

x5y−2z

x3y5z3
= x5−3y−2−5z1−3

= x2y−7z−2 =
x2

y7z2

(c) Cross-multiply and simplify:

18x3

yz
÷ 9z2

x2y
=

18x3 · x2y

yz · 9z2
=

2x5

z3

8. Compute the values

(a) 84/3

(b) 9−3/2

(c) 0.01−2.5

(d) 2560.25

(e) (
√

125)4/3
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You are encouraged to confirm all results
on your calculator.

Solutions:

(a) 84/3 = (
3
√

8)4 = 24 = 16

(b) 9−3/2 =
1

93/2
=

1

(
√

9)3
=

1

33

=
1

27

(c) 0.01−2.5 =
(
10−2

)−2.5

= 10(−2)·(−2.5) = 105 = 100, 000

(d) If we use that 125 = 53, we obtain(√
125

)4/3
=

((
53
)1/2

)4/3

= 53· 1
2
· 4
3 = 52 = 25

9. Allele A is dominant over a. Plants of
genotypeA+ (this meansAA orAa) have
round seeds, those with genotype aa have
wrinkled seeds. If the relative frequency
of A in the population is 70%, then what
percentage of plants will have wrinkled
seeds?

Solution: We know that p = 70% = 0.7.
Therefore q = 1−p = 0.3, and q2 = 0.09.
Thus, the relative frequency of aa is q2 =
9%.

10. A population of 500 dogs is in Hardy-
Weinberg equilibrium in regard to coat
color. If 100 dogs are black (BB), then
how many dogs should be brown (Bb),
and how many are yellow (bb).

Solution: We know that

p2 =
100

500
=

1

5
= 0.2

Therefore

p =
√

0.2 = 0.447 and

q = 1− 0.447 = 0.553

Since

2 · p · q · 500 = 247.2 and

q2 · 500 = 152.8

we expect to have about 247 brown and
about 153 yellow dogs.

5.6 Exercises

1. Expand the expressions

(a) 3(4 + x)

(b) −15(6 + x)

(c) −4(10− x)

(d) (2− x)(2 + x)

(e) 3x(3− x+ y)

(f) (5 + 2x)2

(g) (x− 3)2

(h) x(x− 2)2

2. Factor the expressions

(a) 21− 7x

(b) 2xy − x2

(c) 144− x2

(d) 4x2 − 12x+ 9

3. Express as a single fraction and simplify

(a)
4

3
− 3

4

(b) x+
1

x

(c)
3

x
× x2

(d)
x+ 1

x− 1
− x− 1

x+ 1

(e)
x2

8
× 6

x

(f)
x2

8
÷ 6

x
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4. SuperSale! All items are 45% off! What
should you expect to pay for a $139.95
camera?

5. The rat population in a city increases by
13% per year. Beginning with 2,300 rats,
how many rats do you expect the follow-
ing year?

6. The population of African lions is cur-
rently estimated at 32,000. What is their
population next year, if it declines by 8%
annually?

7. A circle of radius r = 25 meters is changed
by x meters (the new radius is r = 25 +
x meters). What is the resulting area?
Find a general expression involving x,
and check your result when x = 2m, x =
−1m and x = 10cm.

8. A circular pool in a zoo has a diameter
of 40 meters, and the spectators are sep-
arated from the pool by a fence 2 meters
away from the edge of the pool. How
much area is between the pool and the
fence?

9. Simplify

(a) 107 · 103

(b) (107)3

(c)
10−7 x8

10−8 x9

(d) (2x3)8

10. Expand and simplify the expression
(x+ 4 · 103)2. Express all numerical val-
ues in scientific notation.

11. Simplify (x−1 + y−1)−1

12. Compute and simplify

(a)
45 km

60 m/sec

(b)
5000 L/sec

25 m2

(c)
500 cal

20 Watt

13. Compute and simplify. Work using the
pertinent formulas and confirm your re-
sults on a calculator.

(a) 163/4

(b) 0.253/2

(c) 125−2/3

(d)
(

4
9

)−3/2

(e) 225−0.5

(f) 0.000, 320−1.2

14. A population has alleles A and B. Tests
show that 80% of all gametes have geno-
type AA. What percentage of the popu-
lation has genotype BB if the population
is in Hardy-Weinberg equilibrium?

15. A species has a gene with alleles A and
B. In a specific population of 4,670 you
count 3,781 individuals with genotype AA.
How many have genotype AB and how
many have genotype BB, if the popula-
tion is in Hardy Weinberg equilibrium?

16. There are 22 black mice (BB), 34 grey
mice (Bb) and 15 white mice (bb) in a
habitat. After the next breeding sea-
son the population will reach 120 mice.
Given that the population is in Hardy-
Weinberg equilibrium, estimate the num-
ber of mice for each phenotype.
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Answers

1. (a) 12 + 3x

(b) −90− 15x

(c) −40 + 4x

(d) 4− x2

(e) 9x− 3x2 + 3xy

(f) 25 + 20x+ 4x2

(g) x2 − 6x+ 9

(h) x3 − 4x2 + 4x

2. (a) 7(3− x)

(b) x(2y − x)

(c) (12− x)(12 + x)

(d) (2x− 3)2

3. (a)
7

12

(b)
x2 + 1

x
(c) 3x

(d)
4x

(x− 1)(x+ 1)
=

4x

x2 − 1

(e) 3x
4

(f)
x3

48

4. $ 76.97

5. 2599

6. 29,440

7. π(25 + x)2 m2

= π(625 + 50x+ x2) m2

729π m2 = 2290 m2,
576π m2 = 1, 810 m2 and
630.01π m2 = 1, 979 m2

8. 264 m2

9. (a) 1010

(b) 1021

(c)
10

x

(d) 256x24

10. x2 + 8 · 103x+ 1.6 · 107

11.
xy

x+ y

12. (a) 750 seconds

(b) 0.2 m/sec

(c) 104.6 seconds

13. (a) 8

(b) 0.125

(c) 0.04

(d)
27

8

(e)
1

15
(f) 15, 625

14. 1.1%

15. 842 have genotype AB, 47 have genotype
BB.

16. 36.2 black, 59.4 grey and 24.4 white (round
to whole numbers).
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6 Graphs

Graphs are a splendid way to summarize data,
and to present them visually. There are nu-
merous ways to represent biological data. In
this section we will focus on the mathematical
side of graphing for scatter plots and functions;
pie charts, frequency histograms or bar charts
will not be considered. We look primarily at
continuous variables (as opposed to discrete or
qualitative variables). We will use mathemati-
cal examples, as well as illustrations from pop-
ulation growth, allometry, medical data and
performance in college.

6.1 Scatter Plots

When you graph data from a two-column ta-
ble, you interpret the numbers as respective
x and y coordinates, and then you plot the
points. In this fashion you can translate nu-
merical data into points in a graph.

Example:
x y

1 5
3 8
3 3
6 4
−1 2

The figure shows the resulting graph obtained
in EXCEL.

Each of the dots represents one pair on the list.
There is no need to list the data in a particular

order, and we do not connect dots.

Example: Eight second graders had a physi-
cal. Here are the results.

Name Height (cm) Weight (kg)

Allie 115 20.1
Brian 125 23.3
Caleb 122 24.8
Dante 130 25.2

Emma 119 24.7
Frank 122 23.0
Garth 116 22.1
Haley 121 22.3

Although not necessary, the names have
been included in the graph in order to em-
phasize that in a scatter plot each data pair
becomes a single point in the graph.

Example: Scatter points look more impres-
sive for larger data sets. The figure below re-
lates student’s grades to their attendance records.
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The horizontal axis shows the percentage score,
and the vertical axis denotes the number of
missed classes 5 for students in a MATH 119
class. Students in the upper left corner quit
coming to class, gave up on homework and did
not take exams. None of the students with a
perfect attendance record failed the class (one
struggled). Attaching names would break con-
fidentiality, and it would clutter up the graph
without giving new meaningful information.

Scatter plots can also be done on graph-
ing calculators using the ”LIST” environment.
But data entry is a daunting task, and the
plots usually do not look very appealing. A
computer is a much better tool for this task.

6.2 Function-Style Graphs

This is the type of graph, which you obtain
on a calculator. It requires that you type in
a formula for y, and let the calculator do the
rest.

Take, for example, the problem

y =
2x

1 + 2x−3

A graphing calculator will show a picture like
the one given in the figure.

Typically, the x values and the y values will
range from −10 to 10 on a calculator, but you

5This is an example of a finite discrete variable; it
can take on the values 0, 1, 2 . . . 42 only.

can change that using the WINDOW button.
If you switch to the TABLE setting, the display
will give you data for selected x values.

As it was the case for scatter plots, pairs of
x and y are being displayed, but there are two
major differences:

(a) We have infinitely many x values, at least
in theory6.

(b) For each x value there is only one y, which
results from the formula7. In fact, the
formula may fail to produce an answer,
if for example you are trying to divide by
zero, or take the square root of a negative
number.

This graphing method is tied to the notion
of functions. A function is an input-output
relationship: To each (admissible) input x, we
assign exactly one output y. The letter f is
frequently used to denote a function, and we
write

y = f(x)

pronounced ”f of x”. x is the input, and y =
f(x) is the output. A more detailed discussion
of functions is presented in Chapter 11.

Many examples for function-style graphs in
biology use time t as the input. The outputs
could be things like populations, temperatures,
oxygen concentrations, and so on, measured at
time t. But time is not the only conceivable
variable. One could display photosynthetic en-
ergy production y as a function of the size of
a leaf x, or the density of algae y as a function
the depth x below the water surface, and so
on.

6A calculator, or any other graphing device for that
matter, will only display a finite number of points, and
connect them by line segments. But the points are so
close together that they appear like a smooth curve.

7In the 2nd grader example Caleb and Frank are
both 122 cm tall, but Caleb weighs more. This results
in different y values for the same x-coordinate.
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Graphs can also be used to confirm the cor-
rectness of an algebraic calculation. For exam-
ple, in the last section we found that (simplify
the expression ...)

x− 1
x

x+ 1
= 1− 1

x

If we graph both sides of this equation on a
calculator, we only see one graph, the reason
being, that for any x-value, the values on the
right and on the left are equal8. After all, sim-
plifying means that we don’t change the value
of an expression, we just make it easier to han-
dle.

Figure 11:
x− 1

x
x+1 = 1− 1

x

6.3 Watch the Scales

6.3.1 Log Plots

We begin with an example. The U.S. census
data are given in Figure 12.

The scatter plot is shown below. It has the
typical shape of an exponential growth. A dis-

8Maybe you have noticed a minor technical differ-
ence. If we take x = −1, the value on the left is unde-
fined, but the value on the right is 2. A further inves-
tigation would take us right into Calculus.

Year U. S. Population

1790 3,929,214
1800 5,236,631
1810 7,239,881
1820 9,638,453
1830 12,866,020
1840 17,069,453
1850 23,191,876
1860 31,443,321
1870 38,558,371
1880 49,371,340
1890 62,979,766
1900 76,212,168

1910 92,228,531
1920 106,021,568
1930 123,202,660
1940 132,165,129
1950 151,325,798
1960 179,323,175
1970 203,211,926
1980 226,545,805
1990 248,709,873
2000 281,421,906
2010 308,745,538

Figure 12: U.S. Historical Data

advantage of this display is that the large (re-
cent) population figures dominate the graph,
and we can barely make out differences for the
data from the early 1800s.

In this situation you will often see a display
with a logarithmic scale on the y-axis. Here
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the powers of 10 are equally spaced, and ad-
justments are made in between.

As we go down on the y-axis, the values get
closer and closer to zero (0.01, 0.001, 0.0001
...), but they are never equal to zero. It is im-
possible to represent zero, or negative numbers
on such a scale. A glimpse of the logarithmic
scale is shown in Figure 13 below. The distance
between 1 and 10 is the same as the distance
between 2 and 20, or between 0.8 and 8 on this
scale.

Figure 13: Logarithmic Scale

6.3.2 Loglog Plots

Graphs with logarithmic scales on both axes
are called loglog plots, and they are extremely
useful in applications.

Example: You investigate how the diversity
of grasses on a meadow changes with area. On
the smallest plot of 50 cm × 50 cm you find
just two species. As you increase the lot size
you detect more and more species. On the
largest plot (50 m × 50 m) you count 31 differ-
ent species. The data are summarized in the

table below.

Lot size(m2) No. of Species

0.25 2
1 4
12 7
50 11
120 13
600 21

2, 500 31

In a regular scatter plot we see that a fairly
nice curve emerges, but the graph is dominated
by the largest lot, and the data for the smaller
lots are cluttered near the vertical axis.

Figure 14: Area Species Curve

By changing to a loglog scale we can show
more detail on both ends of the scale, small and
large. Moreover, a fairly linear graph emerges,
which caught the attention of biologists.

Figure 15: Area Species Curve in Loglog Scale
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6.4 Worked Problems

EXCEL or other graphing software are very
useful for these exercises.

1. Temperature Graph. Answer the ques-
tions based on the graph.

(a) What were the high and the low
temperatures in Radford on Febru-
ary 25?

(b) When were the temperatures above
freezing?

(c) When did the temperatures change
most rapidly?

Solution:

(a) The low at 21o F between 6 am and
7 am; the high was 34o F at 4 pm.

(b) The temperature remained above freez-
ing between 1 pm and about 5:30
pm.

(c) The fastest increase occurred between
8 am and 9 am.

2. Animal Population. The graph of a
hypothetical animal population is shown
below.

(a) How many animals where present at
time zero?

(b) After how many generations will the
population reach 2,500 individuals?

(c) At what number will the population
level off (carrying capacity)?

Solution:

(a) The original population is about 300.

(b) The population breaks the 2,500 mark
after about 15 generations.

(c) The population levels off at about
7,000.

3. Consider the curve defined by the equa-
tion

y = x4 − 6x2 + 5x+ 6

(a) Complete the table below

x y

0
1
2
5
10

(b) Graph the curve on a regular scale
for x between 0 and 10.

(c) Graph the function for x between 0
and 10 on a log scale.

(d) Graph the function for x between
0.1 and 10 in a loglog plot.

Solutions:

(a)

x y

0 6
1 6
2 8
5 506
10 9, 456
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(b)

(c)

(d)

4. Simplify the expression

(
x−1 +

1

4

)−1

and

confirm the result graphically.

Solution:(
x−1 +

1

4

)−1

=
1

x−1 + 1
4

· 4x

4x

=
4x

4 + x

The graphs of

(
x−1 +

1

4

)−1

and
4x

4 + x
are shown below.

6.5 Exercises

1. Construct a scatter plot for the data be-
low.

x y

4 7
2 6
8 5
3 3
0 4
7 2

2. The Life Table for Belding’s Ground Squir-
rels at Tioga Pass in Nevada (see Camp-
bell, p. 1173) contains the following data.
These are the number of surviving ani-
mals of a cohort in the beginning of the
year.

Age Females Males

0− 1 337 349
1− 2 252 248
2− 3 127 108
3− 4 67 34
4− 5 35 11
5− 6 19 2
6− 7 9
7− 8 5
8− 9 4
9− 10 1

(a) Graph the data for females and males
in a common plot with regular scal-
ing.
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(b) Repeat part (a) with a logarithmic
scale on the y-axis.

3. The table below contains the heart rate
at rest for selected mammals (Kong, NIU).

Mass (g) Pulse
(beats/minute)

Mouse 25 670
Rat 200 420
Guinea pig 300 300
Rabbit 2,000 205
Small dog 5,000 120
Large dog 30,000 85
Man 70,000 72
Horse 450,000 38

Graph the data with a scatter plot on a
loglog scale. It is not necessary to label
the data points.

4. Let y = x2−3x+5. Complete the table
and sketch the graph.

x y

−1
0
1
2
3
4

5. Sketch the graph of

y =
2x

2x + 1

for −4 ≤ x ≤ 4.

6. Sketch the graph of y = x2− 3x+ 5 for
0.1 ≤ x ≤ 100 on a loglog scale.

7. Sketch the graph of

y =
4x + 3x

5x + 2x

for −10 ≤ x ≤ 10 on a logarithmic scale.

8. Factor the expression x4−16 and confirm
the result graphically.

Answers

1.

2.

3.

4.

x y

−1 9
0 5
1 3
2 3
3 5
4 9
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5.

6.

7.

8. (x− 2)(x+ 2)(x2 + 4)
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7 Solving Equations

Equations are everywhere. In this section we
look at the basics of solving equations, and the
techniques discussed here will be applied in the
remainder of this workbook in a variety of bi-
ological applications.

7.1 Equations and Solutions

In the last section we dealt with expressions.
They can be evaluated, simplified, graphed, ex-
panded, factored, but they cannot be solved,
because they lack an equality symbol.

An equation is a statement which claims
that two expressions are equal to each other.
For example, in

x2 + 4 = 5x

we are looking for values of the variable x such
that the expressions x2 + 4 and 5x have the
same value. x2 +4 and 5x taken by themselves
are just expressions; we created an equation by
connecting them with an ”=”.

A solution of an equation is a value of the
variable, such that equality is achieved. For
instance, the equation

x2 + 4 = 5x

has solutions x = 1 and x = 4 because

x = 1 : 12 + 4 = 5 and 5 · 1 = 5
x = 4 : 42 + 4 = 20 and 5 · 4 = 20

x = 3 is not a solution, because 32 + 4 = 13,
while 5 · 3 = 15.

To solve an equation means to find all pos-
sible solutions.

How many solutions does an equation have?
The answer depends on the equation. It can
have exactly one solution, it can have several

solutions, it can have infinitely many solutions,
or it may not have a solution at all.

Examples:

4x+ 7 = x+ 22 x = 5
x2 + 4 = 5x x = 1 and x = 4√

x2 = x all x ≥ 0
4x+ 7 = 4x− 12 no solution

7.2 Solution Strategies

Before you get overwhelmed by technicalities,
keep the overall goal in mind: You want to find
all x so that the equality holds true. Some-
times you can tell the answer by inspection (or
by a lucky guess), sometimes there is a formula
to find the solutions, sometimes it may take
many hours pursuing a systematic approach.

In this section we will first look at the pen-
cil and paper method (algebra), then we look
for graphical solutions, and we conclude with
the special case of quadratic equations.

7.2.1 Algebraic Methods

When you use algebra, you try to isolate the
variable. There are two operations which do
not change the solution set:

1. add (subtract) the same quantity to both
sides of the equation,

2. multiply (divide) both sides of the equa-
tion by a non-zero quantity.

It is left to you to decide which steps should
be taken to solve the problem efficiently.

Example:
1

4
x2 = x+ 3

First, we get rid of the fraction and multiply
both sides by 4:

x2 = 4x+ 12
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Now we subtract 4x+ 12 from both sides

x2 − 4x− 12 = 0

At this point factoring comes in handy

(x− 6)(x+ 2) = 0

From here we conclude that either x = 6 or
that x = −2, since these are the only two
choices for x which make the expression on the
left equal to zero.

It is usually a good idea to double-check
and substitute the values for x into the original
equation. When x = 6 we have

62

4
= 9 = 6 + 3

and both sides equal 9. When we substitute
x = −2 we find that

(−2)2

4
= 1 = −2 + 3

and both sides equal 1.

The Zero-Product-Principle is a power-
ful tool to solve equations. It states that if the
product of numbers is zero, then one of the
factors must be zero.

Example: If

x(x− 1)(x+ 2)(x− 3)2 = 0

then x = 0, or x = 1, or x = −2 or x = 3, and
we see that this equation has four solutions.

It is essential that one side of the equation
is zero. We cannot tell much about the solution
set from the equation

x(x− 1)(x+ 2)(x− 3)2 = 8

because the value on the right is not zero.

7.2.2 Discussion of Pitfalls

In this section we look at typical examples where
after careful calculations we end up with an-
swers which do not satisfy the original equa-
tions, or where we miss some of the solutions.
Squaring both sides, or multiplication or di-
vision by zero are often at the heart of the
problem.

Squaring both Sides. If two quantities
are equal, then their squares must be the same.
True, but two numbers which are not equal can
have the same square, as in 22 = 4 = (−2)2,
and this may be at the source of the problem.

Example: √
3x− 5 = 5

When we take the square on both sides, we
find that

3x− 5 = 25

and therefore 3x = 30 and x = 10. Substi-
tution confirms that

√
3 · 10− 5 =

√
25 = 5

No problem here.

Example: Here we show how squaring both
sides might introduce extraneous solutions. We
consider the equation

x− 1 = 3

Obviously, x = 4 is the only solution, and
squaring both sides is not necessary. But, for
the sake of making a point, let’s say we square
both sides, and then take it from there. We
obtain

x− 1 = 3

(x− 1)2 = 9

x2 − 2x+ 1 = 9

x2 − 2x− 9 = 0

(x− 4)(x+ 2) = 0
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with solutions x = 4 and x = −2. The first an-
swer is the original solution. x = −2 became
a legitimate solutions after we took the square
on both sides. This illustrates the danger of
squaring both sides, and it is good practice to
confirm your final results for the original equa-
tion.

Multiplication or Division by Zero.
Nobody in their right mind would do this. Di-
vision be zero is generally prohibited, and mul-
tiplication by zero makes both sides of the equa-
tion zero, and we lose all information. The
crux is that multiplication or division by zero
are usually hidden by the use of variables.

Example: Consider this string of calculations

x2 − 4 = x− 2

(x− 2)(x+ 2) = x− 2

x+ 2 = 1

x = −1

x = −1 is a solution to the original equation,
because (−1)2 − 4 = 1 − 4 = −3 = (−1) − 2,
and x = −1 makes both sides equal −3,. no
doubt about that.

But x = 2 works as well in the original
problem (4− 4 = 0 = 2− 2 and both sides are
0). So, where did x = 2 disappear? In the step
from the second to the third line we divided
by the quantity (x − 2). But when x = 2 we
have (x − 2) = 0, and the division by (x − 2)
knocked out the viable solution x = 2.

Example: This example is even more obvious:

x2 = 4x

x = 4

The original equation has solutions x = 4 and
x = 0. The latter disappeared as an option
after division by x.

Example: In this example we multiply both
sides by x−2 in order to get rid of the fractions,
and then take the usual simplification steps.

x+
6

x− 2
=

3x

x− 2

x2 − 2x+ 6

x− 2
=

3x

x− 2

x2 − 2x+ 6 = 3x

x2 − 5x+ 6 = 0

(x− 2)(x− 3) = 0

The solutions are solutions x = 3 and x = 2.
x = 3 solves the original equation, because

3 +
6

1
= 9 =

3 · 3
1

but x = 2 is not a solution, because the orig-
inal equation is not defined (not meaningful)
when x = 2. It became a viable answer after
we multiplied both sides by (x− 2). Here mul-
tiplication by zero was disguised as the factor
(x− 2).

7.2.3 Graphical Solutions

Solving equations graphically is always an op-
tion, no matter how hard or easy the problem
might be! Efficient use of your graphing calcu-
lator will yield useful numerical results!

In the example

x2 + 4 = 5x

we are looking for values x so that both sides
of the equation have the same value. The table
shows values on both sides for different choices
of x:

x x2 + 4 5x

0 4 0
1 5 5
2 8 10
3 13 15
4 20 20
5 29 25
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and it is easy to see that both sides match when
x = 1 and when x = 4.

Instead of setting up tables, we can have a
calculator graph the two expressions. We are
now looking for choices of x with identical y-
values. This means that we are interested in
the points of intersection of the graphs.

From the graph we see that the intersec-
tions occur at the points (1, 5) and (4, 20). The
x-coordinate is the desired solution. The y co-
ordinate is a byproduct, as it shows the match-
ing value of the expressions on either side.

In textbook pencil and paper problems the
solutions often work out nicely as whole num-
bers or simple fractions, but in most realistic
problems this is not the case. The calculator is
not afraid of messy numbers, and most graph-
ing calculators have a way to identify points of
directly intersections. Look for a CALC menu
under graphing, select ”intersect”, and be pre-
pared to answer a few questions (which curves
are involved, what is the interval of interest).
Detailed instructions depend on the brand of
the calculator.

As an alternative to looking for intersec-
tion points you can also rewrite the equation
so that one side is equal to zero. Now only one
expression is involved, and you are looking for
the x-intercepts of the curve.

For the problem x2 + 4 = 5x you can
switch to

x2 + 4− 5x = 0

and the graph of y = x2 + 4 − 5x shows x
intercepts at x = 1 and x = 4.

Again, there is a quick way to do this on
your calculator. Look for things like ”zero” or
”root” on a graphing menu.

7.2.4 Quadratic Equations

Mathematicians classify equations into various
types. Equations of the form ax = b are called
linear, and the solution is x = b/a, provided
that a 6= 0.

Increasing the power of x results in a quadratic
equation, which takes the general form

ax2 + bx+ c = 0

It is understood that a 6= 0, otherwise the
equation would be linear. Quadratic equations
can have two, one or no solutions.

There are three common ways to solve a
quadratic equation.

1. Factoring. This is a fabulous short-cut!
But it does not always work. For in-
stance,

x2 − 5x+ 4 = 0

(x− 1)(x− 4) = 0

can be worked by factoring and the solu-
tions are x = 1 and x = 4. Done!

The equation

x2 − 4x+ 1 = 0

does not factor easily, but it still has so-
lutions (see below). Just because we can-
not factor an expression doesn’t mean
that there are no solutions.
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2. Complete the Square. This technique
is not popular with students. But in the
simple problem

x2 = 16

factoring is not required. We have a per-
fect square already, and the solutions are
x = ±4.

In the problem

(x− 3)2 = 16

we have a perfect square again, and now
the solutions are x − 3 = ±4. This
implies that

x = 3 ± 4 ,

and the solutions are x = 7 or x = −1.

If the number on the right is not a square
number, square roots must be used. For
example,

(x− 3)2 = 5

has solutions x = 3 +
√

5 = 5.236 or
x = 3−

√
5 = 0.764.

The beauty of this technique lies in the
fact that we can tell the number of solu-
tions by the sign of the number on the
right. For example

(x− 3)2 = 16

(x− 3)2 = 0

(x− 3)2 = −5

The first equation has two solutions, as
we saw above. The second equation has
the solution x = 3 only, and the last
equation does not have any solutions, be-
cause squares cannot be negative.

What makes the method so unpopular, is
that we have to rewrite the equation in

order for perfect squares to emerge (com-
plete the square), for instance

x2 − 4x+ 1 = 0

x2 − 4x+ 4 = 3

(x− 2)2 = 3

and the solutions are x = 2 −
√

3 and
x = 2 +

√
3.

3. Quadratic Formula. Fortunately, it
is possible to solve the quadratic equa-
tion for any combination of the parame-
ters a, b and c by completing the square,
and the final result is summarized in the
quadratic formula

x =
−b±

√
b2 − 4ac

2a

The term b2− 4ac is called the discrim-
inant. If b2− 4ac > 0, the equation has
two distinct solutions, if b2− 4ac = 0 it
has just one solution (namely x = − b

2a),
and if b2 − 4ac < 0 solutions cannot be
found because we cannot take the square
root of a negative number.

Example: x2 − 4x+ 1 = 0

Here a = 1, b = −4 and c = 1, the dis-
criminant is (−4)2−4 = 16−4 = 12 > 0,
and the solutions are

x =
4±
√

12

2
= 2±

√
3

In the last step we used that
√

12 =
√

4 · 3 =
2
√

3. Now the fraction has a common
factor of 2, and after cancelation we ar-
rive at the final result.

Most of the time, equations are not served
to us on a silver platter (standard form), and
it is necessary to rewrite and to simplify them
so that the formula can be applied. Examples
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are given in the next section. Keep in mind
that solving equations graphically is always an
option, especially when the algebra gets out of
control.

We close this part with an application: The
Golden Ratio is observed in nature in plenty
of forms. Just search the internet for ”golden
ratio in nature”, and you will find a variety
of applications, among them the ratio of the
bones in our fingers or arms, or proportions of
facial features, or the ratio of sections in bees
(head, thorax, abdomen), and many more. The
golden ratio also shows up in art and architec-
ture.

Interestingly, the Golden Ratio is the solu-
tion of a quadratic equation. If the sides of a
rectangle are denoted by a and b, then we have
a golden rectangle, if a is to b what a+b is to a.
We denote the golden ratio by ϕ, and put the
information into equation form and to obtain

ϕ =
a

b
=

a+ b

a

But then

ϕ =
a+ b

a
= 1 +

b

a

= 1 +
1

ϕ

and multiplication by ϕ on both sides results
in

ϕ2 = ϕ+ 1

ϕ2 − ϕ− 1 = 0

Using the quadratic formula we see that

ϕ =
1±
√

5

2

The golden ratio is usually associated with the
larger number

ϕ =
1 +
√

5

2
= 1.618, 034

Notice, that the smaller solution is

1−
√

5

2
= −0.618, 034 = 1− ϕ

7.3 Worked Problems

1. Solve the given equation

(a)
x

3
− 2 = 4

(b)
x

x− 3
=

3

2

(c)
√

3x− 2 = 5

(d) x(x− 1) = (x− 2)(x+ 3)

Solutions:

(a) This is straightforward

x

3
− 2 = 4

x

3
= 6

x = 18

(b) First we multiply both sides by
2(x− 3), which gets rid of the frac-
tions. The rest is routine.

x

x− 3
=

3

2
2x = 3(x− 3) = 3x− 9

9 = 3x− 2x = x
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and we are done. The solution is
x = 9. Substitution into the origi-
nal equation confirms the result:

9

9− 3
=

9

6
=

3

2

(c) Squaring both sides will get us started:

√
3x− 2 = 5

3x− 2 = 25

3x = 27

x = 9

Substitution into the original equa-
tion confirms the result:

√
3 · 9− 2 =

√
27− 2 =

√
25 = 5

(d) We expand both sides first, and af-
ter subtracting x2 from both sides,
we end up with a linear equation.

x(x− 1) = (x− 2)(x+ 3)

x2 − x = x2 + x− 6

6 = 2x

x = 3

Check:

3 · 2 = 6 = 1 · 6

2. Solve the equations

(a) 2x2 − 5x+ 3 = 0

(b) (x− 1)2 − 9 = 0

(c) x2 − 4x+ 6 = 0

(d) x+
1

x
= 5

Solutions:

(a) Factoring looks challenging, but the
quadratic formula will do the job.
We have a = 2, b = −5 and c = 3.
The discriminant is

b2 − 4ac = (−5)2 − 4 · 2 · 3 = 1

and thus

x =
5±
√

1

4

The solutions are

x =
5 + 1

4
=

6

4
= 1.5

x =
5− 1

4
= 1

By the way, once you have the solu-
tions, factoring is easy

2x2 − 5x+ 3 = (x− 1)(2x− 3)

(b) We take advantage of the perfect
square (do not expand!):

(x− 1)2 − 9 = 0

(x− 1)2 = 9

x− 1 = ±3

x = 1± 3

and the solutions are x = 4 and x =
−2.

(c) This quadratic equation does not have
a solution, because the discriminant
is

b2 − 4ac

= (−4)2 − 4 · 1 · 6 = −8 < 0
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(d) Here we have to rearrange the equa-
tion before we can apply the quadratic
formula.

x+
1

x
= 5

x2 + 1 = 5x

x2 − 5x+ 1 = 0

Therefore (a = 1, b = −5 , c = 1)

x =
5±
√

21

2

The confirmation of this result is
challenging. For x = 5+

√
21

2 we find
that (multiply top and bottom by
the ”conjugate” - a routine step in
algebra)

1

x
=

2

5 +
√

21
· 5−

√
21

5−
√

21

=
2(5−

√
21)

25− 21
=

5−
√

21

2

This shows that the two solutions
are reciprocals of each other. More-
over,

x+
1

x

=
5 +
√

21

2
+

5−
√

21

2

=
5 +
√

21 + 5−
√

21

2
= 5

3. Solve the equations graphically. The equa-
tions are taken from Problems 1 and 2,
and we can confirm our algebraic results
by inspection of the resulting graphs.

(a)
x

x− 3
=

3

2

(b) 2x2 − 5x+ 3 = 0

(c) x2 − 4x+ 6 = 0

(d) x+
1

x
= 5

Solutions

(a) The graph of y = x
x−3 has a vertical

asymptote at x = 3, but most of
all, it intersects with the horizontal
line y = 3

2 = 1.5 at the point where
x = 3.

(b) This quadratic equation has two so-
lutions. One at x = 1, the other at
x = 1.5

(c) This quadratic equation has no so-
lution. The parabola y = x2−4x+6
never crosses the x-axis.

(d) Here we see that the curve y = x+ 1
x

intersects with the line y = 5 at
two different locations. The first in-
tersection occurs at x = 5−

√
21

2 =

0.209, and the second at x = 5+
√

21
2 =

4.701.
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4. Solve x(x− 1)(x+ 2)(x− 3)2 = 8

Solution: This equation cannot be solved
by factoring, because the value on the
right is not zero. Expansion of the ex-
pression on the left leads to

x5 − 5x4 + x3 + 21x2 − 18x = 8

and there is no convenient method to solve
such an equation explicitly. Graphing (or
other numerical methods) are about the
only recourse.

We find the solutions

x1 = −1.943

x2 = −0.326

x3 = 1.847

x4 = 2.000

x5 = 3.422

from the graph. The solutions near x = 2
are clustered, but zooming shows that we
have two solutions in this vicinity.

5. The length of a rectangular garden plot
is four meters longer than its width. The
area is 165 square meters. What are the
dimensions?

Solution: Denote the width by x, then
the length is x+4, and the area becomes
x(x+ 4) = x2 + 4x. Hence, the problem
at hand is

x2 + 4x = 165

We subtract 165 from both sides and then
factor the result:

x2 + 4x− 165 = 0

(x+ 15)(x− 11) = 0

with solutions x = 11 and x = −15. We
disregard the solution x = −15, as the
sides of a rectangle cannot be negative.
Thus the width becomes 11 m and the
length is 15 m.

6. The height h of a projectile above the
ground at time t is given by the equation

h = 80 + 64t− 16t2
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where h is measured in feet, and time is
measured in seconds. After how many
seconds will the object hit the ground?

Solution: These type of questions are com-
monplace in math books. In the feet-
second system the term −16t2 accounts
for the loss of height due to gravity.

In our case the projectile has height h =
80 ft above the ground when t = 0, and
after one second we are at h = 80 +
64− 16 = 128 ft, and so on. Hitting the
ground means that h = 0. This results
in the quadratic equation

80 + 64t− 16t2 = 0

and the quadratic formula yields

t =
−64±

√
642 − 4 · (−16) · 80

−32

= 2±
√

9216

−32
= 2± 96

−32
= 2± 3

The solutions are t = 2 + 3 = 5 seconds
and t = 2 − 3 = −1 sec. The negative
solution is irrelevant (we don’t go back
in time), and the final result is that the
projectile will hit the ground after five
seconds.

7.4 Exercises

Solve for x in problems 1 - 20.

1. 2x− 3 = 7

2.
2x− 1

5
= 5

3.
x+ 2

x− 1
= 4

4.
x+ 2

x− 1
= 1

5.
√

4− x = 3

6. (x− 5)(x− 1) = (x− 4)(x− 2)

7. (x− 5)(x− 4) = (x− 2)(x− 1)

8.
x2 − 4

x+ 2
= x+ 2

9.
x2 − 4

x+ 2
= x− 2

10.
x+ 2

x− 1
=

x+ 3

x− 3

11.
√
x+ 56 = 4 +

√
x

12.
1

x
+ 1 =

3

x

13. x2 − 2x− 99 = 0

14. x2 + 25 = 10x

15. 2x2 − x− 3 = 0

16. x2 − 2x− 2 = 0

17. x2 + 2x+ 4 = 0

18. (x− 2)2 − 4 = 0

19. x+
3

x
= 4

20. x+
√
x = 12

21. The sides of a rectangle are in golden ra-
tio. Find the length of the remaining side
when

(a) the longer side is 55 cm,

(b) the short side is 55 cm.

22. The length of a rectangular garden is three
meters longer than the width.

(a) What are the dimensions if the area
is 108 square meters?
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(b) What are the dimensions if the area
is 100 square meters?

23. The height h above ground measured of
a baseball t seconds after it is hit is given
by the formula

h = 4 + 40t− 16t2

where h is measured in feet. After how
many seconds will it hit the ground?

Answers

1. x = 5

2. x = 13

3. x = 2

4. no solution

5. x = −5

6. no solution

7. x = 3

8. no solution

9. all x 6= −2

10. x = −1

11. x = 25

12. x = 2

13. x = 11 and x = −9

14. x = 5

15. x = 3
2 and x = −1

16. x = 1±
√

3, that is,
x = 2.732 and x = −0.732

17. no solution

18. x = 0 and x = 4

19. x = 1 and x = 3

20. x = 9

21. (a) 33.992 cm ≈ 34 cm

(b) 88, 992 cm ≈ 89 cm

22. (a) 12× 9 (b) 11.612× 8.612

23. 2.6 seconds (2.5963)
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8 Ratios and Proportion

In this part covers ratios and proportion, and
we will review percentages and related topics.
Important biological applications include di-
lutions of chemicals, the mark and recapture
method, as well problems from medicine, ecol-
ogy and epidemiology.

8.1 Ratios

Ratios are typically the division of terms with
the same units. The result is a number which
does not have any physical units. Such a quan-
tity is called dimensionless.

Example: The RU Factbook 2014 reports 411
biology majors and 75 mathematics major. The
ratio of majors is

411 students

75 students
= 5.48

The units in numerator and denominator are
”students”. They cancel, and the result is a
number. This ratio is about 5.5, and we con-
clude that the ratio biology:math majors is
11:2 (11

2 = 5.5).

Example (Circles): For all circles, large or
small, the ratio of the perimeter (circumfer-
ence) to the diameter is the same.

Diameter Perimeter Ratio

4.2 in 13.2 in 3.143
16 miles 50 miles 3.125
78 mm 245 mm 3.141
2.3 m 7.2 m 3.130
55 µm 173 µm 3.145

The slight variations of the ratios are due to
rounding. Using the formulas from geometry
we find that

perimeter

diameter
=

2πr

2r
= π

This is the definition of π. It is the ratio of the
perimeter of a circle to its diameter.

Example (Energy Payback Ratio): This
ratio relates the energy output of a power plant
to the energy input. When 2,800,000 GJ (giga-
loules) are required to produce 11,350,000 GJ
by a natural gas powered plant, the payback
ratio becomes

energy output

energy input
=

11, 350, 000 GJ

2, 800, 000 GJ
= 4.053

Each unit of energy input results in a fourfold
of energy output.

Incidentally, the data are based on a study
by Meier and Kulcinski of the University of
Wisconsin. The same authors report payback
ratios of 11:1 for coal, 27:1 for fusion and 23:1
for wind energy.

8.2 Percent

Percents usually appear in conjunction with
the ratio

parts

whole

The result will be a number between 0 and 1,
and to make the number more user-friendly it
is multiplied by 100.

The term percent goes back the the Latin
per centum, and means by the hundred. We
use the symbol % to express percents. Mathe-
matically we have

% =
1

100
= 0.01 and 100% = 1

For example,

45% = 45 · 1

100
=

45

100
= 0.45

Example: A class has 20 female and 16 male
students for a total of 36 students. In this case
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the percentage of female students is computed
from

20 female students

36 total students
=

20

36
=

5

9

= 0.55556 = 55.6%

while the ratio becomes

20 female students

16 male students
=

20

16
=

5

4

that is, the ratio female:male students is 5:4.

Example (HIV in Nigeria): 3.1% of the
adult population of Nigeria was infected with
HIV in 2012 (CIA World Factbook).

When 3.1% of the population being infected,
then 96.9% are not infected, and for the ratio
we find that

not infected

infected
=

96.9%

3.1%
= 31.258

Roughly speaking, we have one HIV infected
person per 31 HIV-free people.

8.3 Percentlike Quantities

8.3.1 Parts per Thousand

When the reference is changed from one hun-
dred to one thousand, we speak of parts per
thousand, sometimes also called per mille. Com-
mon notations are

h or ppt

Example: The United Nations reported in
2010 that the infant mortality9 in Japan was
2.62 deaths per 1,000 life births. The infant
mortality rate then becomes

2.62 deaths

1, 000 births
= 0.002, 62 = 2.62h

9Death of a child one year or younger.

In comparison, in 2012 the CDC found that
the infant mortality rate in the United States
was 5.98h.

Example: The legal limit of a drivers blood
alcohol concentration in Virginia is 0.08%. This
is equivalent to 0.8h.

Both examples show that changing from
percent to per mille, the decimal place is shifted
by one place.

8.3.2 Parts per Million, Parts per Bil-
lion

When quantities get really small, we resort to
parts per million (ppm) or parts per billion
(ppb).

Example: The abundance of hydrogen iso-
topes in the atmosphere are

1H 99.985%
2H 0.015%

Thus, the abundance of 2H is

0.015% = 0.15h = 150 ppm

0.015

100
=

0.15

1, 000
=

150

1, 000, 000

that is, 150 of a million hydrogen atoms are
the 2H isotope.

Example: Radford drinking water contains
1.52 ppm of chlorine (Radford City Drinking
Water Report, 2013).

Examination of the fine print reveals that
ppm is used as milligram per liter (mg/L), and
it follows that one liter contains 1,52 mg of
chlorine. Conversion to gallons yields

1.52 mg

L
· 3.785 L

gal
=

5.75 mg

gal
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Using ppm as mg/L is a violation of the
condition that things like percentages should
be free of physical units. However, it is com-
mon practice to use the density of water

ρ = 1 kg/L = 1, 000 g/L

when dealing with aqueous solutions. Then
one ppm becomes one milligram per liter:

ρ

1, 000, 000
=

1000 g

1, 000, 000 L
=

mg

L

8.4 Percentage Change

Now we look at relative changes, expressed as
a percentage. We hear things like ”cost of liv-
ing increased by 2%”, or ”India’s tiger pop-
ulation has increased by 30%” (BBC News,
1/25/2015) on a daily basis. What does it
mean, and how is it calculated?

In order to find a relative change we com-
pute the quantity

final value− initial value

initial value

Multiplication of the result by 100% yields the
percentage change.

Example: Bacteria colonies in a laboratory
increased from 720 colonies per liter to 1260
colonies per liter. Here the relative change be-
comes

1260− 720

720
=

540

720
= 0.75 = 75%

Example: India’s tiger population has risen
from 1,706 in 2011 to 2,226 in 2014. The per-
centage change is

2226− 1706

1706
=

520

1706
= 0.305 = 30.5%

This is an increase of 30% over three years,
which accounts for an annual growth of about
10%.

There are different ways to look at a rela-
tive change, or to calculate it. The quantity

∆ value = final value− initial value

is the absolute change. This quantity usually
becomes more meaningful when we relate it to
the beginning value.

Example: The population of the United States
grew by 20.6 million during the years 2005-
2013, while that of Norway increased only by
461 thousand during the same time span. Com-
parison to the actual populations in 2005 re-
sults in

20.6 million

295.5 million
= 7.0%

for the United States and in

0.461 million

4.623 million
= 10.0%

for Norway. This shows that in relative terms
Norway’s population outpaced that of the United
States during 2005 - 2013 time span.

The relative growth formula can also be
broken down into

r =
final value− initial value

initial value

=
final value

initial value
− 1 = M − 1

The quantity

M =
final value

initial value
( = 1 + r)

is the multiplier (growth factor) and r is the
relative growth rate. This will become a major
theme in the study of exponential growth.

Example: We return to India’s tigers. We
have

M =
2, 226

1, 706
= 1.305
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that is, the population grew by a factor of
1.305, and the relative growth is

r = M − 1 = 0.305 = 30.5%

as before.

8.5 Proportion

Two quantities x and y are proportional, if
their ratio remains constant, and we write

x ∝ y

In this case we say that the quantities vary
directly with each other.

A constant ratio also implies that

y

x
= c

and thus, y = cx, where c is the constant of
proportionality.

Example: Time and distance are proportional
when you travel at a constant speed on a high-
way. If you spend twice as much time, you will
go twice as far; if plan to travel only one third
of the distance, it will take one third of the
time. We have

distance ∝ time

The constant of proportionality becomes

c =
distance

time

which is the speed. We see that when x ∝ y,
where x and y have different physical units,
then the units of c balance the equation.

Example: Maps use the principle of propor-
tionality: The ratio of map distance to dis-
tance in reality always remains the same. As
an example we look at the scale 1:200,000, which
is widely used in aviation. This means that

map distance

actual distance
=

1

200, 000

or equivalently,

actual distance

= 200, 000 × map distance

On such a map 8 cm represent

200, 000 · 8 cm = 1, 600, 000 cm = 16 km

in reality, or conversely, 600 m in reality are
shown as

600 m

200, 000
= 0.003 m = 3mm

on this map.

Example (Unit Conversion): Blood sugar
values can be measured in mmol/L (millimol
per liter), but it customary to use mg/dL (mil-
ligram per deciliter10) readings.

The atomic mass of glucose O6C12H6 is 180
Da (12·6 Da for the six carbon atoms, 12 Da for
hydrogen, and 16 · 6 Da from oxygen). Hence,
one mol of glucose has mass 180 g. The values
on the two scales will remain proportional and
we find that

1 mmol

L
=

0.001 mol

10 dL
· 180 g

mol

=
0.018 g

dL
= 18

mg

dL

Therefore, multiplication by 18 takes you from
mmol/L to mg/dL. For instance, 7.5 mmol/L
is equivalent to 7.5 · 18 = 135 mg/dL.

8.6 Mark and Recapture

This is a technique which is used to estimate
populations in the wild. It is also known as
capture-recapture, as mark-release-recapture or
as sight-resight. The basic idea is to capture
a few animals and to mark them in a way so
that they can be identified later. The animals

10One deciliter equals 0.1 liter.
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are then released. A second capture follows at
a later date. It is assumed that the percentage
of tagged animals in the second catch is repre-
sentative of the percentage of marked animals
in the entire population.

We use the following notation

N total population

T tagged in the first catch

n number of second catch

t tagged in second catch

If we argue that percentages (ratios) remain
identical we find that

t

n
=

T

N

One could also argue that t/T = n/N , but in
any case it follows that

N =
Tn

t

and we have a population estimate.

Example: In a study of birds on an island 71
birds are captured, tagged and released. Three
days later 83 birds are caught, 23 of which are
tagged from the first capture. Thus we have
the values

T = 71 n = 83 t = 23

The formula yields

N =
71 · 83

23
= 256.2

and we have a population estimate of about
256 birds.

Further discussion:

1. In the second sample, 23/83=27.7% of
the birds had been tagged.

On the other hand, with our estimate of
N = 256 birds and a total of 71 tagged
birds around, the ratio percentage of tagged
birds is 71/256=27.7% . These percent-
age match, which is encouraging.

2. The estimates are very sensitive to the
data, because we extrapolate.

If for instance, one more bird without a
tag had been captured, n would change
to n = 84, and the population estimate
becomes

N =
71 · 84

23
= 259.3

If , on the other hand, if the additional
bird had a tag, we now would have n =
84 and t = 24 and the estimate changes
to

N =
71 · 84

24
= 248.5

This shows we should take population
estimates based on this method with a
grain of salt.

The mark-recapture method assumes that
the animals move around and that we have ran-
dom samples each time. If the animals all hang
out at their respective preferred locations, we
do not get a good mix, and the population esti-
mates are tainted. The time between captures
needs to be long enough so that we get a good
mix, but it shouldn’t be too long. Otherwise
some tagged animals might die, or other indi-
viduals might move into or out of the region of
study.

8.7 Dilution and Mixtures

We begin with an example: The instructions
on a can of frozen pink lemonade concentrate
ask to add four parts of water for each part of
frozen concentrate. This tells us that no mat-
ter how much or how little we want to fix, one
fifth of the mixture will be concentrate, and
the remainder will be water. In this example,
the solute (the frozen concentrate) is available
at 100% concentration, while in the mixture it
is reduced to 1/5 = 20% concentration, and we
call 5 the dilution factor.
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In general mixture problems we follow the
amount of the solute (the substance to be dis-
solved) in each solvent (medium in which the
process takes place). A concentration (C) is
measured as solute (s) per volume (V ), and
we have

C =
s

V
or, equivalently s = CV

If we denote the initial values (stock solution)
with subscripts 1, and the final product (sam-
ple) with subscript 2, we obtain the formula

C1V1 = C2V2 (= s) (1)

because the solute s must be the same in both
mixtures.

Example: We return to the pink lemonade
problem, and suppose that we want to prepare
two gallons.

We begin with pure concentrate, and thus
C1 = 1, and V1 is unknown. As for the final
product we know that C2 = 1/5 = 0.2 = 20%
(four parts of water per one part of concen-
trate, 1

1+4), and we need V2 = 2 gal. Therefore

V1 =
C2V2

C1
= 0.2 · 2 gal = 0.4 gal

Since frozen concentrate usually comes is 12
oz. containers, we should get at least five cans
(four is not quite enough, why?).

Example: A stock solution contains 25 mg/L
of imaginol, we add 10 mL of the stock to 490
mL of water, and we are interested in the con-
centration of imaginol in the mixture.

Here C1 = 25 mg/mL, V1 = 10 mL and
V2 = 500 mL and we obtain

C2 =
C1V1

V2
=

25 mg/mL · 10 mL

500 mL

= 0.5 mg/mL

We now take another look at the notion of
a dilution factor and we define it as

δ =
C1

C2

It is the stronger concentration divided by the
weaker concentration.

But we can obtain the same factor by look-
ing at volumes only. With the use of formula
(1) we find that

δ =
C1

C2
=

C1V1

C2V1
=

C2V2

C2V1
=

V2

V1

and the dilution factor is the ratio of the larger
volume to the smaller volume.

Example: We return to the last case. V1 = 10
mL were dissolved in V2 = 500 mL. Thus, the
dilution factor is

δ =
V2

V1
=

500

10
= 50

and the concentrations behave accordingly:

C2 =
C1

δ
=

25 mg/mL

50
= 0.5 mg/mL

Example: A stock solution contains 18 mg/mL
of fictosin and we want to prepare a 30 mL
mixture with concentration 3 mg/mL.

We solve this problem by looking at dilu-
tion factors. By inspection of the concentra-
tions we see that

δ =
18 mg/mL

3 mg/mL
= 6

Therefore, using that V2 = 30 mL, we find that

V1 =
V2

δ
=

30 mL

6
= 5mL

Thus, you need to mix 5 mL of the stock solu-
tion with 25 mL of water.
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8.7.1 Serial Dilutions

Sometimes it is necessary to dilute a mixture
by a tremendous amount, like putting a droplet
into a full bathtub. This is not practical and
lab supplies can be very expensive. In order
to save cost, such a dilutions are performed in
sequence. Dilute the stock solution, mix well,
then take a portion of the mixture and dilute
it again.

Figure 16: Four 1:10 Serial Dilutions

Each dilution step will have its own dilu-
tion factor, and the cumulative dilution factor
is the product of the individual factors. For
instance, suppose you perform four 1:10 di-
lutions. The dilution factor is 10 each time,
and four such dilutions result in the factor δ =
104 = 10, 000 overall.

Example: After three 1:200 serial dilutions, a
10 µL droplet contained 53 bacteria. What is
the original bacteria concentration?

Here the dilution factor is 200 in each step
(one part bacteria mixture, 199 parts broth),
and overall the factor becomes

δ = 2003 = 8, 000, 000

The current concentration is

C2 =
53 bacteria

10 µL
= 5.3 bacteria/µL

and therefore

C1 = δ · C2 = 4.24 107 bacteria/µL

which is the equivalent of 42.4 trillion bacteria
per liter.

8.8 Worked Problems

1. In a experiment the Moravian geneticist
Gregor Johann Mendel (1822-1884) in-
terbred true yellow round seed peas with
true green wrinkled seed peas. The F2

progeny were distributed as shown in the
table

315 yellow round seeds
108 green round seeds
101 yellow wrinkled seeds
32 green wrinkled seeds

Approximate the ratio of phenotypes with
whole numbers as A : B : C : D so that
A+B + C +D = 16.

Solution: The total number of plants is
315 + 108 + 101 + 32 = 556, and we
can easily compute the percentages. The
sum of the percentages will be one, and if
we multiply by 16, we obtain the desired
result.

Seeds Freq. Perc. ×16

Yellow round 315 56.7% 9.06
Green rounds 108 19.4% 3.11
Yellow wrinkled 101 18.1% 2.91
Green wrinkled 32 5.8% 0.92

Sum 556 100% 16

The phenotypes follow about a 9:3:3:1 ra-
tio, which is prevalent in genetics.

2. The National Forest Headquarters in Roanoke
manage the George Washington National
Forest (up I-81 North either towards West
Virginia or towards the Blue Ridge Park-
way) with 1,065,398 acres, and 723,350
acres of the Jefferson National Forest (mostly
west of Roanoke, including the Mount
Rogers area and the forest land north of
Blacksburg, including the Cascades and
Mountain Lake). What percentage of the
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entire area is the Jefferson National For-
est? What is the ratio of the acreages?

Solution: The combined area is 1,788,748
acres (just add) and the percentages be-
come

1, 065, 398

1, 788, 748
= 59.6%

for the George Washington National For-
est, and

723, 350

1, 788, 748
= 40.4%

for the Jefferson National Forest. The
ratio is roughly 3:2 because

1, 065, 398

723, 350
= 1.473 ≈ 1.5 =

3

2

You could also round the percentages to
60% : 40%.

3. A food inspector detected 3.5 mg of ar-
senic in one kilogram of fish. What is the
concentration?

Solution: The ratio arsenic per total mass
becomes

3.5 mg

1 kg
=

3.5 mg

1, 000, 000 mg
= 3.5 ppm

The arsenic content in this sample is
3.5 ppm. (Example adapted from Lang-
kamp/Hull).

4. The volume (and not the radius!) of a
sphere increases by 50%. How do radius
and surface to volume ratio change?

This scenario could come up in the study
of cell growth, where ultimately the changes
of the surface area to volume ratio are of
interest.

Solution: Recall that the volume of a

sphere is given by V =
4πr3

3
and the

surface area is S = 4πr2. We do not have
any specific numbers to work with, which
makes the problem more challenging.

We denote the original radius by r, the
original volume by V , and for the new,
bigger sphere we use r′ and V ′, respec-
tively. Then, because V ′ = 1.5V , we
obtain

1.5 =
V ′

V
=

4π(r′)3/3

4π/3
= (r′)3

Thus, r′ = 3
√

1.5 = 1.145, and we see
that the radius has increased by 14.5%.

At this point we branch off, and offer two
solution strategies.

Solution One: Assume that the length
units are miraculously chosen so that the
original sphere has radius r = 1. Then
the original volume is V = 4π

3 , the sur-
face area is S = 4π, and the original
surface area to volume ratio is SV R =

4π
4π/3 = 3.

The new sphere has radius r′, and the
surface area to volume ratio becomes

SV R′ =
4π(r′)2

4π(r′)2/3
=

3

r′

Comparing both ratios we get

SV R′

SV R
=

3/r′

3
=

1

r′
= 0.874

and ee conclude that the surface area to
volume ratio has dropped11 by 12.6%.

11Recall that M = final value
initial value

= 1 + r, and there-
fore r = M − 1 = −0.126.
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Solution Two: In the geometry chapter
we have seen that the surface area to vol-
ume ratio for a sphere of an arbitrary ra-
dius r is

SV R =
3

r
and if we compare spheres with respec-
tive radii r and r′, we find that

SV R′

SV R
=

3/r′

3/r
=

r

r′

But we have already calculated the quan-
tity r′

r = 1.51/3, and therefore

SV R′

SV R
=

r

r′
= 1.5−1/3 = 0.874

5. What actual distance appears as
5/8 inches on a 1:24,000 map?

Solution: The distance in reality is

24, 000 · 5

8
in = 15, 000 in = 1, 250 ft

6. Connelly’s run is a small stream in Rad-
ford. On a first capture students caught,
marked and released 123 crayfish, on a
second capture 9 of 120 fish were marked.
Estimate the crayfish population from the
data.

Solution: We have T = 123, n = 120 and
t− 9, therefore

N =
123 · 120

9
= 1640

7. How much lemonade can be made with
six 12-oz cans of concentrate, when we
still require to use four parts of water of
each part of concentrate?

Solution: This one is easy. The total con-
centrate is

6 cans · 12 oz

can
= 72 oz

Add 4× 72 oz of water for a total of 360
oz, which is the equivalent of 2.8125 gal-
lons of pink lemonade.

8. You dilute 5 mL of a fantasium stock so-
lution with 75 mL of water. The concen-
tration of the mixture is 6 mg/L, what is
the concentration of the stock solution?

Solution: We offer two options.

Solution One: We have V1 = 5 mL, V2 =
75 mL and C2 = 6 mg/L. Therefore

C1 =
C2V2

V1
=

6 · 75

5
mg/L

= 150 mg/L

Solution Two: The dilution factor is

δ = V2/V1 = 75/5 = 15

Therefore the stock concentration is

C1 = 15 · 6 mg/L = 150 mg/L

9. You want to prepare a mixture contain-
ing 1 g sodium hydroxide (NaOH) from
a 0.2 M stock solution. How much stock
solution is required. Use that the molar
mass of NaOH is 40 g/mol.

Solution: Our mixture must contain s =
1 g of NaOH. Since s = CV , we get

V =
s

C
=

1 g

0.2 M

=
1 g

0.2 mol/L
· mol

40 g
=

1

8
L

= 125 mL

10. A broth has bacterial density of 200 mil-
lion bacteria per liter. You need a 20 µL
droplet with about 5 bacteria. How do
you proceed?
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Solution: The given bacterial density is
C1 = 2 · 108 bacteria/liter, the desired
concentration is

C2 =
5 bact.

20 µL
· 1000 µL

mL
· 1000 mL

L

= 250, 000 bacteria/L

Therefore the dilution factor becomes

δ =
C1

C2
=

2 · 108

2.5 · 105
= 800

Serial dilutions appear to be in order.
One could, for instance, use two 1:10 di-
lutions followed by a 1:8 dilution.

8.9 Exercises

1. Radford University reports that women
make up 56% of its student body in the
fall of 2014. What is the ratio female:male
students?

2. It was observed that the sex ratio fe-
male:male for the Alligator mississippi-
ensis is 5:1. What percentage of alliga-
tors will be male?

3. You got 20 answers correct on a test of
24 questions. What percentage score did
you receive? How many would you have
to get correct to get higher than a 90%?

4. In a genetic experiment with summer squash
171 plants had a white fruit color, 42
were yellow and 15 were green. Find the
white:yellow:green ratio so that the total
adds to 16. (white+yellow+green = 16).

5. The United States had a population of
304 million in 2008, making up 4.55% of
the world population. At the same time
Brazil accounted for 2.87% of the world
population. What was the population of
Brazil?

6. The natural abundance of 16O in the at-
mosphere is 99.762%, that of 18O is 0.2%
and the natural abundance of 17O is 0.0377%.
What is the ratio 16O : 17O : 18O. Ex-
press the abundance of 17O in ppm (parts
per million)?

7. The EPA sets the maximum contaminant
level of arsenic in drinking water at 10
ppb (parts per billion), and that of fluo-
rides at 4 ppm (parts per million).

(a) How many grams of

i. arsenic

ii. fluorides

are allowed in one cubic meter (1000
L) of water?

(b) How much uncontaminated water is
required to dilute one gram of

i. arsenic

ii. fluorides

safely to EPA standards?

8. The U.S. population was 282.16 million
in 2000 and 309.35 million in 2010 (both
for July 1). The national debt was $5,674
billion in 2000 and $13,562 billion in 2010.

(a) Find the percentage increase of the
population for the decade.

(b) Find the percentage increase of the
national debt for the decade.

(c) Compute the debt per capita for 2000
and for 2010.

(d) Compute the percentage change of
the per capita debt for the decade.

9. You determine that the ambient temper-
ature outside is 274 K. You walk inside
your apartment, and the thermometer jumps
up to 290 K. Find the percent change of
the temperatures.
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10. In a test of water quality an automated
sample measured 1,020 ppb of phospho-
rus, a cheaper siphon test registered only
880 ppb. Assuming that the automated
test is correct, what is the percentage er-
ror of the cheaper test?

11. (a) The volume of a spherical cell in-
creases by 12%; how much does the
diameter increase?

(b) The radius of a spherical cell increases
by 2%; how much does the surface
to volume ratio change?

12. The blood sugar level of a person increases
from 92 mg/dL before lunch to 116 mg/dL
after lunch. What is the percentage in-
crease?

13. On a map with scale 1:50,000 two points
are 14 cm apart. What is their actual
distance?

14. On the Virginia Highway Map one inch
on the map is approximately 13 miles.
What is the scale of this map.

15. Find the conversion factor when lb/gal is
changed to g/mL.

16. The CDC reports that 480,000 Ameri-
cans die from cigarette smoking each year.
Given that the U.S. population is 320
million and that of Virginia is 8.4 million,
estimate the annual deaths from smoking
in Virginia.

17. On the first day biologists capture 67 fish,
mark them and put them back in the
pond. The next day they catch 42 fish,
12 of which are marked. Estimate the
fish in the pond.

18. You observe birds on an island. On the
first day you capture, tag and release 71
birds.

(a) Three days later you capture 83 birds,
23 of which are tagged. Estimate
the bird population on the island.

(b) Just to be sure, you repeat the ex-
periment on the fourth day. This
time you find that 18 of 59 birds
are tagged. What is your popula-
tion estimate?

19. A BIOL 131 class trapped and marked 45
crayfish in Wildwood Park. Three days
later, they captured 30. Of these 10 were
marked. How many fish would you esti-
mate are in this population?

20. You have a stock solution with concen-
tration 40mg/mL of fantasium. You need
50 mL with 6mg/mL of fantasium. How
much stock should be mixed with how
much water?

21. It takes three parts of water for each part
of frozen orange juice. How much frozen
orange juice is required for one gallon of
juice?

22. Your stock solution contains 45 mg/mL
of fictosin, you need 12mL with concen-
tration 3mg/mL for a patient. How much
of the stock should you mix with water?

23. You add 25 mL of a stock solution with
concentration 18 mg/mL of fictosin to
225 mL of water. What is the fictosin
concentration in the mixture?

24. You have a 5 M stock solution of sucrose.
You want to make 100 mL of a 0.4 M so-
lution. How much stock solution should
you mix with water?

25. You have 4 mL of a bacterial culture. Af-
ter performing three 1:80 dilutions you
count 192 bacteria in a 10 µL sample.
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What is the original bacteria concentra-
tion measured in bacteria per milliliter?
How many bacteria does your 4 mL cul-
ture contain?

26. You begin with 5 mL of a bacterial cul-
ture. After three 1:50 serial dilutions you
find that 1 mL contains 84 bacteria. How
many bacteria were in the original sam-
ple?

Answers:

1. 14 : 11 ≈ 5 : 4

2. 16.7%

3. 88.3%; 22 (21.6 if partial credit is given)

4. 12 : 3 : 1

5. 192 million

6. 2, 625 : 1 : 5.3 or 498.8 : 0.19 : 1 and
377 ppm

7. (a) (i) 10 mg (ii) 4 g

(b) (i) 100 m3 (ii) 250 L

8. (a) 9.6% (b) 139 % (c) $20, 109.16 and
$43,840.31 (d) 118%

9. 5.8 % (5.8394%)

10. 13.7 % (13.7255%)

11. (a) 3.85% ≈ 4%

(b) decreases by 1.96% ≈ 2%

12. 26.1%

13. 7 km

14. 1 : 823, 680 ≈ 1 : 825, 000

15. 8.345

16. 12, 600

17. 234.5

18. (a) 256.2 (b) 232.7

19. 135

20. 7.5 mL stock, 42.5 mL water

21. 1 quart

22. 0.8 mL

23. 1.8 mg/mL

24. 8 mL

25. 9.83 billion per milliliter
and 39.3 billion

26. 52.5 million
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9 Elements of Probability

Processes in nature have a certain degree of
randomness and non-predictability. While on
for humans the ratio of female to male progeny
is about equal, you can find couples with four
girls and no boys at all, or families where all
children are male. An understanding of such
randomness is vital in biology, particularly in
the study of genetics. As another application
we will look at Hamilton’s Rule from evolution.

9.1 Probability

For simplicity we assume that our observation
(experiment) has only finitely many outcomes,
which are all equally likely. Typical examples
are rolling a (fair) die, flipping a coin or draw-
ing a card. The sample space S consists of all
possible outcomes, and an event E is a subset
of the sample space.

Figure 17: Venn Diagram

Events are often depicted by Venn diagrams.
The big blue box depicts the sample space con-
taining g all possible outcomes, while the yel-
low region singles out a specific event.

Example: When rolling a die, the outcomes
are the numbers one through six, the sample
space is the set

S = {1, 2, 3, 4, 5, 6}

and the event of rolling an even number is the
set

E = {2, 4, 6}

Definition: The probability of an event E is

P (E) =
n(E)

n(S)

where n(S) denotes the size of the sample space,
that is, the number of possible outcomes, and
n(E) denotes the number of outcomes that make
up the event E. In this definition it is im-
perative that there are only finitely many and
equally likely outcomes.

Examples:

1. The probability of rolling a ”3” on a fair
die is

P (E) =
1

6
= 0.167 ,

because n(E) = 1 and n(S) = 6.

2. A standard deck has 52 cards, two of
which are red threes (♥ 3 and ♦ 3). We
make drawing a red three our event E.
Then the probability of E is

P (E) =
2

52
= 0.0385 = 3.85%

because n(S) = 52 and n(E) = 2.

3. In this example we are rolling two dice,
a red and a blue one, and we want to
find the probability of getting an eight
or higher.

Here an outcome is a pair of numbers
(r, b), with r being the value on the red
die, and b the value on the blue die. We
have 36 possible outcomes as illustrated
in Figure 18.
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Figure 18: Outcomes for a Pair of Dice

There are 15 possible cases where the
outcome is eight or higher; hence the prob-
ability of the event is

P (E) =
15

36
= 0.417

9.2 Laws of Probability

The concept of probability can be extended to
spaces with infinitely many outcomes, and to
situations where not all outcomes are equally
likely.

Empirical probabilities are based on col-
lected data. For instance, in the United States
the blood types are distributed as follows

O A B AB

+ 37.4% 35.7% 8.5% 3.4%

- 6.6% 6.3% 1.5% 0.6%

Therefore, the probability that a randomly se-
lected person has blood type B+ is 0.085 =
8.5%.

Rolling dice or drawing cards are examples
theoretical probabilities. For example, the
chances of rolling a ”3” are 1/6 in theory, but
there is no guaranty that when you roll a die
30 times you will get exactly five threes. The
Law of Large Numbers states that in the long
run the empirical probabilities will approach
the theoretical probabilities.

For an arbitrary sample space S and a set
of events E, A, B we require that the proba-
bilities observe the following three rules:

1. P (S) = 1

2. P (E) ≥ 0

3. If A and B are exclusive events, that is,
if A and B cannot occur simultaneously,
then12

P (A or B) = P (A) + P (B)

As a consequence of these axioms we find
that

0 ≤ P (E) ≤ 1

holds for any event E. We say that E is a
certain event if P (E) = 1, and that E is an
impossible event if P (E) = 0.

Moreover, the events

E occurs

E does not occur

are mutually exclusive and they cover the en-
tire sample space (all possibilities). Therefore

1 = P (S)

= P (E or (E does not occur))

= P (E) + P (E does not occur)

and it follows that (negation rule)

P (E does not occur) = 1− P (E)

Examples: We roll a single fair die.

1. The probability of rolling a ”7” is zero.
It is an impossible event.

2. The probability of rolling a number be-
tween one and six is one. It is a certain
event, all possible outcomes are covered.

12In probability theory one would require that this
statement also holds for infinitely many exclusive
events.
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3. The probability of not getting a ”3” is

P (do not roll a 3)

= 1− P (roll a 3)

= 1− 1

6
=

5

6
= 0.833

by the negation rule.

The third property of probabilities

P (A or B) = P (A) + P (B)

is known a the additive property, or the ”OR-
Rule”. It requires that the events are mutually
exclusive.

In the example of rolling two dice, the prob-
ability of rolling a ”7” or a ”10” is

P (roll a 7 or a 10)

= P (roll a 7) + P (roll a 10)

=
6

36
+

3

36
=

9

36
= 0.25

The values are taken from the table in Figure
18. The addition principle applies, because you
cannot roll a ”7” and a ”10” at the same time.

The story is different when you look at the
events

A roll an ”8”

B the red die shows an even number.

Again, Figure 18 reveals that

P (A) =
5

36

P (B) =
18

36
=

1

2

P (A or B) =
20

36

P (A) + P (B) =
23

36

The numbers do not add up, 5+18
36 6= 20

36 ,
but this is not in violation of the OR-Rule,
because the events are not exclusive! A and B
occur can at the same time, for instance, when
the red die has a ”2” and the blue die shows
a ”6”. Three outcomes are doubly counted in
the sum 5+18

36 = 23
36 .

9.3 Conditional Probability and In-
dependent Events

Very often we want to know the probability
of an event A, given that an event B has oc-
curred. We express this value as P (A|B). In
this case B plays the role of the sample space,
and the conditional probability is computed as

P (A|B) =
P (A and B)

P (B)
(2)

Example: We are rolling a red and a blue
die again, and let A be the events of rolling
an eight or higher. We have seen before that
P (A) = 15

36 .
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But we peek, and we see that the red die
shows a ”3”. This changes our odds, because
we now need a ”5” or a ”6” on the blue die to
make at least eight points. The probability of
this is happening is 2

6 = 1
3 . We make B the

event of getting a ”3” on the red die, and in
light of our new notation, we have

P (roll 8 or higher | red die shows ”3”)

= P (A|B) =
1

3

We now show how the formula (2) leads to
the same result. Inspection of Figure 18 reveals
that

P (roll 8 or higher and red die is ”3”)

= P (A and B) =
2

36
and

P (red die shows ”3”)

= P (B) =
1

6

and formula (2) results in

P (A|B) =
P (A and B)

P (B)
=

2/36

1/6
=

1

3

If the events A and B are exclusive, the two
events cannot occur at the same time, which
makes ”A and B” an impossible event with
probability zero, and

P (A|B) =
P (A and B)

P (B)
=

0

P (B)
= 0

If the probability of the event A is not af-
fected by the event B, we call the events A and
B independent. Then

P (A) = P (A|B) =
P (A and B)

P (B)

and therefore

P (A and B) = P (A) P (B)

This is called the multiplicative rule (or AND-
rule) for independent events.

Example: When we roll two dice, the re-
sult on the blue die is not impacted by the
value on the red die, and the outcomes are in-
dependent. Therefore the probability of get-
ting an even number on the red die and a five
or a six on the blue die equals

P ((even on red) and (5 or 6 on blue))

= P (even on red) · P (5 or 6 on blue)

=
1

2
· 1

3
=

1

6

This result can be confirmed by looking at Fig-
ure 18. There are six outcomes for which the
blue die shows a five or a six, and the red
die has an even number and the probability
is 6

36 = 1
6 , as expected.

Figure 19: Tree Diagram

Complex situations are often sketched with
tree diagrams. In Figure 19 the events are de-
noted by upper case letters, and the probabili-
ties are shown on the branches. In the figure it
is imperative that A and B are exclusive, and
that p+q = 1 from the OR-rule. Moreover, C,
D and E must be exclusive and u+ v+w = 1,
and so on.

As we go down a certain path, we multiply
the probabilities. For instance, the probability
that A and C occur is the product p · u (AND
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rule), and the probability that A, E and H
occur is p · w · x.

Example: A disease is linked to a recessive
allele a. Your uncle (mother’s brother) has the
illness, but neither do your mother or your ma-
ternal grandparents. No one on your father’s
side of the family carries the disease, and we as-
sume that your father has genotype AA. What
is the probability that the allele, and poten-
tially pass it on to your children?

First of all, since your father has genotype
AA, it is impossible that you have the illness.
Secondly, maternal grandparents must both be
heterozygotes, and since your mother does not
have the disease, the possibility that your mother
is aa can be ruled out.

For the remaining cases, the probabilities
for your mother’s genotype are P (AA) = 1

3
and P (Aa) = 2

3 . The probability that your
carry the a allele is 1/2 if your mother is Aa.
Therefore the probability that you have geno-
type Aa is

P =
2

3
· 1

2
=

1

3

The tree diagram will clarify the situation.

9.4 Hamilton’s Rule

Altruism is a behavior where the an individual
(the altruist) makes sacrifices to benefit its kin.
Parenting is one such example. The guiding
principle is to promote the success of its own
genes.

In Hamilton’s rule we measure the benefit
B in terms of average additional offspring for
the kin, and the cost C of an altruistic act
in terms of the fewer offspring by the altruist.
The relatedness factor r is crucial. Siblings, on
average, share 50% of the genes and r = 0.5. In
an aunt/nice relationship, the aunt shares 50%
of the genes with the mother, who in turn as
50% of the genes in common with the daughter,
which puts the aunt/nice relatedness at r =
0.5 · 0.5 = 0.25 (multiplication principle). For
cousins the relatedness factor is r = 0.125.

r Relationship

0.5 siblings, parent and child
0.25 aunt or uncle with nice or nephew
0.125 cousins

Hamilton’s Rule states that altruism is fa-
vored if

rB > C

Example: A monkey is under attack by a
predator, but it will have a 75% chance of sur-
vival if the predator is distracted, else it will
get killed. The monkey’s brother has a 25%
chance of being killed if he distracts the preda-
tor. Both would have an average number of
four offspring later in life. Should the brother
help?

The benefit in this scenario is

B = 4 · 0.75 = 3

that is, on average three future offspring would
be saved (this is an expected value). The cost
for the brother is

C = 4 · 0.25 = 1
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that is, one future offspring is put at risk. The
monkeys are siblings and therefore r = 0.5. We
find that rB = 0.5 · 3 = 1.5, which is greater
than C = 1, and therefore the brother should
distract the predator.

More examples are given in the ”Worked
Problems” section.

9.5 The Birthday Problem

This is a somewhat famous problem, and we
include it at this point, although there is no
immediate biological connection.

Problem: What is the probability that in
a group of N people at least two people have
a common birthday? For simplicity, we ignore
leap years and assume that the year has 365
days.

In a group of two or three people the odds
for a shared birthday are fairly slim, in larger
groups the chances become better, and as soon
as we have 366 or more people we are guaran-
teed at least one common birthday13.

The problem is easier to solve when we ask
for the probability that all birthdays are dif-
ferent, and we make this our event E. We will
now go over the probability of E for increasing
values of N , the size of the group.

1. N = 1. With just one person the cannot
be a matching birthday, and P (E) = 1

2. N = 2. If we think of the first person’s
birthday as a given, then there are 364
different ways for the second person to
avoid having the same birthday. There-
fore P (E) = 364

365 = 0.9973 = 99.73% and
it is very likely that the birthdays are
different.

13This is and application of the Pigeonhole Princi-
ple: We have 365 possible birthdays (pigeonholes) and
more than 366 people (pigeons). Therefore, at least two
people (pigeons) must share a birthday (pigeonhole).

3. N = 3. Now a third person enters the
rink. The probability of all different birth-
days becomes (AND-rule)

P (E) =
364

365
· 363

365
= 99.18%

4. Adding a forth person leads to

P (E) =
364

365
· 363

365
· 362

365
= 98.36%

5. If we continue in this fashion, the proba-
bility of different birthdays in a group of
N people becomes

P (E) =
364 · 363 · 362 · · · (366−N)

365N−1

The table and the graph in Figure 20 summa-
rize the results. The break even point is at
N = 23 people. In a group of N = 50 people,
the chances of at least one common birthday
are at 97%, for a group of 100 people it is al-
most find to find at least one matching birth-
day. Test it your favorite group or club, or at
a large party!

9.6 Worked Problems

1. You flip a coin, what is the probability
that you get heads twice.

Solution: We denote heads byH and get-
ting tails by T . Then the sample space
becomes

S =

{
HHH HHT HTH HTT
THH THT TTH TTT

}

The sample space has eight possible out-
comes, three of which have two heads and
one tail. Therefore

P (E) =
3

8
= 0.375 = 37.5%
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Figure 20: The Birthday Problem

This problem can also be worked with a
tree diagram, where all probabilities are
p = 1

2 .

2. Suppose that for one gene we have alle-
les A and a, and that we cross two het-

erozygotes. What is the probability that
a progeny has genotype aa?

Solution: The possible outcomes can be
expressed in a Punnett square, and we
see that in one of four cases we obtain
genotype aa. Thus,

P (aa) =
1

4
= 0.25 = 25%

3. What is the probability of rolling a ”7”
or a ”10” with a pair of dice?

Solution: In reference to Figure 18 we see
that P (”7”) = 6

36 and that P (”10”) =
3
36 . The events are exclusive. Therefore

P (”7” or ”10”)

= P (”7”) + P (”10”)

=
6 + 3

36
= 0.25

4. A family has three children. What is the
probability that they have at least one
girl.

Solution: The ”at least” statement is the
stumbling block here.

Question: How can they not have at least
one girl?
Answer: If all kids are boys.

We compute the probability that all chil-
dren are boys first. This can be done by
a tree diagram similar to the coin toss
problem, or we can argue that the sex
of the first, second or third child are all
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independent events, and thus the multi-
plication rule applies. In either case we
find

P (all boys) =
1

2
· 1

2
· 1

2
=

1

8

By the negation rule, the probability of
having at least one girl is

P (at least girl)

= P (not all boys)

= 1− P (all boys) = 1− 1

8

=
7

8
= 87.5%

5. Dihybrid Cross. We are looking at two
traits.

Allele R is dominant over r; the pheno-
type for R− (this means RR or Rr) is
red, and that for rr is white.

Allele T is dominant over t, the pheno-
type for T− is tall, and that for tt is
short.

What is the probability of getting short
red progeny when we cross RrTt×RrTt?

Solution: The results for each trait are
independent and P (R−) = 3

4 while P (tt) =
1
4 . Therefore

P (red and short)

= P (R−) · P (tt)

=
3

4
· 1

4
=

3

16
= 0.1875 = 18.75%

As an alternative we can set up a tree
diagram.

The diagram confirms the result that short
and red progeny has probability 3/16, it
also explains why 9:3:3:1 is such an im-
portant ratio in genetics.

6. Population Genetics. Cystic fibrosis
(CF) is linked to a recessive allele. Sup-
pose that one of every 2,500 newborns is
affected. What is the probability that a
randomly selected person carries the al-
lele without having the disease?

Solution: Our population gene pool has
alleles A and a. We set p = P (A) the
probability of selecting gene A, and q =
P (a).

What is the probability of picking allele a
twice? By the multiplication rule (AND
rule) we get

P (aa) = q2 ,

but we also know that

P (aa) =
1

2, 500

Thus q2 = 1
2,500 and q = 1

50 . The nega-

tion rule implies that p = P (A) = 49
50 .

The problem calls for P (Aa). A person
can pick up the a-allele either as the first
or as the second allele. This results in

P (Aa) = 2 P (A) P (a) = 2pq

=
2 · 49

502
= 0.0392

This is essentially a Hardy-Weinberg prob-
lem phrased in terms of probabilities, or
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you could argue that Hardy-Weinberg is
really an application of the rules of prob-
ability.

7. Hamilton’s Rule. A young boy is close
to drowning in a heavy surf. Should his
sister swim out and try to rescue him if
she has a 25% chance of drowning her-
self? Assume that both would have two
children each later in life. (Problem adapted
from Campbell.)

Solution: The benefit of the rescue is
B = 2, the two children the boy might
have. The cost for the sister is C =
2·25% = 0.5. They are siblings, therefore
r = 0.5 and we get

rB = 1 > 0.5 = C

and the sister should attempt to rescue
her brother. This is based on Hamilton’s
Rule alone. For real people in an emer-
gency situation there are many other fac-
tors to consider.

9.7 Exercises

1. You flip a coin four times. What is the
probability of getting

(a) all heads?

(b) heads on the first toss, and tails on
the other three tosses?

(c) heads and tails exactly twice (any
order)?

2. You roll a pair of dice. What is the prob-
ability

(a) of rolling a six or higher?

(b) that at least one of the dice shows
a three?

(c) of rolling a pair?

(d) of rolling a pair of sixes?

(e) that both dice show even numbers?

(f) that the sum is an even number?

(g) of not getting a ten?

3. A family has four children. What is the
probability that

(a) all of them are girls?

(b) at least one is a girl?

(c) of having two boys and two girls?

4. A city plants 50 oak trees, 75 ash trees
and 100 maple trees randomly scattered
in a newly designed park. A trail cuts
trough the park so that 90 trees are to
the north of the trail, the remaining trees
are to the south. A pair of wrens settles
in one of the trees (randomly chooses one
of the trees).

(a) What is the probability that the birds
nest to the north of the trail?

(b) What is the probability that the birds
nest on a maple tree?

(c) What is the probability that the birds
nest on a maple tree north of the
trail?

(d) What is the probability that the birds
do not nest in an oak tree?

5. A disease is linked to a recessive allele a.

(a) If both parents have genotype Aa,
what is the probability that the child
will have the disease?

(b) If one parent has the disease, what
is the probability that a child will
have the disease if the other parent
has

i. genotype AA?

ii. genotype Aa?
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6. Dihybrid Cross. We are looking at two
traits. Allele R is dominant over r; the
phenotype for R- (RR or Rr) is red, the
phenotype for rr is white. Allele T is
dominant over t, the phenotype for T-
is tall, and for tt it is short. We cross
RrTt x RrTt. What is the probability of
getting tall white progeny?

7. Crossing mice. When yellow mice
are bread together, a phenotypic ratio
of about two yellow mice for each non-
yellow mouse is observed. But when yel-
low mice are bred with non-yellow mice,
the progeny show a 1:1 ratio of yellow to
non-yellow mice. Can you explain what’s
going on here?
Use Y and y for the alleles, and use that
Y is dominant over y, that is, yellow mice
have genotype Y−, while non-yellow mice
have genotype yy.

8. What is the relatedness factor r for grand-
parents and grandchildren in Hamilton’s
rule?

9. A group of three monkeys - all siblings-
is under attack by predators. A fourth
monkey, a brother of the three, notices
the predators. He has a 80% chance of
getting killed if he distracts the preda-
tors, but each of the siblings will have
a 90% chance of survival if he gives an
alarm call. All would have an average
number of five offspring in the future.
Should the brother help?

10. A young woman needs a kidney trans-
plant due to a rare genetic defect. She
has a 90% chance of survival, if she does.
Her cousin is a match, but she has a 10%
chance of dying if she donates her kidney.
Both would have an average of two kids
if they live. Should she help her cousin?

Would the answer change if the woman
only had a 80% chance of survival. Use
Hamilton’s Rule.

11. A bird foraging in a flock with two aunts
sees a predator. It has a 20% chance
of dying if it gives an alarm call. How-
ever, the two aunts have a 75% chance of
living if they fly off immediately. Birds
in the population have an average of six
offspring, but the aunts are already two
years old and each has had half of those
offspring. Should the young bird give an
alarm call?

Answers

1. (a) 1/16

(b) 1/16

(c) 3/8

2. (a) 13/18

(b) 11/36

(c) 1/6

(d) 1/36

(e) 1/4

(f) 1/2

(g) 11/12

3. (a) 1/16

(b) 15/16

(c) 3/8

4. (a) 40%

(b) 44.4%

(c) 17.8%

(d) 77.8%

5. (a) 25%

(b) (i) 0 (ii) 50%
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6. 3/16

7. The genotype YY is lethal.

8. r = 0.25

9. Yes, 6, 75 > 4

10. Yes, 0.225 > 0.2

11. No, 1.125 < 1.2

10 The Binomial Distribution

In many cases the observations are ”black” or
”white”, ”true” or ’false”, ”either - or” with
no in-between. This leads to Bernoulli trials
and the binomial distribution. Applications
include genetics, medical research and many
others.

10.1 Bernoulli Trials

We begin with an example. A disease is linked
to a recessive allele a, and both parents have
genotype Aa. In this case the probability that
a child will have the disease is 25%. Now sup-
pose that they have three children. What is
the probability that none of the children has
the disease? What is the probability that one
or two have the illness? How likely is it that
all have the disease?

Here is another scenario: A basketball player
has a 80% free-throw percentage. During a
game he steps to the line 12 times. Aside from
fatigue, crowd noise, or other factors, what is
the probability that he sinks 10 shots?

A Bernoulli14 trial is an experiment whose
outcome is either success or failure. There
is no ethical or moral value attributed to the
term ”success”, it just means that the event
in question occurred. The probability of suc-
cess denoted by p, that of failure is q. We then
perform a sequence of n identical such trials,
and it is assumed that the outcomes are in-
dependent, and that p and q remain the same
throughout. The question becomes to deter-
mine the probability of k successes

In the recessive disease example, the num-
ber of experiments is the number of children,
namely n = 3, and p = 0.25, if having the dis-
ease is the outcome of interest (success). For

14Named for the Swiss mathematician Jacob
Bernoulli, 1655-1705.
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each new child the cards are shuffled again, and
the outcomes are independent.

For the basketball player we have n = 12
and p = 0.8. It is assumed that the exper-
iments are independent, and that making or
missing the basket has no bearing on the re-
sult of the next shot.

10.2 Binomial Probability Distribu-
tion

We now give some background15 for the for-
mula to compute the probability of k successes
in n trials when the probability of success is p.

Figure 21: Three Bernoulli Trials

Figure 21 shows the possible results for three
Bernoulli trials. Successes are indicated by S,
failures by F . The column of numbers counts
the successes on each branch, and the last col-
umn denotes the probability for each case. We
see that there is only one way to get three suc-
cesses, and this happens with probability p3.
There are three ways to get two successes, each
has probability p2q. The three ways of having
only one success have probability pq2, and the
one outcome will all failures has probability q3.

15It is a proof for n = 3 and we do a lot of hand
waving for the general case.

This 1 − 3 − 3 − 1 pattern is linked to the
computation

(p+ q)3 = p3 + 3p2q + 3pq2 + q3

The term p3 is the probability of three suc-
cesses, the term 3p2q represents the probability
of two successes, the term 3pq2 is linked to one
success, and the last term q3 is the probability
of no success at all.

Similar patterns emerge for other values of
n. If only n = 2 trials are considered, the
probabilities are tied to

(p+ q)2 = p2 + 2pq + q2

For n = 5 the tree diagram would get much
bigger, but the probabilities would again be
related to

(p+q)5 = p5+5p4q+10p3q2+10p2q3+5pq4+q5

For instance, having three successes and two
failures has probability 10p3q2, and so on. No-
tice that p + q = 1, and considering all cases,
the probabilities will always add up to one, be-
cause (p+ q)n = 1n = 1.

We have argued before that the coefficients
in the expansion of (p+ q)n can be found from
Pascal’s triangle, and if we want a formula for
the probabilities, we need a formula for these
numbers.

First we define the factorial for positive
integers:

n! = 1 · 2 · 3 · · · (n− 1) · n

For instance,

5! = 1 · 2 · 3 · 4 · 5 = 120

25! = 1 · 2 · 3 · · · 24 · 25 = 1.55× 1025

The convention

0! = 1
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is useful, although it doesn’t quite fit the defi-
nition of factorials.

The binomial coefficient is defined as(
n
k

)
= C(n, k) =

n!

(n− k)! k!

for integers 0 ≤ k ≤ n. Notice that there is
no bar between n and k in the parentheses (it
is not a fraction). The binomial coefficient is
pronounced as ”n choose k”, because it stands
for the number of ways to select k items from
a set of n elements16, which motivates the ”C”
in the notation C(n, k).

Example: Let n = 5 and k = 3, then(
5
3

)
=

5!

2! 3!
=

120

2 · 6
= 10

There is a more practical way to compute
this expression, without the evaluation of fac-
torials:(

5
3

)
=

5!

2! 3!
=

5 · 4 · 3 · 2 · 1
2 · 1 · 3 · 2 · 1

=
5 · 4
2 · 1

= 10

If we apply the strategy of the example
to any C(n, k), we should proceed as follows:
First take the smaller of k! or (n−k)! and enter
the terms in decreasing order in the denomina-
tor. Then begin to write n! in decreasing order
in the numerator, and align each number on
top with one below, but stop when you run out
of matching entries. The value of the resulting
fraction is the binomial coefficient. The exam-
ple below will illustrate this technique some
more.

It can be shown that all entries in Pascal’s

triangle have the form

(
n
k

)
. Here n counts

16Consider the set {a, b, c, d} of n = 4 elements. Now
pick any k = 2 of these. This gives you the options
{a, b}, {a, c}, {a, d}, {b, c}, {b, d} or {c, d}. We have
6 = C(4, 2) ways to do this.

the row, and k indicates how far you go down
a particular row - left to right, or right to left,
it doesn’t matter because the triangle is sym-
metric. For both, n and k, it is essential to
start counting with zero.

Figure 22: Pascal’s Triangle

Example: We confirm the highlighted num-
bers in Figure 22.

The ”6” is the third number in the 5th row,
but since we start counting at zero, we get n =
4 and k = 2. It now follows that(

4
2

)
=

4 · 3
2 · 1

= 6

For the ”35” we find that n = 7 and k = 3 and(
7
3

)
=

7 · 6 · 5
3 · 2 · 1

= 35

And finally for ”28” we obtain n = 8 and k = 6
and(

8
6

)
=

8 · 7 · 6 · 5 · 4 · 3
6 · 5 · 4 · 3 · 2 · 1

=
8 · 7
2 · 1

= 28

We are now ready for the big formula. The
probability of k successes in n Bernoulli trials
is

b(n, p, k) =
n!

(n− k)! k!
pkqn−k (3)
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where p is the probability of success, and q =
1−p is the probability of failure. This is called
the binomial probability distribution.

The first fraction in (3) is the binomial co-
efficient from Pascal’s triangle; it counts in how
many ways k successes can be achieved. The
last term involves the probabilities. Each suc-
cess comes with probability p, and thus k suc-
cesses lead to the factor pk. If we have k suc-
cesses in n trials, then we also have (n − k)
failures, and these introduce the factor qn−k.
The tree diagram in Figure 21 gives an illus-
tration for n = 3.

Example: Back to the basketball case. What
is the probability of 10 successes in 12 trials
when the probability of success is 80%?

Here n = 12, k = 10 and p = 0.8. The
probability of failure17 is q = 1− p = 0.2, and
10 successes in 12 trials means that we have
n− k = 2 failures. For the binomial coefficient
we find(

12
10

)
=

(
12
2

)
=

12 · 11

2 · 1
= 66

The full binomial distribution formula (3) re-
sults in

b(12, 0.8, 10)

=
12!

10! 2!
0.8p10 0.22 = 66 · 0.1074 · 0.04

= 0.2835

10.2.1 Calculators and Computers

Graphing calculators can help a great deal with
the computations. The following instructions
work for TI calculators, and similar steps can
be applied on other brands.

The MATH button has a PRB option. Here
you find ”!” for factorials and ”nCr” for the bi-

17If you make a basket 80% of the time, you miss
20% of the time.

nomial coefficient. For instance C(12, 10) can
be computed by ”12 nCr 10”.

The binomial distribution is found under
DISTR, and it is called ”binompdf”. In order
to compute b(12, 0.8, 10), just enter

binompdf(12,0.8,10)

and your calculator will produce 0.2835. The
command has the structure ”binompdf(n,p,k)”,
and if k is omitted, ”binompdf(n,p)” will dis-
plays all values for k from 0 to n.

EXCEL has a lot of built-in functions.
”=FACT(n)” will compute a factorial, the com-
mand ”=COMBIN(n,k)” will calculate C(n, k)
and ”=BINOM.DIST(k,n,p,false)” can be used
for binomial distributions.

10.2.2 Cumulative Density Distribution

Very often we are interested in more than just
the probability for a particular value of k. For
instance, in the basketball problem we might
ask for 10 or more baskets in 12 attempts. The
cumulative probability density function takes
care of this. It adds all the probabilities from
k = 0 up to a certain threshold.

The formulas become very complicated, and
we illustrate the concept with an example. Let’s
say we take n = 5 trials and the probability of
success is p = 0.4. In the table below the col-
umn labeled ”pdf” contains all probabilities for
k from 0 to 5, computed with formula (3) as
usual.

k pdf cdf
0 0.078 0.078
1 0.259 0.337
2 0.346 0.683
3 0.230 0.913
4 0.077 0.990
5 0.010 1.000
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The column ”cdf” keeps the running total. For
instance, at k = 2 it contains the sum

0.078 + 0.259 + 0.346 = 0.683

When we reach k = 5, all cases are covered
and the probabilities add to one.

The graph shows both functions. The den-
sity function peaks for k = 2. This is not sur-
prising, because with n = 5 trials and a 40%
success rate one would expect 0.4 · 5 = 2 suc-
cesses. The cumulative function adds the pdf
values, it increases and reaches 1 when k = 5.

The command ”binomcdf(n,p,k)” will com-
pute cumulative densities on a calculator, and
in EXCEL the command is
”=BINOM.DIST(k,n,p,true)”.

Example: A basketball player with a 80% free
throw percentage steps to the line 12 times.
What is the probability of making 10 or more
points?

We need to be careful here. We are inter-
ested in 10, 11 or 12 successes, but the cumu-
lative density function will start counting with
k = 0. Hence, and this is a calculator result,

binomcdf(12, 0.8, 9) = 0.442

is the probability of making anywhere from
none to nine baskets, and therefore the proba-
bility of sinking 10 to 12 shots is

P (at least 10 baskets)

= P (not 9 or less baskets

= 1− 0.442 = 0.558

by the negation rule.

10.3 Worked Problems

1. Compute

(a) 16!

(b)
16!

11!

(c)
16!

5! 11!

Solution:

(a) 16! = 1 · 2 · 3 · · · 15 · 16

= 20, 922, 789, 888, 000

(b)
16!

11!
=

1 · 2 · · · 10 · 11 · 12 · · · 15 · 16

1 · 2 · 3 · · · 10 · 11

= 12 · 13 · 14 · 14 · 15 · 16
= 524, 160

(c)
16!

5! 11!
=

16 · 15 · 14 · 13 · 12

5 · 4 · 3 · 2 · 1
= 4, 368

2. Sickle-cell anaemia (SCA) is linked to a
recessive allele. Suppose that the par-
ents are both heterozygotes with respect
to this trait. What is the probability that
two of their three children have the dis-
ease?

Solution: Here n = 3 (each child is an ex-
periment!), and we are looking for k = 2
occurrences of the SCA. We also know
that the probability of acquiring the dis-
ease is p = 0.25. The binomial distribu-
tion formula implies that

b(3, 0.25, 2) =
3!

1! 2!
0.252 0.75

= 3 · 0.0625 · 0.75 = 0.140625

≈ 14%
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3. Given that 30% of the students are smok-
ers, what is the probability that a ran-
domly selected group of six students

(a) consists entirely of non-smokers?

(b) consists entirely of smokers?

(c) is evenly split between smokers and
non-smokers?

(d) has at least one smoker?

(e) has two or more smokers?

Solution: For this problem n = 6 in all
cases, and p = 0.3, if we look for smokers
(success). Selecting a non-smoker then
has probability q = 0.7.

(a) Selecting a non-smoker six times in
a row has probability

P (all non-smokers)

= 0.76 = 0.118

by the multiplication rule for inde-
pendent events. One can also apply
formula (3) with k = 0 (recall that
0! = 1 and that p0 = 1 for any num-
ber p). We find that

b(6, 0.3, 0) =
6!

6! 0!
0.30 0.76

= 0.76 = 0.118

(b) Here k = 6 and

b(6, 0.3, 6) =
6!

0! 6!
0.36 0.70

= 0.36 = 0.000, 729 = 0.07%

(c) In this case k = 3 and it follows that

b(6, 0.3, 3) =
6!

3! 3!
0.33 0.73

= 20 · 0.027 · 0.0.343 = 0.185

(d) If the group has at least one smoker,
they cannot be all non-smokers. Us-
ing the negation rule and the result
from part (a) we obtain

P (at least one smoker)

= 1− P (all non-smokers)

= 1− 0.118 = 0.882

(e) This problem calls for adding the
probabilities for k = 2, 3, 4, 5 and
6. This becomes a little easier, if we
negate the statement first and look
for the probability of having at most
one smoker in the group. We know
from part (a) that the probability
for k = 0 smokers in the group is
0.118 and for k = 1 we obtain

b(6, 0.3, 1) =
6!

5! 1!
0.31 0.75

= 6 · 0.3 · 0.168 = 0.303

and having none or just one smoker
in the group has probability

0.118 + 0.303 = 0.421 = 42.1%

By the way, the same result can be
obtained using the cumulative dis-
tribution, and the calculator shows18

that

binomcdf(6, 0.3, 1) = 0.420, 175

Thus, having two or more smokers
in in group occurs with probability
(negation principle)

1− 0.420 = 0.580 = 58.0%

18There is a little rounding discrepancy; 42.0175% is
correct.
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4. In a 1995 study the CDC reported that
20% of college women have been a vic-
tim of rape during their lifetime. Some
critics question the validity of this figure,
while newer studies seem to support sim-
ilar values19. For the sake of argument,
let’s stick to the 20% figure for this prob-
lem.

The graph shows the probabilities for hav-
ing k victims in the group. In a group of
15 one would expect having about three
victims in the group20, and this has the
highest probability. But by chance it could
very well happen that we have fewer or
more victims in the group. However, hav-
ing eight or more in a randomly selected
group is highly unlikely, as the graph shows.

Here are the questions: What is the prob-
ability that in a group of 15 randomly
selected college women

(a) at least one has been a victim of
rape?

(b) exactly one of them has been a vic-
tim?

(c) three of more have been raped?

Solutions:

19A CDC study in 2014 reports that 19.3% of women
have been victim of rape during their lifetime, about
78% of the rape victims were 25 years old or younger.

2020% of 15 is 3, and statisticians call this the ex-
pected value.

(a) ”At least one” victim rules out that
none has been raped. The probabil-
ity of not having been victimized is
q = 1 − p = 0.8, and 0.815 = 0.035.
Therefore the probability that none
has been abused is 3.5%, and the
probability that at least one has been
raped is (negation rule)

1− 0.035 = 0.965 = 96.5%

(b) Here n = 15, p = 0.2 and k = 1 and
we are looking for

b(15, 0.2, 1)

=
15!

14! 1!
0.21 0.814

= 15 · 0.2 · 0.044

= 0.132 = 13.2%

(c) This excludes none, one or two rape
victims. The cumulative density dis-
tribution yields (calculator and/or
the graph above)

binomcdf(15, 0.2, 2) = 0.398

that is, having up to two victims
in the group has probability 39.8%,
and therefore having three or more
has probability 0.602 = 60.2%

5. Given that 4% of the population carry
the cystic fibrosis allele. What is the
probability that in a group of 50 people

(a) nobody,

(b) one person,

(c) two people,

(d) three or more

carry the CF allele?

Solution: Here n = 50, p = 0.04, and
we are looking for the probabilities with
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k = 0, k = 1 and k = 2. Routine compu-
tations show that

binompdf(50, 0.04, 0) = 0.130

binompdf(50, 0.04, 1) = 0.271

binompdf(50, 0.04, 2) = 0.276

which answers parts (a) - (c). If we add
the values, we obtain 0.677 = 67.7%,
which is the probability of having up to
two carriers. Hence, the probability of
having three or more carriers is

1− 0.677 = 0.323 = 32.3%

6. An experimental medical procedure is 86%
successful. What is the probability that
it fails for tree of twelve patients in a hos-
pital? What is the probability that it
fails for three or more patients?

Solution: With an 86% success rate and
12 patients, we expect 0.86 · 12 = 10.3
successes, and thus 1.7 failures. But this
is not the question. We need the prob-
ability of k = 9 successes in n = 12
trials when the probability of success is
p = 0.86, and we find that

b(12, 0.86, 9) = 0.155

When we ask for three or more failures,
we are looking at 9 or less successes. The
cumulative density function yields

binomcdf(12, 0.86, 9) = 0.230

Our hospital is not doing too well. Its
success rate of 75% lags behind the av-
erage, and about the bottom quarter of
hospitals have similar dismal success rates.

7. A student takes a multiple choice test by
random guesses. There are five questions
on the test, each with four choices. What
is the probability of getting

(a) four correct answers?

(b) at least four correct answers?

Follow up: How do the results change
when all questions ”true or false”?

Solution: Here n = 5, and for the first
questions we have a p = 0.25 chance of
success.

(a) k = 4 and

b(5, 0.25, 4)

=
5!

4! 1!
· 0.254 · 0.75

=
5 · 3
45

=
15

1024
= 0.0147

and the chance of getting four cor-
rect answers is about 1.5%.

(b) This case asks for four or five cor-
rect answers. The probability of get-
ting all answers correct is

0.255 =
1

1024
= 0.000, 98

and addition shows that the proba-
bility of getting four or more correct
answers is

15 + 1

1024
=

16

1024

=
1

64
= 0.0156 = 1.56%

In the follow-up the probability of suc-
cess changes to p = 0.5, and similar com-
putations show that the probability of
getting four problems correct is

b(5, 0.5, 4) = 0.15625
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and the probability of getting four or more
correct is

b(5, 0.5, 4) + b(5, 0.5, 5)

= 0.15625 + 0.03125 = 0.1875

10.4 Exercises

1. Compute

(a) 12!

(b) 9!

(c)
12!

9!

(d)
12!

9! 3!

2. You flip a coin four times. What is the
probability of getting

(a) all tails?

(b) tails three times?

(c) heads and tails exactly twice (any
order)?

3. You roll a die five times. What is the
probability of rolling sixes twice?

4. A family has five children. What is the
probability that they have four girls and
one boy?

5. Suppose that Democrats and Republicans
are evenly split on campus. What is the
probability that 12 randomly selected stu-
dents are split evenly into six supporters
of each party?

6. A multiple choice test has 5 questions
with four choices each. What is the prob-
ability that you get

(a) four correct answers,

(b) at least four correct answers

with random guesses?

7. An experimental medical procedure is 90%
successful. What is the probability that
it fails on three of twelve patients in a
hospital?

8. Given that 4% of the population carry
the recessive cystic fibrosis allele. What
is the probability that in a group of 25
people

(a) nobody

(b) one person

(c) two people

carry the allele?

Answers

1. (a) 479,001,600

(b) 362,880

(c) 1,320

(d) 220

2. (a) 1/16

(b) 1/4

(c) 3/8

3. 16.1%

4. 15.6%

5. 22.6%

6. (a) 1.465% , (b) 1.5625%

7. 8.5%

8. (a) 36.0%, (b) 37.5%,
(c) 18.8%
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11 Functions

Functions are a very important concept in math-
ematics, and they are usually introduced in
Pre-Calculus. In the next chapters we will look
at linear, exponential, logarithmic and power
functions which play an important part in bio-
logical modeling. The purpose of this section is
to introduce the function concept. We touched
loosely on this topic in the context of graphing
already.

Definition: A function f is a rule which as-
signs to each admissible input x exactly one
output y. The domain of a function is the set
of all admissible inputs, and the range consists
of all possible output values. We write21

y = f(x)

pronounced as ”f of x”, where y is the output
assigned to the input x.

The black box concept is often used to vi-
sualize functions. An input x is submitted to
the black box, and the rule will assign an out-
put y. The notation f(x) emphasizes that the
result is the output of the function f from the
input x.

It is customary say that the input is the
independent variable, and the output is the de-
pendent variable, as it depends on the input.

Example (Square Roots): Here the rule (f)
is taking square roots. The input x = 4 results

21f is the function, f(x) is the formula for the output.
There is a fine difference here, and many a math major
struggles with that too.

in the output y = 2, the input x = 25 generates
the output y = 5, and so on.

For any input x, the output y from the
function will be

√
x. In function notation we

write

f(x) =
√
x

and the initial examples become

f(4) = 2 and f(25) = 5

We cannot take square roots of negative
numbers. Thus, the domain of this function
is the interval 0 ≤ x < ∞, and since taking
square roots will never produce a negative re-
sult, the range is the interval 0 ≤ y < ∞ as
well.

Example (An Exponential Function): As-
sign the output y = 2x to every input x. For
instance, the input x = 3 results in the out-
put y = 23 = 8, for x = −2 we get y =
2−2 = 1

4 = 0.25 and x = 0 produces the output
y = 20 = 1.

In function notation we have

f(x) = 2x

and our initial examples can be expressed as

f(3) = 8 f(−2) =
1

4
f(0) = 1

The domain of this function consists of all real
numbers22, and the range are the positive num-
bers (y > 0).

Example: A Function Defined by a Ta-
ble. In this example we define a function by

22In the Algebra chapter we have looked at ax for
positive integers x, and then we extended the meaning
of ax to negative integers x, and later on to fractional
exponents. It requires some serious Calculus to define
ax when x cannot be written as a fraction.
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listing all inputs and their associated outputs.

Input Output
x f(x)

1 4
2 6
4 9
5 4
8 5

This means that x = 1 is mapped to f(1) = 4,
x = 2 is mapped to f(2) = 6 and so on.
The requirement that each admissible input
has exactly one output is met. The domain
of this function is the set of numbers D =
{1, 2, 4, 5, 8}. The function is not defined for
any other values. The range of the function
are the numbers R = {4, 5, 6, 9}, and the fact
that x = 1 and x = 5 have the same output is
not in violation the definition of a function.

Several Variables. There is really no rea-
son to restrict the input of a function to single
numbers. For example, the binomial distribu-
tion formula

b(n, p, k) =
n!

(n− k)! k!
pkqn−k

can be viewed as a function of three variables.
The input consists of the triple (n, p, k), where
n is a positive integer, 0 ≤ p ≤ 1 is a real
number, and 0 ≤ k ≤ n is an integer (this is
a description of the domain). The output is
the value computed from the formula on the
right, and it can be shown that the range of
this function is the interval 0 ≤ y ≤ 1.

General Functions. The function con-
cept is not restricted to numbers only. For
example, you can construct a function by as-
signing the date of birth (output) to each per-
son (input). When you classify organisms by
species, you assign to each organism (input)
its scientific name (output). Sometimes it is

useful to interpret those kinds of examples in
terms of functions, sometimes using functions
makes simple things unnecessarily abstract and
complicated. In the sequel we will restrict our-
selves to functions tied to numbers.

11.1 Graphs of Functions

From your experience with graphing calcula-
tors you know that the graph of a function
should be some kind of a curve. This is true
in many cases, because most of the time the
output can be described by a formula. The
functions

f(x) =
√
x

f(x) =
4− x

2
f(x) = 2x

serve as examples. In this case you can enter
the formula, and the graphing calculator23 will
produce a nice curve.

In these graphs the inputs lie on the x-
axis and the outputs are located on the y-
axis. In order to illustrate the input-output
relation, select an input x on the x-axis, move
up or down to the curve, and then over to the
y axis. This number is the output y. Fig-
ure 23 illustrates this notion for the function
f(x) =

√
x with input x = 6.25 and output

y =
√

6.25 = 2.5.
You can visualize the domain of a func-

tion by projecting the graph of the function
down onto the x-axis, and its range by projec-
tion onto the y-axis. For example, the function
given in Figure 24 has domain 1 ≤ x ≤ 4 and
range 1 ≤ y ≤ 5.

You may have noticed than in any of those
graphs you never have a situation where one

23Before the advent of graphing calculators people
would compute f(x) for selected values of x (T-table),
plot the points, and then connect the dots by a smooth
curve.
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Figure 23: f(x) =
√
x

Figure 24: Domain/Range

and the same x value comes with two differ-
ent points on the graph. This does not occur,
because one input cannot have two different
outputs. This idea is called the Vertical Line
Test24. Moreover, any curve which passes the
Vertical Line Test can be used to define a func-
tion graphically. Just apply the principle of
Figure 23.

If a function is given in form of a table,
a scatter plot is the most appropriate way to
display its graph.

11.2 Composition and Inverse Func-
tions

This section is included because exponential
functions and logarithmic functions, which will
be covered later on, are inverses of each other.

24Any vertical line intersects with the graph at most
once.

The composition of functions is needed to ex-
plain inverse functions. Pre-Calculus usually
covers many aspects of functions in great de-
tail; here we limit ourselves to the composition
and to inverse functions.

Composition. In the composition of func-
tions, the output of one function is used as an
input for another function, as illustrated in fig-
ure below.

The input x is fed into the function g and
it produces the output y = g(x). This value
is then used as input for the function f . The
output becomes

z = f(y) = f(g(x))

Overall, the input x results in the output z =
f(g(x)). By combining the two functions we
have created an new input-output relationship,
that is, we have formed a new function h. This
function is called the composition of f and g,
and its is commonly denoted as h = f ◦ g. In
particular,

h(x) = (f ◦ g)(x) = f(g(x))

Example: Take f(x) =
√
x and g(x) = 2x−3.

The function f takes square roots of the
input, therefore if the input is g(x), the output
becomes

f(g(x)) =
√
g(x)

But we have a formula for g(x), and once we
substitute we obtain

h(x) = f(g(x)) =
√
g(x) =

√
2x− 3

and the composition is h(x) =
√

2x− 3.
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Example: If f(x) = 1/x and g(x) = 1 − x2,
then

f(g(x)) =
1

g(x)
=

1

1− x2

and

g(f(x)) = 1− f(x)2 = 1− 1

x2

Clearly, the results are different, and f ◦ g 6=
g ◦ f is the rule, rather than the exception.

Example: The temperature T in degree Cel-
sius x meters above the ground is given by

T (x) = 20− 0.01x

i.e. at the ground level the temperature is
25oC, and it decreases by one degree Celsius
for every elevation gain of 100 m. The height in
meters of a projectile t seconds after its launch
is given by

h(t) = 80t− 4.9t2

In order the find the air temperature at the
location of the projectile as a function of time,
we have to first determine the height and then
compute the temperature. This results in

T (h(t)) = T (80t− 4.9t2)

= 20− 0.01
(
80t− 4.9t2

)
= 20− 0.8t+ 0.049t2

This is a composition of functions. The out-
put of the height function is the input to the
temperature function.

Inverse Functions. When we construct
the inverse of a function, we aim to find a func-
tion which ”undoes” the effects of the original
function. For instance, if f takes the input 5
to 8, then the inverse function should take 8
back to 5.

Definition: A function g is called the inverse
function of f if

g(f(x)) = x and f(g(y)) = y (4)

is valid for all x in the domain of f and for all
y in the range of f .

A few remarks are in order:

1. The notation f−1 is frequently used to
denote the inverse of a function. But this
can be misleading, because

f−1(x) 6= 1

f(x))

that is, the inverse of a function is not its
reciprocal. For this reason we denote an
inverse by g.

2. Suppose that f takes the number a to b,
then the inverse will take b back to a. In
function notation we have

f(a) = b and g(b) = a

If we combine these statements, we get

a = g(b) = g(f(a))

and we see that the composition of in-
verse functions results in the identity func-
tion.

3. Most of the time, if g(f(x)) = x works
out, the other requirements for inverse
functions will fall into place. But in some
cases it is important to pay attention to
domain and range of f and g in order to
avoid pitfalls.
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4. Not every function has an inverse. In the
example of tabular data we had f(1) = 4
and f(5) = 4. It is impossible to con-
struct an inverse function, because we
cannot map the value 4 back to 1 and
to 5 at the same time (a function g can
only have one output).

In mathematics we call functions for which
different inputs always result in differ-
ent outputs one-to-one, and this is the
class of functions which have an inverse.
We do not want to get into further de-
tail; usually we will encounter some ”red
flags” as we attempt to compute an in-
verse.

Example: The functions

f(x) = 2x− 5 and g(x) =
x+ 5

2

are inverses of each other. The relationship

g(f(x)) = g(2x− 5)

=
(2x− 5) + 5

2

=
2x

2
= x

holds for all x, and f(g(y)) = y works in a
similar fashion, and there are no issues with
domains and ranges.

Example: The functions

f(x) = x2 and g(x) =
√
x

are inverses, provided that, and this is impor-
tant, we exclude negative numbers. Verifica-
tion:

g(f(x)) =
√
f(x) =

√
x2 = |x| = x

The equation
√
x2 = |x| holds for all numbers,

positive or negative, but the last step requires

that x ≥ 0. Result: For positive numbers the
square root of a square is the original number!

For the converse we have

f(g(y)) = f(
√
y) = (

√
y)2 = y

No problem here. y ≥ 0 is required for the
domain of g.

Notice that the parabola f(x) = x2 is not
one-to-one. For instance, f(4) = 16 and f(−4) =
16, and we can only go back from y = 16 to
x = 4, if we exclude the negative x = −4.

Example: f(x) =
1

x
is its own inverse:

f(f(x)) = f

(
1

x

)
=

1

1/x
= x

The reciprocal of the reciprocal is the original
number.

Usually, inverse function are nicely paired
on a calculator and connected with the ”2ND”
key. x2 comes with

√
, LOG with 10x, LN

with ex, and the same goes with the trigono-
metric functions. If you experiment with your
calculator, you will observe that in most cases
no matter what messy number the original func-
tion produces, the inverse will take you back to
where you started:

log 412.7 = 2.615634469

10Ans = 412.7

The construction of an inverse requires to
recover x from y = f(x). In other words, we
have to solve the equation y = f(x) for x.

Example: Let f(x) =
2x

x− 1
. to find the

inverse we have to solve

y =
2x

x− 1
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It’s a long process, but it can be done (the
steps should be evident):

y =
2x

x− 1
(x− 1)y = 2x

xy − y = 2x

xy − 2x = y

(y − 2)x = y

x =
y

y − 2

and the inverse is x = g(y) =
y

y − 2
, or by

renaming the variable, it becomes

g(x) =
x

x− 2

Technically, still we have to verify that g
meets all the requirements of an inverse func-
tion. This includes to confirm that

g(f(x)) =
2x
x−1

2x
x−1 − 2

= x

Secondly, g is not defined for x = 2, the rea-
son being that there is not a single value for x
which makes f(x) = 2. Conversely, f is unde-
fined for x = 1, and g(x) 6= 1 for any selection
of x.

11.3 Worked Problems

1. A function is defined by the formula

f(x) = x+
1

x

(a) Describe the the function verbally.

(b) What are the respective outputs for
the inputs x = 1, x = 2, x = −2,
x = 4 and x = 1

4?

(c) Graph the function for −4 ≤ x ≤ 4.

(d) What is the domain of the function?

(e) Does the function have an inverse?

Solutions:

(a) The function takes the sum of the
input and its reciprocal.

(b)

f(1) = 1 + 1 = 2

f(2) = 2 +
1

2
= 2.5

f(−2) = −2 +
1

−2
= −2.5

f(4) = 4 +
1

4
= 4.25

f(1
4) =

1

4
+

1
1
4

= 4.25

(c) The graph is

(d) x = 0 has to be excluded from the
domain, as its reciprocal is unde-
fined. All other real numbers are
permitted.

(e) The function cannot have an inverse.
For instance, x = 4 and x = 1

4 have
the same output y = 4.25, and it is
impossible to go back from 4.25. In
math terms: The inverse does not
exist, because the function is not
one-to-one.

2. A function is defined as

f(x) =
√
x− 1− 4
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(a) Sketch the graph of this function.

(b) What are the domain and the range
of the function?

(c) Construct the inverse of the func-
tion.

Solutions:

(a)

(b) x ≥ 1 is required, so that the square
root exits. Therefore, the domain is
{x ≥ 1}. y = −4 is the smallest
possible value (it occurs for x = 1).
Therefore, the range is {y ≥ −4}.

(c) We begin with y =
√
x− 1− 4 and

solve the equation for x:

y =
√
x− 1− 4

√
x− 1 = y + 4

x− 1 = (y + 4)2

x = 1 + (y + 4)2

Thus, after we switch x and y, the
inverse function becomes

g(x) = 1 + (x+ 4)2

The condition y ≥ −4 is implied in
the first step. Therefore the domain
of g is the set {x ≥ −4}.

3. A function is defined by the data below.

Input Output
x f(x)

−3 16
0 12
2 8
5 10
10 0

(a) Compute f(0), f(2) and f(f(5)).

(b) Sketch the graph of the function.

Solutions:

(a) Directly from the table we obtain
that f(0) = 12 and f(2) = 8. Since
f(5) = 10, it follows that
f(f(5)) = f(10) = 0.

(b) A scatter plot is most appropriate
for tabular data.

4. Let f(x) = x(1−2x), g(x) = 1
2(1−x)

and h(x) = 1− 2x. Determine

(a) f(g(x))

(b) g(h(x))

(c) h(h(x))

Solutions:

(a) First we formally substitute g(x) for
x in the definition of f , then we ap-
ply the definition of g. Simplifica-
tion will do the rest.

f(g(x)) = g(x)(1− 2g(x))
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=
1

2
(1− x)(1− 2

1

2
(1− x))

=
1

2
(1− x)(1− (1− x))

=
1

2
x (1− x)

(b)

g(h(x)) =
1

2
(1− h(x))

=
1

2
(1− (1− 2x))

=
1

2
2x = x

which shows that g and h are in-
verses.

(c) Sometimes it is beneficial to apply
a function twice. Here we obtain

h(h(x)) = 1− 2h(x)

= 1− 2(1− 2x)

= 1− 2 + 4x

= 4x− 1

11.4 Exercises

1. Let f(x) = x2 − 4.

(a) Describe the the function verbally.

(b) What are the respective outputs for
the inputs x = 1, x = 2, x = −2,
x = 4?

(c) Graph the function for −5 ≤ x ≤ 5.

(d) What is the domain of the function?

(e) Does the function have an inverse?

2. Let f(x) =
x

10
+ 4

(a) Describe the function verbally.

(b) Compute f(0), f(20), f(−10).

(c) Sketch the graph of f .

(d) Find x such that f(x) = 0

(e) Construct the inverse for f .

3. Let f(x) =
x

x+ 1

(a) Compute f(0), f(1), f(99) and f(−3)

(b) Sketch the graph of f .

(c) Construct the inverse for f .

4. A function is defined by the data below.

Input Output
x f(x)

−2 3
0 1
3 6
6 6
10 5

(a) Compute f(0), f(10) and f(f(f(6))).

(b) Sketch the graph of the function.

5. Let f(x) =
√
x, and let g(x) = x2 + 1.

Form

(a) f(g(x)) and

(b) g(f(x))

6. Confirm that the functions f(x) =
1

x− 1
and g(x) = 1 + 1

x are inverses of each
other.

Answers

1. (a) The function subtracts 4 from the
square of the input.

(b) −3, 0, 0, 12, respectively.

(c)
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(d) All real numbers.

(e) No.

2. (a) The function takes one tenth of the
input and then adds 4 to it.

(b) 4, 6 and 3, respectively.

(c)

(d) x = −40

(e) g(x) = 10x− 40

3. (a) 0, 1
2 = 0.5, 99

100 = 0.99 and 3
2 = 1.5,

respectively.

(b)

(c) g(x) =
x

1− x
= − x

x− 1

4. (a) 1, 5 and 6, respectively.

(b)

5. (a) f(g(x)) =
√
x2 + 1

(b) g(f(x)) = x+ 1

6. Form compositions to obtain f(g(x)) = x
and g(f(x)) = x.

12 Linear Functions

Linear models are the most natural approach
in many problem solving situations.

For instance, if the cost for a wedding in-
creases by $200 for eight additional guests, then
twelve more guests will raise the cost by $300.
It’s natural, it’s logical and we haven’t even
said anything about linear relationships.

Linear models are often used as a first step
in complex situations, and biology is no excep-
tion. We will touch upon examples from cli-
mate change, population growth, temperature
regulation and anatomy.

12.1 Lines

Most everybody is familiar with

y = mx+ b

as an equation for a line. Here

m =
∆y

∆x
=

change in y

change in x

=
rise

run

is the slope of the line. It is also called the
gradient, although in mathematics this term is
usually reserved for multi-variate functions. In
most applications the slope represents a rate.

What distinguishes a (straight) line from
all other curves, is that the slope remains the
same throughout. It does not matter which
points P and Q are selected on the line, the ra-
tio of the differences of the y-coordinates (∆y)
to the differences of the x-coordinates (∆x) al-
ways remains the same.

The term b is the y-intercept. It can be
found by setting x = 0. In a graph it is value
where the line crosses the y-axis.

Example (Temperature Conversion): The
relation between the Celsius (C) and Fahren-
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Figure 25: Line

heit (F) temperature is given by the equation

F = 1.8C + 32

When we set y = F and x = C we have an
equation of a line

y = 1.8x+ 32

The slope is m = 1.8; it tells us that for each 1o

increment on the Celsius scale, the Fahrenheit
temperature will go up by 1.8o.

In order to illustrate the ∆ notation, we
have to pick two points. So, for instance x =
10oC is the equivalent of y = 50oF and x =
35oC corresponds to y = 95oF . For these two
data we get

∆C = ∆x = 35− 10 = 25

∆F = ∆y = 95− 50 = 45

that is, a 25 degree increase in the Celsius scale
comes with a 45 degree raise of the Fahrenheit
temperature, and the ratio becomes

m =
∆y

∆x
=

45

25
= 1.8 ,

as expected.
The y-intercept is b = 32. Water freezes at

x = 0oC, which is the equivalent of 32oF .

Example (Cost of a Wedding): If x is the
number of guests and y is the cost of a wedding,
the statement that eight more guests increase
the cost by $200 translates into ∆y = 200 when
∆x = 8. The slope becomes

m =
∆y

∆x
=

200

8
= 25

This is a rate, it measures the cost per person.

The relationship m = ∆y
∆x can be rephrased

as

∆y = m ∆x

and with m = 25, we find that ∆y = 25∆x,
which tells us that if the number of attendees
changes by ∆x, the cost will change by ∆y =
25 ∆x.

We have no information about the fixed
cost, i.e. expenses which are independent of
the number of guests. Thus, b is unknown and
we cannot set up an equation of the cost of a
wedding in terms of the number of guests.

Linear Functions. When we express a
line in function form,

f(x) = mx+ b

we call it a linear function. Examples include

f(x) = 4x− 9

f(x) = 6− 0.5x

f(x) =
4− x

2

There is really no significant difference be-
tween f(x) = 2x−3 and y = 2x−3. The first
notation emphasizes the function concept, the
second is more appropriate for graphs in the
xy-plane. If you want to find the value of a
linear function for a specific point x, the func-
tion notation comes in handy. For example,
let

f(x) = 2x− 3
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then the value for x = 2 is

f(2) = 2 · 2− 3 = 1

The alternative would be writing

y = 2x− 3

and then

y|x=2 = 2 · 2− 3 = 1

This is all very technical, and hybrids, such as
y(2) = 1 are acceptable.

Tables. Consider the data in the table

x y

−2 14
0 20
2 26
4 32
6 38

We notice that the data on the left increase by
2, and those on the right increase in steps of 6.
This is a clear indication that we are dealing
with a line! On the left we have ∆x = 2 and
on the right we get ∆y = 6. Therefore,

m =
∆y

∆x
=

6

2
= 3

When x = 0 we see that y = 20 = b, which is
the y-intercept, and the equation for the data
in the table is

y = 3x+ 20

A graph confirms the linear structure of the
data.

12.2 Point-Slope Form

A line is completely determined if we know two
points which belong to the line. It is also de-
termined if we know just one point, as well as
the slope.

Let’s begin with the latter. Suppose that
the slope of a line is m, and that the point
P (x0, y0) belongs to the line. Then the equa-
tion of this line is

y − y0 = m(x− x0) (5)

This equation is known as the point-slope form
of a line, as it requires the knowledge of a point
and the slope.

Example: A line has slope m = 3, and it
contains the point P (2, 1). Its equation is

y − 1 = 3(x− 2)

which can be rewritten as

y = 3x− 5

Let’s confirm the result: Obviously, the slope
is m = 3, and when we set x = 2, we find that
y = 3 · 2− 5 = 1, as desired.

There is an alternative solution. We know
that m = 3, therefore the equation becomes

y = 3x+ b

When we set x = 2 and y = 1, the substitution
yields

1 = 3 · 2 + b

and solving for b results in b = −5. Hence, the
equation is y = 3x− 5, as before.

Two Points. Two points also determine
a line, but the corresponding formula becomes
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more involved25. Usually it is easiest to use the
two points to determine the slope, and then
apply the point-slope formula (5) using any of
the two points.

Example: Let P (1, 4) and Q(5, 2). Then the
slope of the line connecting P and Q is given
by

m =
∆y

∆x
=

2− 4

5− 1
= −1

2

Once m is found, we can apply formula (5) and
obtain that

y − 4 = −1

2
(x− 1)

In slope-intercept form the line becomes

y = −1

2
x+

9

2
= −0.5x+ 4.5

If we use the point Q in the point slope formula
instead, we obtain

y − 2 = −1

2
(x− 5)

which is equivalent y = −0.5x+4.5. This illus-
trates that we can use either point the point-
slope formula.

We test our result: If x = 1, then y =
−0.5 + 4.5 = 4 and for x = 5 we find that
y = −0.5·5+4.5 = −2.5+4.5 = 2, as expected.

Derivation of the Point-Slope Formula.
Suppose that P (x0, y0) is a point on the line,
and that Q(x, y) is any other point on this line.

25The line containing the points P (x1, y1) and
Q(x2, y2) can be defined by

y − y1
x− x1

=
y − y2
x− x2

or by

y − y2 =
y2 − y1
x2 − x1

(x− x2)

When we compute the slope between P and Q,
we find that

m =
∆y

∆x
=

y − y0

x− x0

Multiplication yields formula (5)

y − y0 = m(x− x0)

12.3 Almost Linear Data

Data in real life are not perfect. There is vari-
ation in nature and there are measurement er-
rors. Sometimes you have a lot of data, and
there appears to be a linear relationship, but
the numbers don’t fit perfectly. The goal then
becomes to find an approximating line. This
topic is carefully studied in regression analysis.
This workbook is not the place for a detailed
analysis. Instead, we shall use an intuitive ap-
proach, the straight-edge method.

The steps are simple:

1. Graph the data points carefully.

2. Trust your intuition, and draw a line which
best fits the data.

3. Identify two points on the line - near op-
posite ends for the sake of stability.

4. Use the points from Step 3 to write an
equation for the approximating line.

Example: The data and with a graph are
given below.

x 1 3 5 6 8 8

y 2 2 4 5 5 7
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The estimated interpolating line contains
the points P (2, 2) and Q(8, 6). The slope of
the interpolating line is

m =
6− 2

8− 2
=

4

6
=

2

3

and the line becomes

y − 2 =
2

3
(x− 2)

which can be rewritten as

y =
2

3
x+

2

3
(6)

We see that the line contains one data point
exactly, otherwise it overshoots or undershoots
the data. The table below lists data, predic-
tions and errors.

x y predicted error

1 2 1.33 −0.67
3 2 2.67 0.67
5 4 4 0.00
6 5 4.67 −0.33
8 5 6 1.00
8 7 6 −1.00

The predictions are obtained by substituting
the x-values into the formula (6). These are
the corresponding points on the line. The er-
rors (residuals) subtract the actual data from
the predictions. For instance, the observation
for x = 1 is y = 2, the prediction by formula is
y = 1.33, the residual is 1.33− 2 = −0.67.

Our approach is ambiguous. Different peo-
ple may come up different lines, and many pretty
good answers are possible. Regression analysis
identifies the line which minimizes the squares
of the errors. This technique is well understood
and built into many of computational devices.

On a TI calculator go to STAT and Edit to
enter the data into the lists L1 and L2. Then

go to STAT and CALC, and select the Lin-
Reg(ax+b) option.

In the above example, the calculator will
produce a = 0.6395 and b = 0.8627. The data
can be displayed with the STAT PLOT op-
tions (turn the plots on), and the line can be
included using the usual ”Y=” key for graph-
ing.

In EXCEL you should list the data in columns
and produce a scatter plot. If you right-click
on a data point, the ”Add Trendline” option
will show up. Select ”Linear”, and if you opt
for ”Display Equation on chart”, an equation
of the line will show up on the graph.

Calculator and EXCEL will produce iden-
tical results, because both are the least squares
solution, and if you compare the computer an-
swer

y = 0.6395x+ 0.8627

to our estimation (6)

y = 0.6667x+ 0.6667

you will see that both lines are fairly close, and
that our estimation was pretty good, particu-
larly at the upper end.

x y least squares our estimate

1 2 1.50 1.33
3 2 2.78 2.67
5 4 4.06 4.00
6 5 4.70 4.67
8 5 5.98 6
8 7 5.98 6

12.4 Worked Problems

1. The global mean temperature has risen
from 14.00oC in the 1970s to 14.51oC in
the 2000s. Estimate the mean tempera-
ture for the 2020s.

Solution: The temperature has increased
by 0.51oC in three decades, which trans-
lates into a 0.17oC increase per decade.
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Two decades down the road we expect a
rise of another 0.34oC, which brings the
total average up to 14.85oC.

The problem is solved, and it shows that
using linear models comes naturally. With-
out making it explicit, we have used the
techniques of lines and linear functions:
Given are two temperature data, three
decades apart. This results in the slope

m =
∆ temp

∆ time

=
14.51oC − 14.00oC

3 decades
= 0.17oC/decade

If we denote temperature x decades past
the 2000s by T (x), our points become
(−3, 14.00) and (0, 14.51), and since we
have determined m already, we can ap-
ply the point-slope form of a line.

T (x)− 14.51 = 0.17x

Therefore

T (x) = 0.17x+ 14.51

and two decades past the 2000s the tem-
perature will be T (2) = 14.51 + 0.34 =
14.85.

2. At an elevation of 2,400m above sea level
a salix drammondiana plant (Drummond’s
willow) grew 3.8m tall, while at 3000m
the height of the same species was only
2.3m. Estimate the height at 2,800m above
sea level.

Solution: We offer three solution strate-
gies, which all lead to the same (correct)
answer.

Solution One: The height of the plant
drops by 3.8 − 2.3 = 1.5 meters when

the elevation is raised by 600m, which
is equivalent to a loss of 0.25m for ev-
ery 100m increase in elevation. Chang-
ing from 2,400m to 2,800m raises the el-
evation by 400m, it thus decreases the
height of the plant by 1m, and we expect
the willow to be 2.8m tall.

Solution Two: A graph says it all. The
given information can be translated into
the points (2400, 3.8) and (3000, 2.3). Con-
nect the points by a line, and identify the
height for 2,800m.

Solution Three: We denote the height of
the plant by y and the elevation above
sea level by x. Then our data are P (2400, 3.8)
and Q(3000, 2.3). The slope of the line is

m =
∆y

∆x
=

2.3− 3.8

3000− 2400
=
−1.5

600
= −0.0025

The point-slope formula using m and the
point P yields

y − 3.8 = −0.0025(x− 2, 400)

which is equivalent to (no reason to dis-
tribute the −0.0025)

y = 3.8− 0.0025 (x− 2, 400)

When x = 2, 800 we obtain

y = 3.8− 0.0025 (2, 800− 2, 400)

= 3.8− 1 = 2.8

109



3. A population of 3,000 fish increases by
160 fish annually. What is the popula-
tion three years from now? When will it
reach 4,000 fish?

Solution: We denote the population by
p, and the time measured in years from
by t. The current (t = 0) population is
3,000, which makes this number the p-
intercept. The annual increase sets the
slope at m = 160 fish per year. There-
fore,

p = 160t+ 3, 000

In three years (t = 3) we have

p = 160 · 3 + 3, 000 = 3, 480

and our population will be 3,480 fish.

To answer the second question we set p =
4000 and solve for t:

4, 000 = 160t+ 3, 000

160t = 1000

t =
1, 000

160
= 6.25

and it will take about years and three
month until the population reaches 4,000
fish.

4. Find an equation of the line form the
data in the table.

(a)

x y

−1 6
0 10
1 14
2 18
3 22

(b)

x y

−1 3.1
0 2.8
1 2.5
2 2.2
3 1.9

(c)

x y

25 17
30 21
35 25
40 29
45 33

Solution:

(a) The data for x increase by one (∆x =
1), and in this case m = ∆y

1 = ∆y,
and the y-increments are automati-
cally the slope. Thus we have m =
4. The y intercept is found from
x = 0, and we see that b = 10.
Hence the equation becomes

y = 4x+ 10

(b) Again, ∆x = 1, and since the y-
values decrease by 0.3 each time,
we have m = ∆y = −0.3. The y-
intercept is located at 2.8, which re-
sults in the equation

y = −0.3x+ 2.8

(c) Here ∆x = 5 and ∆y = 4. Thus
m = ∆y

∆x = 4
5 = 0.8.

We could backtrack in the table and
find y-values for x = 20, x = 15 and
so on until we reach x = 0 and then
identify the y-intercept that way. As
an alternative we use the point-slope
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formula with m = 0.8 and P (30, 21)
and obtain

y − 21 = 0.8 (x− 30)

which can be rewritten as

y = 0.8x− 3

In any of these exercises we can check
the results by comparison of the origi-
nal data to the formula. For instance, in
part (c) substitute any of the x-values,
say x = 40, into the formula and calcu-
late y. Here we obtain

y = 0.8 · 40− 3 = 32− 3 = 29

which agrees with the value in the table.

5. Complete the table.

(a)
x y

0 0.2
2 0.8
4
6
8

(b)
x y

1980
1990 412
2000
2010 348
2020

(c)
x y

500
600 0.86
700
800
900 0.74

Solution: It is understood that we use a
linear model in each case. Secondly, the
x-increments are constant in all tables,
and we just need to focus on the numbers
on the right.

(a) Here y increases by 0.6 for the first
values. If we continue this pattern
we obtain

x y

0 0.2
2 0.8
4 1.4
6 2.0
8 2.6

Follow-up: It can be shown that
y = 0.3x+ 0.2

(b) Here we see that in two steps y de-
creases by 64. Thus in each step y
should decrease by 32, which is car-
ried out below.

x y

1980 444
1990 412
2000 380
2010 348
2020 316

Follow-up: y = 380− 3.2(x− 2000),
if you are curious about a formula.

(c) Let’s add variety and solve this prob-
lem by a different method. We are
given the points P (600, 0.86) and
Q(900, 0.74). Therefore the slope is

m =
0.74− 0.86

900− 300
=
−0.12

300

= − 1

2, 500
= −0.000, 4

The point-slope formula yields

y − 0.86 = −x− 600

2, 500
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and therefore

y = 0.86 − x− 600

2, 500

Now we can plug in values for x and
determine y. For instance x = 800
leads to

y = 0.86 − 800− 600

2, 500

= 0.86− 200

2, 500
= 0.86− 0.08 = 0.78

Proceeding similarly for the other
values we obtain

x y

500 0.90
600 0.86
700 0.82
800 0.78
900 0.74

6. The body temperatures of Anolis lizards
have been recorded in a shady environ-
ment at different temperatures with the
results given in the table below. Graph
the data, determine an approximating line
and estimate its slope. What is the bio-
logical significance of the slope?

Air Temp 24 26 28 28 29

Body Temp 25 27 28 29 29

Both temperatures are measured in de-
gree Celsius.

Solution:

The slope of the approximating line is
m = 6

7.2 = 5
6 = 0.83, and we conclude

that for each one degree increase of the
air temperature, the body temperature
of the lizards will increase by about 0.83oC.
Note: The least squares line found by
calculator is y = 0.81x+ 5.66.

7. A study of heavy metal concentrations in
fish had the results listed below (Spokane
River, Langkamp/Hull, some data omit-
ted). Find an approximating line.

Lead (ppm) 0.73 1.14 0.60 1.59

Zinc (pp) 45.3 50.3 40.2 64.0

Solution:

Using the points P (0.4, 35) andQ(1.8, 70)
we find that

m =
∆y

∆x
=

70− 35

1.8− 0.4
=

35

1.4
= 25

Thus, y − 35 = 25(x− 0.4), which leads
to

y = 25x+ 25

Note: The least squares regression line
(calculator) is y = 22.5x+ 27.1.

One would expect that, depending on the
size of the fish, lead and zinc concentra-
tions would remain proportional. If that
were the case, the estimating line would
have to pass through the origin, which is
not the case in our example. More data
should clarify the situation.
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12.5 Exercises

1. Assume that y changes linearly with x.
Complete the table below and find an
equation of the line.

x y

16 40
20
24
28 34
32

2. Find an equation for the line with x-intercept
at x = 12 and y-intercept at y = 4.

3. Find an equation of the line containing
the points P (4, 17) and Q(10, 5).

4. Write an equation for the line with slope
0.3 and containing the point P (120, 45).
What is the y-intercept of this line?

5. A plant is 72 cm tall and it grows at 3
cm per week. How long will it take until
it is 84 cm tall?

6. At 10:00 a.m. the water level is 2.5 feet
below flood stage, and it rises at 1.5 inches
per hour. At what time will the water
level reach flood stage?

7. The farming of aquatic organisms, to-
taled 45.7 million metric tonnes (Mmt)
worldwide in 2000. The amount is in-
creasing by 2.7 Mmt each year. Use a
linear model to predict when the yield
will reach 100 Mmt.

8. Use the straightedge method to approx-
imate the data in the graph by a linear
function.

x 0 1 3 4 4

y 78 80 86 90 88

Answers

1. y = −1
2x+ 48

x y

16 40
20 38
24 36
28 34
32 32

2. y = 4− 1
3x

3. y = −2x+ 25

4. y = 0.3x+ 9, b = 9

5. 4 weeks

6. 6 a.m. the next day

7. about 2020

8. y = 3x+ 77,
answers may vary
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13 The Common Logarithm

Logarithms play a very important role in math-
ematics, mainly in the context of solving expo-
nential equations. We already came across log-
arithmic scales in the context of graphing, and
in the application section we will look at the
pH value from chemistry and at earth quake
scales. We will focus on the common loga-
rithm, which is the logarithm with base 10.

13.1 Introduction

Suppose that x > 0 is a positive number. Our
goal is to find a number y such that

x = 10y

This number y is the logarithm of x, and we
will write y = log x.

For some numbers x this is a no-brainer:

Examples:

1. Let x = 100. Since 100 = 102, we see
that y = 2, and we have log 100 = 2.

2. Let x = 100, 000, 000, 000. We see that
x = 1011, and therefore
log 100, 000, 000, 000 = 11.

3. Take x = 0.001. Then x = 10−3 and
log 0.001 = −3.

For integer powers of 10, the logarithm counts
by how many places we have moved the dec-
imal point starting with 1.0 - positive if we
move it to the right, negative otherwise.

x 0.001 0.01 0.1 1 10 100 1000

log x −3 −2 −1 0 1 2 3

Whenever the number x is a power of 10,
integer or not, it is straightforward to deter-
mine the logarithm. For instance, take

x =
√

10 = 101/2

and therefore, log
√

10 = 1
2 , or in decimals we

have log 3.162 = 0.5.
The challenge is working with numbers that

are not easily identified as powers of 10. For
instance, if x = 75, it takes some work to come
up with the result26

75 = 101.875

and therefore log 75 = 1.875.

13.2 Definition

From the introduction it should be clear that
logarithms are closely linked to exponents, and
the basic laws for exponents

an am = an+m (7)

(an)m = anm (8)

will be frequently used in this chapter.
Here is a compact form of the definition of

the logarithm:

Definition: Let x > 0, then

y = log x ⇔ x = 10y (9)

where ⇔ means ”if and only if”; both state-
ments are equivalent.

The equivalence in the definition allows to
transform statements from logarithmic form to
exponential form and vice versa. For example,

12 = 10x

is a statement in exponential form, its logarith-
mic equivalent is

x = log 12

If we convert the statement that 100 = 1
to logarithmic form, we find that log 1 = 0,

26Here and in other places we will round to about
three decimal places, and all numerical statements will
have small rounding errors.
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and conversion of 101 = 10 leads to log 10 =
1. In summary, we have

log 1 = 0 log 10 = 1

which are two very important logarithms.

13.2.1 Estimation of Logarithms

The observation that

210 = 1, 024 ≈ 1, 000 = 103

allows us to estimate log 2 conveniently. We
take the power 1

10 on both sides and use the
second basic law (8):

2 =
(
210
)1/10

≈
(
103
)1/10

= 103/10

Therefore, converting to logarithmic form, we
conclude that

log 2 ≈ 3

10
= 0.3

The estimate that 2 ≈ 100.3 has numerous
corollaries:

1. 4 = 22 ≈
(
100.3

)2
= 100.6 and thus

log 4 ≈ 0.6.

2. 8 = 23 ≈
(
100.3

)3
= 100.9 and

therefore log 8 ≈ 0.9.

3. Division yields

5 =
10

2
≈ 10

100.3
= 100.7

and we find that log 5 ≈ 0.7.

4.
1

2
= 2−1 ≈

(
100.3

)−1
= 10−0.3 and

thus log 1
2 ≈ −0.3, or in decimals we have

log 0.5 ≈ −0.3.

5. 0.2 =
1

5
= 5−1 ≈

(
100.7

)−1
=

10−0.7 and log 0.2 ≈ −0.7.

Figure 26: Logarithmic Scale

6. 20 = 2 ·10 ≈ 100.3 101 = 101.3, which
implies that log 20 ≈ 1.3

The logarithm is a build-in function on most
calculators, and comparison to calculator re-
sults shows that our estimates are fairly good.

log 2 = 0.301, 030 ≈ 0.3

log 4 = 0.602, 060 ≈ 0.6

log 5 = 0.698, 970 ≈ 0.7

log 8 = 0.903, 090 ≈ 0.9

A graph of the logarithm function is shown
in Figure 27. Notice, that it is defined for pos-
itive x only, and that logarithms are negative
when 0 < x < 1.

Figure 27: Graph of y = log x

13.3 Properties

In working the examples and exercises you may
already have noticed some properties of the
logarithm.

Identities. The definition of the logarithm
is an equivalence, and we can take one side and
substitute it into the other. By doing so we
obtain

x = 10y = 10log x
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as well as

y = log x = log 10y

After renaming the variables we obtain the two
identities

a = 10log a (10)

a = log 10a (11)

The first identity requires that a > 0, the sec-
ond works for any number a.

Examples:

7.5 = 10log 7.5 = 100.875

−0.6 = log 10−0.6 = log 0.251

Basic Rules. Logarithms, like exponen-
tial expressions, follow a number of rules. The
two rules which parallel the basic rules of ex-
ponentials are

log(a · b) = log a + log b (12)

log an = n log a (13)

Examples:

log 15 = log(3 · 5) = log 3 + log 5

= 0.477 + 0.699 = 1.176

log 800 = log(8 · 100) = log 8 + log 100

≈ 0.9 + 2 = 2.9

log 64 = log 26 = 6 log 2

≈ 6 · 0.3 = 1.8

log
3
√

4 = log 41/3 =
1

3
log 4

≈ 1

3
0.6 = 0.2

Verification of the Basic Rules for Log-
arithms. For positive numbers a and b we set

x = log a and y = log b

Then, by switching over to exponential form,
we get the equivalent relationships

a = 10x and b = 10y

Now we multiply and apply (7) to obtain

ab = 10x · 10y = 10x+y

which in logarithmic form becomes

x+ y = log(a · b)

Thus we have shown that

log(a · b) = x+ y = log a+ log b

which is the first basic law for logarithms (12).

In order to confirm (13), we form

an = (10x)n = 10nx

Then

log an = nx = n log a

Other Identities. Two more identities
are useful with logarithms

log
1

a
= − log a

log
a

b
= log a − log b

The first rule works because 1
a = a−1, and

(13) implies that

log
1

a
= log a−1 = − log a

For the second rule we note that a
b = a · 1

b , and
thus

log
a

b
= log a+ log

1

b
= log a− log b

Example: We can estimate log 0.25 by either
rule.
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The first rule, along with log 4 ≈ 0.6 im-
plies that

log 0.25 = log
1

4
= − log 4

≈ −0.6

while the second rule, along with

log 25 = log 52 = 2 log 5 ≈ 2 · 0.7 = 1.4

shows that

log 0.25 = log
25

100
= log 25− log 100

≈ 1.4− 2 = −0.6

13.3.1 Scientific Notation

This section is not intended as an efficient method
to represent a number in scientific notation. It
rather shows a connection between the loga-
rithm and scientific notation.

Recall that in scientific notation we express
a number x > 0 in the form

x = a · 10n

where 1 ≤ a < 10 is the mantissa, and where
the exponent n is an integer. Using our new
rules (12) and (13), we find that

log x = log a+ log 10n = n+ log a

If n is positive, matters are straightforward.
The integer part of the logarithm is the expo-
nent n, and the decimals can be used to com-
pute the mantissa. If n is negative, we have to
subtract an extra ”1”.

Example: Take x = 5, 636. Then

log 5, 636 = 3.751

This tells us that n = 3 and log a = 0.751,
which implies that a = 100.751 = 5.636, and in
scientific notation we find that

x = a 10n = 5.636 · 103

Example: Let x = 0.000, 145. Then

log x = −3.839 = −4 + 0.161

Thus, n = −4 and log a = 0.161. We find that
a = 100.161 = 1.45, and x = 1.45 · 10−4.

Here it was necessary to subtract an extra
”1”, because the tail −0.839 does not lie be-
tween zero and one. Actually,

10−0.839 = 0.145

and we have to multiply by 10 in order to ob-
tain the required range for a.

Example: If log x = 8.45, we can tell without
a calculator that x is on the order of 108, that
is, x equals a few hundred million. On the
other hand, if log x = −5.45, then x is on the
order of 10−6, and we are talking about a few
millionth.

13.3.2 The Function f(x) = log x

Here we take a brief look at the logarithm from
a function perspective, and set27

f(x) = log x

For every input x > 0 we find exactly one out-
put y, which can be any real number.

The graph of f is shown in Figure 27, and it
supports that the domain of f are the positive
numbers, and the range are all real numbers.

When we define

g(x) = 10x

27As we said before, there is not much difference be-
tween y = log x and f(x) = log x. The notation has
changed, and the point of view is slightly different.

By the way, a calculator responds with ”log(” when
you use the LOG key, supporting the notion of a func-
tion, and when we use log x we are talking about a
function, whose name comprises three letters, rather
than the customary ”f” or ”g”, and it is customary to
omit the parentheses.
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the identity (10) implies that

g(f(x)) = 10f(x) = 10log x = x

while (11) leads to

f(g(x)) = log g(x) = log 10x = x

Hence, the logarithm and 10x are inverse func-
tions!

The basic rules for logarithms become

f(a · b) = f(a) + f(b)

f(an) = n f(a)

in function notation. Moreover, f has the prop-
erties that

f(1) = 0 and f(10) = 1

and that

f

(
1

a

)
= −f(a)

and

f

(
a

b

)
= f(a)− f(b)

13.4 Solving Exponential Equations

The power of logarithms come into play when
we want to solve equations of the type

ax = b

These are called exponential equations, as the
unknown is in the exponent. 6x = 24 is an ex-
ample, and the problem is much different from
solving 6x = 24.

Example: We solve 6x = 24. Since the quan-
tities are the same, their respective logarithms
must be equal (”take the logarithm on both
sides”) and we obtain that

log 6x = log 12

We apply identity (13) to the first expression
and then solve for x:

x log 6 = log 24

0.778x = 1.380

x =
1.380

0.778
= 1.774

And indeed, 61.774 = 24.

There is nothing special about 6 and 24. If
we go through the same process for arbitrary
(positive) numbers a and b we find

ax = b

log ax = log b

x =
log b

log a

Result:

ax = b ⇔ x =
log b

log a
(14)

Examples: The equation 5x = 16 has solution

x =
log 16

log 5
= 1.204 ,

and 3x = 0.1 has solution

x =
log 0.1

log 3
=
−1

0.447
= −2.096

Logarithms for any base. Logarithms
can be defined with an arbitrary base b. The
common logarithm uses base b = 10. The
most convenient logarithm in Calculus is the
natural logarithm, which uses Euler’s number
e = 2.7182 . . . as a base. Computer scientists
have use for the logarithm with base 2. The
general definition of a logarithm is

y = logb x ⇔ x = by

In this sense log x = log10 x and the natural
logarithm becomes lnx = loge x.
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The equation x = by can be solved for y by
formula (14), and we find that

y = logb x =
log x

log b

If you know one logarithm, you know them all!

For example, y = log2 20 is the number
which solves 2y = 20. But the solution of this
equation, it is y = log 20

log 2 = 4.322, and we have
just computed that

log2 20 = 4.322

Calculators usually have the LOG key for
the common logarithm, and the LN key for the
natural logarithm.

13.5 Applications

13.5.1 Log Plots

We have already looked at logarithmic scales
in the graphing chapter. The big advantage of
logarithmic scales is that it is possible to show
large and small quantities in the same graph
in a meaningful way.

A data set with its scatter plot is shown
below.

We see that the details for the small data have
been lost, because the large value of 3,200 dom-
inates the graph. The 67% increase from 12 to
20 becomes insignificant when other values lie
in the thousands.

To remedy this problem we graph the log-
arithms of the data.

x y log y

0 15 1.176
1 12 1.079
2 20 1.301
3 450 2.653
4 3, 200 3.505
5 2, 900 3.462

But the average user does not care for loga-
rithms. So we display 10y on the y-axis, and
the original magnitudes are restored. This is
the basic idea behind graphs on a logarithmic
scale.

We will see further applications of this con-
cept in the next chapters.

13.5.2 pH Values

The term pH stands for power of hydrogen.
If the molar concentration of hydrogen of an
aqueous solution is denoted by [H+], then the
pH is defined as

pH = − log[H+] (15)

Example: At 25oC distilled water has molar
concentration

[H+] =
10−7 moles of hydrogen

Liter
= 10−7 M

Therefore the pH of water is

pH = − log 10−7 = −(−7) = 7
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Water is considered to be pH neutral. Solu-
tions with pH values less than 7 are acidic,
those with higher pH are alkaline (basal). Be
aware that a high pH represents a low hydro-
gen concentration and vice versa.

We observe, that a concentration must al-
ways be less than one, and therefore its loga-
rithm will always be negative (see Figure 27).
The purpose of the minus sign in the defini-
tion (15) is to make the pH a positive quan-
tity. Commonly, pH values are given with one
decimal place accuracy, and there is no need
for higher precision.

If the pH is known, we can use formula (15)
to calculate the hydrogen concentration as

[H+] = 10−pH M

Example: The pH of coffee is 5.5. Therefore

[H+] = 10−pH M = 10−5.5 M

= 3.2 · 10−6 M

More examples can be found worked prob-
lems below.

13.5.3 Moment Magnitude Scale

The strength of earthquakes are commonly given
by values on the Richter scale. It is named in
honor of C. F Richter, a physicist at CalTech
in Pasadena, CA, in the 1930ies. The measure-
ment is based on the amplitude of the waves
shown by a specific seismograph located 100
km from the epicenter of the quake.

The deflection of a needle in a scientific in-
strument is not a meaningful physical quantity.
The energy (moment) released by an earth-
quake is much more useful. In 1979, Hanks
and Kanamori also of CalTech, developed the
moment magnitude scale Mw; it is defined as

Mw =
2

3
logm − 10.7

Here m is the moment released by the earth-
quake measured in dyne-cm (erg), and the con-
stants are chosen in such a way that the values
of Mw resemble those of the Richter scale.

Example: The energy of the Tohaku earth-
quake (Fukushima, March 11, 2011) was
3.5 · 1029 dyne-cm. Thus, the moment magni-
tude was

Mw =
2

3
log(3.5 · 1029) − 10.7

=
2

3
· 29.5 − 10.7

= 19.7− 10.7 = 9.0

The aftershock of the same quake had mo-
ment magnitude Mw = 7.1, and we can use the
definition to calculate its energy:

7.1 =
2

3
logm − 10.7

17.8 =
2

3
logm

logm =
3

2
· 17.8 = 26.7

m = 1026.7 = 5.0 · 1026

We see that the moment of the aftershock was
5.0 · 1026 dyne-cm, which is significantly less
than the energy of the original quake (by a
factor of about 700).

Sometimes the energy is given in seismic
moments M , which is the equivalent of Nm
(Newton-meter) or Joule (J). In this case the
formula needs to be adjusted. Since
1 J = 107 dyne-cm, it follows that

m = M · 107

and therefore

logm = log(M · 107) = logM + 7

Substitution yields

Mw =
2

3
logm − 10.7
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=
2

3
(logM + 7) − 10.7

=
2

3
logM +

14

3
− 10.7

=
2

3
logM − 6.03

13.6 Worked Problems

1. Without using a calculator determine

(a) log 10, 000, 000

(b) log 0.1

(c) log 1
100

Solutions:

(a) 10, 000, 000 = 107, therefore
log 10, 000, 000 = 7

(b) 0.1 = 10−1, therefore log 0.1 = −1

(c) 1
100 = 10−2, therefore log 1

100 = −2

2. Convert from exponential to logarithmic
form, or vice versa.

(a) 10x = 1, 000

(b) 10x = 25

(c) x = 103.7

(d) log x = −2

(e) log x = 3.7

(f) log x = 2
3

Solutions: The question just asks for con-
version, and giving the values for x is an
added bonus.

(a) x = log 1, 000 (= 3)

(b) x = log 25 (= 1.398)

(c) log x = 3.7

(d) x = 10−2 (= 0.01)

(e) x = 103.7 (= 5, 011.9)

(f) x = 102/3 (= 4.642)

3. Estimate log 3.

Solution: Here we need a convenient ap-
proximation of 3n, similar to 210 ≈ 1, 000.

Solution One: We use 34 = 81 ≈ 80
along with the already established result
that 8 ≈ 100.9. Then

34 = 81 ≈ 80 = 10 · 8 ≈ 10 · 100.9

= 101.9

Therefore

3 =
(
34
)1/4

≈
(
101.9

)1/4
= 100.475

and thus log 3 ≈ 0.475. Comparison
to the calculator values shows that our
result is too low, with a relative error28

of 0.4%.

Solution Two. We start from scratch with-
out previous estimates. Patient trial and
error experiments lead to

321 = 1.046 · 1010 ≈ 1010

Therefore,

3 ≈
(
1010

)1/21
= 1010/21

and log 3 ≈ 10
21 = 0.4762, with relative

error 0.2%.

4. Solve for x

(a) 100x = 1, 000

(b) 2x = 0.125

(c) 12x = 1
3

(d) 2x+1 = 3x

28 estimate - exact
exact = −0.0021

log 3
= −0.0044
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Solutions:

(a) Solution One: The equation has the
form ax = b with a = 100 and b =
1, 000, and formula (14) implies that

x =
log 1000

log 100
=

3

2
= 1.5

Solution Two: This problem can be
done without logarithms.
1, 000 = 103, 100 = 102 and
100x = (102)x = 102x, and the
problem becomes

102x = 103

Comparing the powers yields
2x = 3 and therefore x = 3

2 = 1.5.

(b) With formula (14) we find that

x =
log 0.125

log 2
= −3

This result is not surprising, because

0.125 =
1

8
=

1

23
= 2−3

(c) Logarithms are required here, and
formula (14) implies that

x =
log 1

3

log 12
=
− log 3

log 12

=
−0.477

1.079
= −0.442

(d) Take the logarithm on both sides
and solve for x:

2x+1 = 3x

log 2x+1 = log 3x

(x+ 1) log 2 = x log 3

0.301(x+ 1) = 0.477x

0.301x+ 0.301 = 0.477x

0.301 = 0.176x

x =
0.301

0.176
= 1.710

Graphical solutions are always an option,
either to find solutions or to confirm known
results. Plots for all four parts are given
in Figure 28.

Figure 28: Graphs for Problem 4

5. What is the pH of blood, given that the
hydrogen concentration is 4 · 10−8 M?

Solution: Apply the definition (15) to ob-
tain

pH = − log(4·10−8) = −(−7.4) = 7.4

6. For a vinegar we find that
[H+] = 7.5 · 10−3. What is the pH?

Solution:

pH = − log(7.5 · 10−3) = 2.1

7. What is the hydrogen concentration of
milk, given that its pH is 6.4?

Solution: Solve for [H+] in the definition.

[H+] = 10−pH M = 10−6.4 M

= 4.0 · 10−7 M
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8. The pH of a beer is 4.0. Is its hydrogen
concentration higher or lower than that
of water?

Solution: A smaller pH means a higher
hydrogen concentration. Since the pH
values differ by 3, their hydrogen con-
centrations differ 1, 000 = 103.

If you don’t trust this line of reasoning,
you can calculate hydrogen concentration
directly:

[H+] = 10−4 M

10−4 is 1,000 times larger than 10−7.

9. You come across 40 mL of an unknown
mixture and you detect that it contains
3 · 10−5 moles of hydrogen. What is the
pH? Is is alkaline or acidic?

Solution: As a first step we have to find
the molar concentration:

3 · 10−5 moles

40 mL
× 25

25

=
7.5 · 10−4 moles

1, 000 mL

=
7.5 · 10−4 moles

Liter
= 7.5 · 10−4 M

Now we calculate the pH

pH = − log(7.5 · 10−4) = 3.1

and we see that this mixture is acidic.

10. What is the moment magnitude of a earth-
quake of strength 1020 J?

Solution: First we convert to dyne-cm:

1020 J = 1020 · 107 dyne-cm

= 1027 dyne-cm

Now we apply the definition

Mw =
2

3
log 1027 − 10.7

=
2

3
· 27 − 10.7

= 18− 10.7 = 7.3

11. On Feb. 17, 2015, an earthquake with
magnitude Mw = 2.4 was reported near
Bluefield, VW. How much energy was re-
leased?

Solution: We set Mw = 2.4 and solve the
equation for m.

2.4 =
2

3
logm − 10.7

13.1 =
2

3
logm

logm =
3

2
· 13.1 = 19.65

m = 1019.65 = 4.5 · 1019

The moment was 4.5 · 1019 dyne-cm.

12. We are comparing two earthquakes. One
releases ten times as much energy as the
other. How do the moment magnitudes
differ?

Solution: Let us say that the smaller quake
has moment m and the larger has mo-
ment m′ = 10m. Then the moment mag-
nitude of the bigger earthquake is

M ′w =
2

3
logm′ − 10.7

=
2

3
log 10m − 10.7

=
2

3
(1 + logm)− 10.7

= Mw +
2

3
= Mw + 0.666, 666, . . .

that is, the moment magnitude of the
stronger earthquake is about 0.7 units
bigger.
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13.7 Exercises

1. Without using a calculator determine

(a) log 10, 000

(b) log 0.000, 001

(c) log 1
1,000

2. Convert from exponential to logarithmic
form, or vice versa.

(a) 10x = 1.6

(b) log x = 1.6

3. Estimate log 125 and log 1.25

4. Solve for x:

(a) 10x = 10, 000

(b) 10x = 0.000, 1

(c) 10x = 5

(d) 10x = 0.2

(e) log x = 3

(f) log x = −2

(g) log x = 0.4

(h) log x = 1.4

(i) 5x = 20

(j) 1.08x = 2

(k) 2x+2 = 4x

(l) log x+ log 4 = log 40

(m) log(x− 2) + log(x+ 2) = log 32

5. The pH of Sprite is 3.3. What is its hy-
drogen concentration?

6. The hydrogen concentration of blood is
[H+] = 4.0× 10−8M . What is its pH?

7. The pH of milk is 6.4. Is the hydro-
gen concentration of milk higher or lower
than that of water? And by what factor?

8. You discover 3L of an unknown solution
and you measure a total of 8×10−7 moles
of H+ in this mixture. Calculate the pH.

9. You change a mixture so that its hydro-
gen concentration is doubled. How will
the pH change?

10. The 1906 San Francisco earthquake had
moment magnitude 7.9. How much en-
ergy was released by the quake?

11. What is the moment magnitude Mw of
an earthquake when the moment is 3.9×
1027 dyne-cm?

Answers

1. (a) 4

(b) −6

(c) −3

2. (a) x = log 1.6

(b) x = 101.6

3. 2.1 and 0.1, respectively.

4. (a) 4

(b) −4

(c) 0.6990

(d) −0.6990

(e) 1, 000

(f) 0.01

(g) 2.5119

(h) 25.119

(i) 1.8614

(j) 9.006

(k) 2

(l) 10

(m) 6
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5. 5× 10−4 M

6. 7.4

7. 4 × 10−7; the H+ concentration of milk
is four times higher.

8. 6.574 ≈ 6.6

9. The pH will decrease by 0.3, the mixture
is more acidic.

10. 7.943× 1027 dyne-cm

11. 7.7

14 Exponential Functions

In everyday language we often attach the term
exponential when things change rapidly. In
an inflation prices increase exponentially, in an
epidemic a disease grows exponentially, kudzu
is spreading exponentially, and so on. In math-
ematics, this term is reserved for a very special
setting, which is the topic of this section.

Population models are arguably the most
prominent biological application of exponen-
tial growth; this applies to easily observed and
counted animals, as well as bacteria and other
cell growth. Radioactive decay is the prime
example of exponential decay.

14.1 Introduction

Here we introduce the basic concepts of growth
rates and multipliers in a hypothetical exam-
ple.

Suppose that the population of monkeys on
an island increases by 6% annually. Beginning
with 455 animals in 2015, predict the popula-
tion for future years, and in particular, esti-
mate the population in 2050.

We begin by calculating the population in
2016. 6% of 455 equals 27.3, and we expect
482.3 monkeys on the island in the following
year. In terms of mathematics, the calculation
looks like

482.3 = 455 + 0.06 · 455

= (1 + 0.06) · 455

= 1.06 · 455

In order to derive a pattern it helps tremen-
dously to factor the term 1.06. When we look
at the population for 2017, we have to repeat
the calculation with 455 being replaced by 482.3.

482.3 + 0.06 · 482.3

= (1 + 0.06) · 482.3
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= 1.06 · 482.3 = 1.06 · (1.06 · 455)

= 1.062 · 455 = 511.2

and the population in 2017 should be around
511 animals.

We notice that by stepping from one year to
the next, the population is multiplied by 1.06
each time. One year after 2016, the population
will be 1.06 · 455, two years after 2015 it will
be 1.062 · 455, and in 2050, which is 35 years
after 2015, we expect the population to be at
1.0635 · 455 = 3, 497 monkeys.

The formula of the population x years after
2015 becomes

y = 455 · 1.06x

There are three important quantities in-
volved. First, we need to know the initial pop-
ulation y0, which was 455 in the example. Sec-
ondly, we need to know the growth rate r,
which was 0.06=6%. And finally, there is a
multiplier M , which in our case was M = 1.06.
The multiplier and the growth rate are related
by M = 1 + r.

In our computations we allow decimal val-
ues in population numbers. After all, this is
just a model. Round to the nearest integer if
482.3 monkeys bothers you. An EXCEL sim-
ulation for the first 15 years is shown below

14.2 Exponential Growth and Decay

An exponential model has the form

y = y0M
x = y0(1 + r)x (16)

Here the variables are

x independent variable, usually time
y dependent variable, often population
y0 initial value
r growth or decay rate, r > −1
M multiplier M = 1 + r , M > 0

In the introductory example we had y0 =
455, r = 0.06 and M = 1.06.

Our model covers exponential decay as well,
in which case r is negative. But a decline can-
not be faster than 100%, and if the decline
equals 100%, everything vanishes immediately,
and a mathematical model is no longer needed.
For this reason we require that r > −1.

The multiplier and the rate are related by

M = 1 + r ⇔ r = M − 1

and r > −1 implies that M > 0. Multipliers
must be positive! r = 0 is equivalent to M =
1, and in this case the quantity of interest y
remains constant.

For x = 0 the formula (16) reduces to

y = y0M
0 = y0

This is why y0 is called the initial condition. It
is the value of y when x = 0.

Example: A fish population increases from
357 to 411 fish within one year. We assume
that the population continues to grow the same
rate, and we want to know the population five
years later.

The information can be summarized as

x y

0 357
1 411

and since 357 is associated with x = 0 it follows
that y0 = 357. If we substitute the data for
x = 1 into the definition (16), we find that

411 = 357 ·M1 = 357M
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and thus

M =
411

357
= 1.151

This means that in order to get from one year
to the next, we have to multiply the population
by 1.151. If we want to look five years ahead,
we have to multiply by M five times, and our
prediction is

357 · 1.1515 = 722.0 fish

The general model is

y = 357 · 1.151x

Knowing M means that we also know the
growth rate:

r = M − 1 = 0.151 = 15.1%

In this example r = 15.1%, and we observe
that our population about doubled in size dur-
ing this five year period.

Linear versus Exponential Growth.
There is a huge difference between linear and
exponential models. In linear models the quan-
tity of interest y changes in fixed increments,
and this change is responsible for the slope.
In exponential models the quantity y changes
at a fixed rate, which leads to the multiplier
M = 1 + r.

Example: We return to the fish population,
which increased from 357 to 411 fish from one
year to the next.

In the exponential model we argued that
the change represented a 15.1% increase, that
the population will continue to grow at this
rate, which in turn resulted in the equation

y = 357 · 1.151x

For a linear model on the other hand, we
would argue that the number of fish increased

by 54 fish, and that each year we would have
additional 54 fish, which results in the model

y = 357 + 54x

The two models agree for x = 0 and for x = 1,
other than that they are much different, espe-
cially when x becomes large.

A side by side comparison of the two mod-
els is given in Figure 29.

Figure 29: Linear vs. Exponential

Graphs of Exponential Functions have
a very characteristic shape. The plots for y =
48 ·1.2x and y = 75 ·0.8x are shown in Figure
30 below. The growth curve increases toward
infinity, while the decay curve approaches the
x-axis as x increases. Notice that the curves
look somewhat alike, with the x-directions re-
versed.

When exponential functions are graphed on
a logarithmic scale they become linear! Re-
call29 that graphs on a logarithmic scale are

29This process was outlined in Section 13.5.1.
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Figure 30: y = 48 · 1.2x and y = 75 · 0.8x

just a plot the logarithms of the expressions,
along with a manipulation of the vertical axis.
In our case we find that

log y = log(y0 ·Mx)

= log y0 + logMx

= x logM + log y0

But this is an equation of a line with slope
m = logM and y-intercept b = log y0.

The graphs of y = 48 · 1.2x and y = 75 ·
0.8x on a logarithmic scale are shown below.

The notion of converting exponential curves
into lines via logarithms is exploited in the ap-
proximation of almost exponential data.

Exponentials in Function Notation. We
can also write

f(x) = y0M
x

and express the exponential growth model as
a function. It satisfies

f(0) = y0

which confirms that y0 is the initial value (as-
sociated with x = 0). Moreover

f(x+ 1) = y0M
x+1 = y0M

xM

= Mf(x)

and we see that stepping forward by one time
unit is equivalent to multiplication byM . Step-
ping forward by T time units is equivalent to
multiplication by MT because

f(x+ T ) = y0M
x+T = y0M

xMT

= MT f(x)

We will use this principle when we determine
doubling time and half-life (MT = 2 andMT =
1
2 , respectively).

14.3 Doubling Time

We begin with an example and look at the ex-
ponential function

y = 48 · 1.2x

The graph shows the x values for y = 12.5,
y = 25, y = 50, y = 100 and y = 200, and
we see these points are about equally spaced
along the x-axis. This tells us that doubling
the y-value always takes the same amount of
time.

We can also observe this fact numerically.

x 48 · 10x

0 48
1 57.3
2 69.1
3 82.9
4 99.5
5 119
6 143
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When x = 0 we have y = 48, and y reaches
96 = 2 ·48 a little bit before x = 4. But we can
also start with x = 2, where y ≈ 70 and when
x = 6 we have already passed the y = 140
mark. Again, it took a little less than four
time units to double the y-value.

We can determine the doubling time ana-
lytically. At x = 0 we have y = 48 and we
need to find x such that

96 = 48 · 1.2x

Division by 48 results in

1.2x = 2

which is an exponential equation. Fortunately,
we have already discussed equations of this
form in Section 13.4, and formula (14) shows
that

x =
log 2

log 1.2
= 3.802

which confirms our observation of a doubling
time a little less than four.

We move on and we seek to find the dou-
bling time T for the general exponential model

y = y0 ·Mx

We pick any x, then at time x+ T the y-value
should have doubled. This translates into

y0 M
x+T = 2y0 M

x

We divide by y0, which shows that the start-
ing values are immaterial in this context, and
obtain

Mx+T = Mx MT = 2 Mx

Further division by Mx results in

MT = 2 (17)

which relates the doubling time T and the mul-
tiplier M , and we find that

T =
log 2

logM
(18)

Examples: The doubling time for the growth
model y = 25 · 1.05x is

T =
log 2

log 1.05
= 14.2

and that for y = 5x is

T =
log 2

log 5
= 0.431

Example: A bacteria culture grows exponen-
tially and it increased from 20 bacteria initially
to 1,000 bacteria within two hours.

Let us first estimate the doubling time, and
then compute it analytically.

Doubling once results in 40 bacteria, dou-
bling again leads to 80 bacteria and so on.
Doubling five times results in

20 · 2 · 2 · 2 · 2 · 2 = 20 · 25 = 640

bacteria, and doubling one more time yields
1,280 bacteria. Thus, our bacteria population
doubles between 5 and 6 times within two hours,
and cell divisions should occur about every 20
to 24 minutes30.

The string of inequalities

25 = 32 ≤ 1, 000

20
= 50 ≤ 64 = 26

is another way to approach this problem. The
population increased by a factor of 50, which
requires between 5 and 6 duplications.

For the analytic solution we measure time
x in hours. Then the model becomes

y = 20 ·Mx

and substitution of x = 2 and y = 1, 000
results in

1, 000 = 20 ·M2

30We have 2 hours
6

= 1 hour
3

= 20 min and
2 hours

5
= 0.4 hours = 24 min.
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and we deduce that

M =

√
1000

20
=
√

50

The formula for the doubling time (18) then
implies that

T =
log 2

log
√

50
= 0.352

Conversion to minutes shows a doubling time
of 21.3 minutes.

Example (Rule of 72): This rule is used in
business to estimate the time it takes to double
an investment at a given interest rate. It is a
rule of thumb:

Interest Rate×Doubling Time = 72

At 3% interest it will take an investment 24
years to double in value, because 3× 24 = 72.
If an investment was doubled in 8 years, the
interest rate was 9% (9 × 8 = 72), and so on.
This is an approximate rule, because if an in-
vestment doubles just in one year, the interest
rate is 100% and not 72%.

Compound interest follows the exponential
model (16) as well. $455 invested at 6% inter-
est uses the same mathematics as monkey pop-
ulation of 455 animals growing at a 6% annual
rate, and we can use the Rule of 72 to estimate
doubling times in population examples as well.

In the opening example we started with 455
monkeys in 2007, and in the simulation it took
until 2027 for the population to reach 915.5.
Doubling took about 12 years at 6% growth
rate, as predicted by the Rule of 72.

In the fish population example we had a
growth rate of 15.1%, and the Rule of 72 es-
timates a doubling time of a little under five
years (T ≈ 4.8), which is consistent with the
data in Figure 29.

In the example with y = 48 · 1.2x, we have
M = 1.2 and hence r = M − 1 = 0.2 = 20%.
The Rule of 72 estimates a doubling time of
72/20 = 3.6, which is close to the exact value
T = 3.802 with an error margin of 6%.

How does this rule work?
With the tools of Calculus it can be shown

that

log(1 + r) ≈ 0.434r

is a very good approximation for small num-
bers r. But 1 + r = M , and the formula (18)
for T implies that

log 2 = T · logM

= T · log(1 + r) ≈ 0.434rT

Therefore,

r · T ≈ log 2

0.434
= 0.693

In the Rule of 72 we entered the percentages
directly (8% as 8 and not as 0.08 as we nor-
mally do), and thus

100 r · T ≈ 69.3

This doesn’t make for a good rule. But change
69.3 to 72, which is divisible by 2, 3, 4, 6, 8, 9,
12, 18, 24 and 36, and you have a convenient
estimation tool!

There is an alternate, equivalent way to ex-
press exponential growth using the doubling
time. In (17) we established that MT = 2.
Thus,

M = 21/T

Mx = 2x/T

y = y0M
x = y0 2x/T

and we have

y = y0 2x/T (19)
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The multiplier no longer appears explicitly, but
it can be recovered from M = 21/T .

Example: A lung cancer cell doubles by mi-
tosis about every three months. Single cancer
cells cannot be detected by X-rays and it takes
about one billion cells for a tumor to become
visible. Beginning with a single cell we want to
determine how long it will take until the can-
cer can be detected by X-rays. This example
is adapted from Langkamp/Hull.

We measure time in years. Then the dou-
bling time is T = 0.25 = 1/4, and using for-
mula (19) our model for the number of tumor
cells becomes

y = 2x/0.25 = 24x =
(
24
)x

= 16x

since y0 = 1. We now have to set y = 109 and
solve the resulting exponential equation.

16x = 109

x =
log 109

log 16
=

9

1.204
≈ 7.5

and we see that it takes about seven and a half
years until the tumor is visible.

Generation Time. For cell (bacterial)
growth the time between cell divisions is called
generation time (time per generation), and it is
the equivalent of the doubling time. If we de-
note the number of generations by n, the total
elapsed time becomes x = nT .

Example: If the generation time is T = 24
minutes, and we go though n = 8 generations,
then the total time is x = 24 ·8 = 192 minutes,
or 3 hours and 12 minutes.

If, on the other hand, we observe cell growth
for two hours (120 minutes), and we know that
the time per generation is 32 minutes, then we
have gone through n = x

T = 120
32 = 3.75 gener-

ations.

With this terminology we have x = nT ,
and thus x/T = n and the exponential model
(19) simplifies to

y = y0 · 2n

Example: We review the bacterial growth from
above: 20 bacteria grew to 1,000 bacteria in
two hours. Since initially y0 = 20 bacteria are
present, the model becomes

y = 20 · 2n

Setting y = 1, 000, we find that

1, 000 = 20 · 2n

2n =
1, 000

20
= 50

n =
log 50

log 2
= 5.644

and we see that we went through 5.644 gener-
ations in 2 hours, which accounts for a gener-
ation time of

T =
120 minutes

5.644
= 21.262 min

which confirms the result we found before.

14.4 Half-Life

The notion of doubling time is linked to expo-
nential growth. Its counterpart for exponential
decay is half-life. It is the time it takes for a
substance to reduce to one half of its original
size.
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The graph shows the curve y = 75 · 0.8x, and
we marked off the points corresponding to y =
400, y = 200, . . . y = 12.5. The spacing be-
tween the points is uniform along the x-axis,
about 3.1 units apart, and we call this the half-
life.

We still work with the exponential function
y = y0M

x, where M < 1, resulting in the
decay. We denote the half-life by H; then value
of y at time x+H must be one half of the value
at time x. We translate this statement into an
equation, which we will then solve for H:

y0M
x+H =

1

2
y0M

x

Mx MH =
1

2
Mx

MH =
1

2

H =
log 1/2

logM
= − log 2

logM

and we have a formula for H. M < 1, and
therefore its logarithm is negative, and the mi-
nus in the formula makesH a positive quantity.

As we did for the doubling time, we can
use the half-life in an alternative description
for exponential decay:

y = y0 · 2−x/H (20)

Example: Let y = 75 · 0.8x. Here M = 0.8
and the half-life becomes

H = − log 2

log 0.8
= − 0.301

−0.969
= 3.106

If we want to express y in the alternate form
(20), it is easiest to look at the exponent first:

x

H
=

x

3.106
= 0.322x

and thus

y = 75 · 2−0.322x

The reader is encouraged to plot y = 75 · 0.8x
and y = 75 · 2−0.322x in the common graph
to confirm that they completely overlap. The
connection between the curves results from
2−0.322 = 0.8.

Example (Radio Carbon Dating): The
abundance of the radioactive isotope 14C is
about one part per one trillion 12C isotopes.
All living organisms exhibit this ratio. But
when an organism dies, the radioactive isotope
decays with a half-life of 5,730 years, and the
ratio becomes smaller.

Figure 31: Decay of 14C

After 5,730 years only one half of the nat-
ural 14C :12 C ratio is present, after another
5,730 years (11,460 years from the beginning)
the ratio is down to one quarter of the natural
ratio, and so on, and the ratio after x years
can be described by

y = 2−x/5,730

Scientists can measure the 14C :12 C ratio
of artifacts, and they use it for age determina-
tion.

Suppose that, for instance, a piece of wood
contains only 20% of the natural 14C :12 C
ratio. Then substitution results in

0.2 = 2−x/5,730

and we find that (exponential equation method)

− x

5, 730
=

log 0.2

log 2
= −2.322
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x = (−2.322)× (−5, 730)

= 13, 304

and we conclude that the piece of wood is about
13,300 years old. This result agrees well with
the graph in Figure 31. y = 0.2 occurs a lit-
tle past the half way mark between 10,000 and
15,000 years.

14.5 Almost Exponential Data

In biological observations, the collected data
may indicate an exponential trend, but the fit
is not perfect. In this case we are looking for an
approximating exponential curve. We explain
the method by example.

The data and their graph indicate an exponen-
tial trend.

In order to find an approximating curve
we take advantage of the fact that exponen-
tial functions become linear when we take log-
arithms. This leads to the following procedure:

1. Take the logarithms of the y-values.

2. Carefully graph x against the logarithms.

3. Find an approximating line be the straight-
edge method (see Section 12.3).

4. Convert the approximating line to expo-
nential form.

We continue with the example and take log-
arithms.

x y log y

0 4 0.602
1 15 1.176
2 30 1.477
3 90 1.954
4 210 2.322
5 450 2.653

A graph of the logarithmic data with an
approximating line are shown below.

We select the points (0, 0.7) and (5, 2.7) for
the approximating line. Then

m =
2.7− 0.7

5− 0
=

2

5
= 0.4

But we are modeling the logarithm of the data,
and the ”line” becomes

log y = 0.4x+ 0.7

Finally, we convert back to exponential form:

y = 10log y = 100.7+0.4x

= 100.7 ·
(
100.4

)x
= 5.012 · 2.512x

The graph of the data with the exponential
approximation are shown below.

133



Exponential regression is important and most
graphing calculators or software have built-in
functions for this task.

In EXCEL plot the data and ask for an for
an ”Exponential” trendline. There is an op-
tion to display the equation. In our example
EXCEL would give the exponential approxi-
mation as

y = 4.8446 e0.9323x

The number e is Euler’s constant, and e0.9323 =
2.540, and the EXCEL approximation is equiv-
alent to

y = 4.845 · 2.540x

Our eye-balled estimation y = 5.012 · 2.512x

is not far from the computer result!

On a graphing calculator the data have to
be written to lists using the STAT key, fol-
lowed by EDIT. Once they are entered, use
STAT followed by CALC and ExpReg. The
calculator should respond with y = a ∗ b ∧ x,
where a = 4.8446 and b = 2.540. The details
may vary with the brand and model of the cal-
culator, but the resulting approximation will
be identical to the one found in EXCEL, as all
use the least squares regression technique.

14.6 Worked Problems

1. Find an exponential model of the form
y = yoM

x for the data below, and com-
plete the tables. What are M and r in
each case?

(a)

x y

0 20
1 25
2
3
4

(b)

x y

0 10
1
2
3
4 50

(c)

x y

0 500
1
2 400
3
4

Solutions:

(a) When x = 0 we have y = 20. There-
fore y0 = 20. We also see that

25 = 20M

⇒ M =
25

20
= 1.25

and we have found the multiplier.
For r we obtain

r = M − 1 = 0.25 = 25%

and we use

y = 20 · 1.25x

to complete the table.

x y

0 20
1 25
2 31.25
3 39.06
4 48.83

(b) Again, we have the initial informa-
tion that y0 = 10 when x = 0. We
also have a value when x = 4, and
substitution into (16) yields

50 = 10 ·M4

M4 =
50

10
= 5

M =
4
√

5 = 51/4 = 1.495

134



It follows that

r = M − 1 = 0.495 = 49.5%

The model becomes

y = 10 · 1.495x

and the completed table takes the
form

x y

0 10
1 14.95
2 22.36
3 33.44
4 50

(c) This is very similar to the previous
part. y0 = 500 and

400 = 500 ·M2

M2 =
400

500
= 0.8

M =
√

0.8 = 0.894

The values are decreasing and the
rate is negative.

r = M − 1 = −0.106 = −10.6%

The formula for y is

y = 500 · 0.894x

and the completed table follows.

x y

0 500
1 447
2 400
3 358
4 320

2. In the year 1890 Shakespeare enthusiasts
released 60 European starlings in New
York’s Central Park. A century later the

starling population in North America was
estimated at 200 million (stanford.edu).
Assuming the accuracy of the data and
an exponential model, estimate year when
the population reaches ten billion.

Solution: We use x to count the years
after 1890. Then y0 = 60 and for x = 100
we have

200, 000, 000 = 60 ·M100

Now we solve this equation for M

M100 =
200, 000, 000

60

M =

(
200, 000, 000

60

)0.01

= 1.162

and the exponential model becomes

y = 60 · 1.162x

Finally, we set y = 10 billion and solve
the resulting exponential equation for x.

1010 = 60 · 1.162x

1.162x =
1010

60
= 1.67 · 108

x =
log(1.67 · 108)

log 1.162

=
8.222

0.0652
= 126

Therefore, the population will reach ten
billion 126 years after 1890, which makes
it the year 2016.

3. Elephantdatabase.org reports that the ele-
phant population in Africa declined from
474,134 animals in 2007 to 421,955 ele-
phants in 2012. Assuming an exponen-
tial decay model, predict when the ele-
phant population will drop below 350,000
animals.
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Solution: The data are five years apart,
therefore the multiplier satisfies

421, 955 = 472, 134M5

M5 =
421, 955

472, 134
= 0.8937

M = 0.89371/5 = 0.9778

r = M − 1 = −0.0222. This tells us that
the population declines at an annual rate
of 2.2%. The population model becomes

P = 472, 134 · 0.9778x

where x counts the years after 2007. Set-
ting P = 350, 000 yields

350, 000 = 472, 134 · 0.9778x

0.9778x =
350, 000

472, 134
= 0.7413

x =
log 0.7413

log 0.9778

=
−0.1300

−0.009760
= 13.32

The model predicts that the population
drops below 350,000 in the year 2020 (13
years after 2007).

4. (a) A population grows according to the
law y = 450 · 1.1x. What is the
doubling time?

(b) What is the growth rate for a pop-
ulation which doubles in four days?

Solutions:

(a) Here M = 1.1, and formula (18)
yields

T =
log 2

log 1.1
= 7.27

Note that r = 0.1 = 10%, and that
the Rule of 72 estimates a doubling
time of 7.2.

(b) We know that T = 4, and we have
to find M first, and then determine
r. It follows from (17) that

M = 21/T = 21/4 = 1.189

and thus r = M − 1 = 0.189 =
18.9%. This is a daily growth rate.
The Rule of 72 predicts r = 72

4 =
18%.

5. A culture of bacteria grows from 200 to
15,000 bacteria in three hours. How many
generations have evolved and what is the
generation time?

Solution: We use the model

y = 200 · 2n

Setting y = 15, 000 we find that

15, 000 = 200 · 2n

2n =
15, 000

200
= 75

n =
log 75

log 2
= 6.229

Thus, we have gone through 6.229 gener-
ations in 3 hours (180 minutes), and the
time per generation is

T =
180min

6.229
= 28.9 min

6. Iodine-123 is a radioactive isotope which
is used in thyroid therapy. It has a half-
life of 13.22 hours. If 2 mg are being
used, then how log will it take until only
0.1 mg is present?

Solution: We use the alternate form (20)
of the exponential model, and the amount
y of iodine-123 in the body after x hours
is

y = 2 · 2−x/13.22
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The question asks for the time x such
that y = 0.1. Substitution results in

0.1 = 2 · 2−x/13.22

2−x/13.22 = 0.05

− x

13.22
=

log 0.05

log 2
= −4.322

x = (−13.22)× (−4.322)

= 57.1

Thus, it takes 57.1 hours (two days and
about nine hours) until the amount of
radioactive iodine is below one tenth of
a milligram.

7. Glyphosate is an ingredient in many her-
bicides. When it lands on a plant it is
quickly absorbed and broken down, but
when it lands on soil it breaks down slowly
and kills beneficial microbes in the pro-
cess. The average half-life in soil is 40
days (adapted from Landkamp/Hull).

(a) Determine the daily rate of decay.

(b) If 4 kg are used on one hectare, with
1 kg landing on soil, then how long
will it take until only 100 g are left?

Solution: We measure the glyphosate con-
tent in gram and time in days. Then the
amount in the soil after x days is (1kg =
1,000g)

y = 1, 000 · 2−x/40

(a) The multiplier is M = 2−1/40, be-
cause(

2−1/40
)x

= 2−
1
40

x = 2−x/40

and therefore the rate is

r = M − 1 = 2−1/40 − 1

= 2−0.025 − 1 = −0.0172

and we conclude that the substance
decays at a rate of 1.7% per day.

(b) We begin with an estimate: Origi-
nally we have 1,000g. After 40 days
there are 500g in the soil, after 80
days the amount will be reduced to
250g, after 120 days we have 125g
left, but after 160 days we are down
to 62.5g. The result should be near
140 days.

And now for the analytical solution:
We set y = 100 and solve for x:

100 = 1, 000 · 2−x/40

2−x/40 =
100

1, 000
=

1

10

2x/40 = 10

2x = 1040

x =
log(1040)

log 2
=

40

0.301
= 132.9

In the third step we took recipro-
cals on both sides (get rid of minus
signs), and in the following step we
raised both sides to the 40th power
(get rid of the fraction). As a re-
sult we see that it takes about 133
days (4.4 months) until only 100g
are left.

Check the result: When we substi-
tute x = 132.9 into the model, we
find that 1, 000 · 2−132.9/40 = 100.

A graph of y = 1, 000·2−x/40 reveals
that y = 100 for x ≈ 133, which
confirms our result as well.
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8. The population of the United States since
1950 is given in the table below

Year Population

1950 151, 325, 798
1960 179, 323, 175
1970 203, 211, 926
1980 226, 545, 805
1990 248, 709, 873
2000 281, 421, 906
2010 308, 745, 538

Use an exponential model and the straight-
edge method to approximate the annual
growth rate.

Solution: We use the variable x to count
the years since 1950 and y for the popula-
tion data. Taking the logarithms results
in the table below.

x log y

0 8.180
10 8.254
20 8.308
30 8.355
40 8.396
50 8.449
60 8.490

In the next step we graph this informa-
tion and find an approximating line.

Using the points (0, 8.19) and (60, 8.5),
we see that the slope is

m =
8.5− 8.19

60− 0
=

0.31

60
= 0.00517

We do not need the full equation of the
line. Recall that

y = y0 M
x

⇔ log y = x logM + log y0

and therefore

logM = m = 0.00517

This implies that

M = 100.00517 = 1.01197

and we see that the annual growth rate
of the U.S. for that period was

r = 0.01197 = 1.2%

Least squares regression by computer yields
a growth rate of 1.167%.

9. Construct the inverse function of

f(x) = y0 M
x

Solution: Recall that in order to find the
inverse function, we have to solve the
equation y = f(x) for x. In our case
we obtain

y = f(x) = y0 M
x

Mx =
y

y0

x =
log y

y0

logM

where in the last step we used the for-
mula for exponential equations (14). Af-
ter renaming the variables we obtain

g(x) =
log x

y0

logM

as the inverse function of f .

In the very special case where y0 = 1 and
M = 10, we see that

g(x) =
log x

log 10
= log x

is the inverse function of f(x) = 10x.
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14.7 Exercises

1. Assume that y changes exponentially with
x. Complete the tables below and find an
equations of the form y = y0M

x.

(a)

x y

0 6
1
2
3 750
4

(b)

x y

0 500
1
2 125
3
4

(c)

x y

0
1 4
2
3 5
4

2. Sketch the graph of the functions
y = 5 · 2x and y = 250 · 0.8x on a
logarithmic scale.

3. Express y = 5 · 2−x/4 in the form
y = y0M

x. What are y0, M and r?

4. The population of the City of Radford
grew from 15,859 in 2000 to 16,408 in
2010. Assuming an exponential model,
what is the annual growth rate?

5. A population of 200 deer grows at an an-
nual rate of 8%.

(a) What is the population after 5 years?

(b) What is the doubling time?

6. A substance grows according to the law
y = 15 · 1.05x. What is the doubling
time?

7. A bacteria culture doubles in size every
45 minutes.

(a) What is the hourly growth rate?

(b) Initially 250 bacteria are present.
How long will it take until the colony
has one million bacteria?

8. A bacteria culture grows from 600 bacte-
ria to 13,000 bacteria in two hours. What
is the generation time (the time it takes
to double in size)?

9. Scientists discovered a new radioactive
substance which decayed by 20% within
one hour. What is its half-life?

10. A pollutant has a half-life of 4 months.

(a) What is the monthly rate of decay?

(b) What is the annual decay rate.

(c) If initially 600 g of the substance are
present, how long will it take until
the amount is reduced to 1 g?

11. The half life of the radioactive isotope
14C is 5730 years. A piece of wood mea-
sures only 20% of the common 14C:12C
ratio. How old is it?

12. A pain killer has a half life of eight hours,
i.e. the body absorbs one half of the drug
within eight hours.

(a) A patient is given a 12mg dose. How
much is left in the body after one
day?

(b) What dosage is required so that af-
ter six hours there are still 6 mg of
the drug left in the body?
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Answers

1. (a) y = 6 · 5x
x y

0 6
1 30
2 150
3 750
4 3750

(b) y = 500 · 0.5x = 500 · 2−x
x y

0 500
1 250
2 125
3 62.5
4 31.25

(c) y = 3.578 · 1.118x =
√

12.8 · 1.25x/2

x y

0 3.578
1 4
2 4.472
3 5
4 5.590

2.

Figure 32: Problem 2

3. y = 5 ·
(
2−1/4

)x
= 5 · 0.8409x

y0 = 5, M = 0.8409,
r = −0.1591 = −15.91%

4. r = 0.3409%

5. (a) 294 (293.8656)

(b) 9 years (9.0065)

6. 14.2 (14.207)

7. (a) 152%

(b) 9 hours (8.974)

8. 27 minutes

9. 3.1 hours (3.1063)

10. (a) 15.9% (r = −0.159)

(b) 87.5% (r = −0.875)

(c) 3 years (3.076)

11. 3, 300 years (13,304.6)

12. (a) 1.5 mg

(b) 10 mg (10.091)
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15 Power Functions

Power functions are very popular with biolo-
gists, in particular in the study of allometry.
Kleiber’s Law, which relates body mass and
basal metabolic rates of mammals, is proba-
bly the most celebrated example. Species-area
curves (the number of species in a given area)
are another application of power functions.

15.1 Definition

Definition: Power functions have the form

y = c xa (21)

Examples of power functions include

y = 3x2

y = 10
√
x = 10x1/2

y =
2

x
= 2x−1

In a way, it is much easier to work with power
functions than with polynomials, because they
only have one term. However, there is no re-
striction on the power a. Any number is per-
mitted, not just positive integers.

At first glace, there is nothing special about
the graphs of power functions, but we obtain
lines when we plot power functions on a loglog
scale (logarithms on both axes).

The reason is quite simple: Take the loga-
rithm of y and simplify; then

log y = log(c xa) = log c+ log xa

= a log x+ log c

If we introduce the new variables

u = log x and v = log y

we have the equation

v = ax+ log c

which is an equation of a line with slope a and
v-intercept log c.

Example: Consider the power function
y = 10

√
x. Then

v = log y = log(10
√
x)

= log 10 + log x1/2 = 1 +
1

2
log x

=
1

2
u+ 1

In a loglog plot we graph the line v = 1
2u+ 1,

and ”cheat” when we label the axes.

This graph still represents y = 10
√
x. The

points for

x = 1 y = 10
√

1 = 10

x = 100 y = 10
√

100 = 100

x = 0.01 y = 10
√

0.01 = 1

are highlighted on the graph.
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Matching a power function to data is a lit-
tle tricky. We begin with an example.

x y

2 20
5 125

Because y = cxa, this table translates into the
set of equations

20 = c 2a

125 = c 5a

with a and c as unknowns. Division yields

125

20
=

c 5a

c 2a

6.25 =
5a

2a
=

(
5

2

)a
= 2.5a

Unless you realize that 2.52 = 6.25, you need
logarithms to solve this exponential equation,
and obtain

a =
log 6.25

log 2.5
= 2

Once a = 2 has been identified, we substitute
this value into the first equation and solve for
c:

20 = c 22 = 4c ⇒ c = 5

and the underlying power function becomes

y = 5x2

Usually the exponent a is the more relevant
part of a power function, and if data (x1, y1)
and (x2, y2) are known, the exponent a can be
computed from

a =
log y2/y1

log x2/x1
(22)

The verification of this result is a routine exer-
cise with logarithms. For our last example we
would calculate

a =
log 125/20

log 5/2
=

log 6.25

log 2.5
= 2

in order to find the exponent.
Check the worked problems for more exam-

ples and applications.

15.2 Approximation with Power Func-
tions

Data are never perfect, and approximations
are needed. We can adapt the straight-edge
method to power functions and use the follow-
ing steps:

1. Take the logarithms of the x- and y-values
of the data.

2. Carefully plot the logarithmic data.

3. Find an approximating line be the straight-
edge method (see Section 12.3).

4. Convert the approximating line back into
a power function.

Example: The data and the respective loga-
rithms are given in the table.

x y u = log x v = log y

0.5 0.05 −0.301 −1.301
2 1 0.301 0
10 10 1 1
40 50 1.602 1.699
150 400 2.176 2.602

The graph below shows the logarithms in
the uv-plane. The points (u, v) = (0,−0.7)
and (u, v) = (2, 2.4) were selected for the ap-
proximating line.
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In the final step we have to convert the line to
a power function with the original variables x
and y. Since u = log x and v = log y, it follows
that

x = 10u and y = 10v

There are two strategies to complete Step 4:
Option One: Convert the points back to

the xy-system and construct the power func-
tion.

u v

0 −0.7
2 2.4

⇒
x y

1 0.2
100 251

We get c = 0.2 directly, because the value for
x = 1 is known. For the parameter a we use
formula (22) and find that

a =
log 251/0.2

log 100/1
=

3.1

2
= 1.55

and the interpolating power function is

y = 0.2 · x1.55

Option Two: Determine the equation for
the interpolating line in the uv-plane, and con-
vert it to the original variables.

The v-intercept (0,−0.7) is a given point,
and the slope becomes

m =
2.4− (−0.7)

2− 0
=

3.1

2
= 1.55

Therefore the line in the uv-plane is

v = 1.55u− 0.7

It now follows that

y = 10v = 101.55u−0.7

= 10−0.7 · (10u)1.55 = 0.2 · x1.55

Of course either option yields the same ap-
proximation. A graph of the points along with
the power approximation is shown below.

Graphing calculators or computer software
have built-in functions for this task, based upon
the least squares approximation principle.

On a graphing calculator enter the points
in lists with x- and y-coordinates (STAT menu
and Edit option). Once this is completed, use
the STAT menu, followed by CALC and se-
lect the PwrReg option. For the data from our
example, the calculator should respond with
y = a ∗ x ∧ b where a = 0.223 and b = 1.52 .

In EXCEL one should graph the points in
a scatter plot first and then select ”Power”
for the trendline option. If you ask to dis-
play the equation on the chart, the formula
y = 0.223x1.52 will appear.

By the way, our straight-edge approxima-
tion y = 0.2x1.55 is fairly close to the least
squares approximation of the computing de-
vices.

15.3 Worked Problems

1. Find a power function y = c xa for the
data below.

(a)

x y

1 3
2 48

(b)

x y

1 3
2 30

(c)

x y

2 6
5 20
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(d)

x y

10 1, 000
20 25

Solutions:

If we substitute x = 1 into the formula
for a power function (21) we always ob-
tain y = c 1a = c, regardless of the
value of a. We will take advantage of
this shortcut in problems (a) and (b).

In part (b) we will show detailed steps
to find a and c, otherwise we will apply
formula (22) for brevity.

(a) Formula (22) implies that

a =
log y2/y1

log x2/x1
=

log 48/3

log 2/1

=
log 16

log 2
= 4

c = 3 because we have information
at x = 1, and the power function
becomes y = 3x4.

(b) The given information translates into

3 = c 1a

30 = c 2a

The first equation becomes c = 3,
and after substitution we see that

2a =
30

3
= 10

The solution of this exponential equa-
tion is

a =
log 10

log 2
=

1

0.301
= 3.322

and the power function is y = 3x3.322.

(c) Here we obtain from (22)

a =
log y2/y1

log x2/x1
=

log 20/6

log 5/2

=
log 3.333

log 2.5
= 1.314

We use the first point and substitu-
tion in order to find c

6 = c 21.314 = 2.486 c

c =
6

2.486
= 2.413

and thus y = 2.413 · x1.314.

(d) In this exercise we see notice that
the y-data are decreasing, which forces
a negative exponent. From (22) we
find that

a =
log y2/y1

log x2/x1
=

log 25/1, 000

log 20/10

=
log 0.025

log 2
= −5.322

Substitution with the first point yields

1, 000 = c · 10−5.322

c =
1, 000

10−5.322
=

103

10−5.322

= 103+5.322 = 100.322 · 108

= 2.099 · 108

and the underlying power function
is

y = 2.099 · 103 · x−5.322

This function can be manipulated

into y = 1, 000 ·
(

10
x

)5.322
. Try it.

2. Interpolate the data

x 5 16 100 300 1, 500

y 75 50 20 5 2.5
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by a power function. Use the straight-
edge method and compare this estimate
to the least squares fit from a computer
or calculator.

Solution: The first step calls for taking
the logarithm of the data.

u = log x v = log y

0.699 1.875
1.204 1.699
2.000 1.301
2.477 0.699
3.176 0.398

A graph in the uv-plane (Step 2) and an
approximating line (Step 3) are shown in
the figure.

The line passes through the points (0.5, 2)
and (4, 0.1). The slope of this line is

m =
0.1− 2

4− 0.5
=
−1.9

3.5
= −0.543

and its equation becomes (see Point-Slope
Form (5))

v − 2 = −0.543 (u− 0.5)

v = −0.543u+ 2.271

Now we convert to xy-variables:

y = 10v = 10−0.543u+2.271

= 102.271 · (10u)−0.543

= 187 x−0.543

This was Option Two. The steps for Op-
tion One require to convert the points
to xy-coordinates first, the result being
(3.16, 100) and (10, 000, 1.26), and then
to construct the interpolating power func-
tion. Answers will be identical for either
option.

The least squares method yields the ap-
proximation

y = 251.67 x−0.631

3. Basal Metabolic Rates. This is a clas-
sical problem for power functions. The
data go back to research done by Max
Kleiber in the 1930ies who compared body
mass of mammals and the respective basal
metabolic rates (oxygen consumption at
rest). Some of the data are listed be-
low. The mass is measured in gram, the
metabolic rate in milliliter (mL) of ogy-
gen per hour.

Mass BMR

Moose 325000 51419
Lion 98000 16954
Cougar 37200 8842
Coyote 10000 2687
Racoon 5075 1599
Red fox 4400 2442
Rock hyrax 2400 660
Possum 2005 731.6
Meerkat 850 310
Ground Squirrel 205.4 140.4
Indian Gerbil 87 75.7
Chipmunk 45.8 72.7
Naked mole rat 32 20.5
Bat 27 8.3
Shrew 17.1 54.7

Problem: Use the straight-edge method
to find an approximating power function
with x representing body mass and y rep-
resenting oxygen consumption.
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Solution: First we have to calculate the
logarithms of the data.

u v

Moose 5.51 4.71
Lion 4.99 4.23

Cougar 4.57 3.95
Coyote 4.00 3.43
Racoon 3.71 3.20
Red fox 3.64 3.39

Rock hyrax 3.38 2.82
Possum 3.30 2.86
Meerkat 2.93 2.49

Ground Squirrel 2.31 2.15
Indian Gerbil 1.94 1.88

Chipmunk 1.66 1.86
Naked mole rat 1.51 1.31

Bat 1.43 0.92
Shrew 1.23 1.74

The next task is to graph these points
and to eyeball an interpolating line.

For simplicity we use the line contain-
ing the points (1, 1) and (6, 5) in the uv-
plane. We choose Option One to com-
plete the problem, and we convert the
points back to the xy-plane. Using x =
10u and y = 10v, we find the points

x y

10 10
106 105

Now we use formula (22) to construct the

exponent:

a =
log 105

10

log 106

10

= 0.8

Then we substitute the first point and
a = 0.8 into the equation y = c · xa and
obtain

10 = c · 100.8

which implies that

c =
10

100.8
= 100.2 = 1.6

and our approximation is

y = 1.6 x0.8

With Option Two we would use the equa-
tion v = 0.8u + 0.2 and take it from
there.

The least squares result (computer/calculator)
for these data yields

y = 1.9726 x0.7918

15.4 Exercises

1. Sketch the function y = 4
√
x on a loglog

scale. Try these options:

(a) Sketch you own loglog graphing pa-
per (1, 10, 100, . . . equally spaced
on both axes) and graph the func-
tion.

(b) Compute u = log x and v = log y
for selected points and graph u ver-
sus v.

2. Assume that y = cxa is a power function.
Find c and a and complete the tables.

(a)

x y

1 0.1
2
5
10 10
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(b)

x y

1 3
3 1
6

(c)

x y

1 3
4
8 12

3. Sketch the functions

(a) y = 0.01x3

(b) y =
10

x2

(c) y = 2.3x0.7

on a regular grid and on a loglog grid.

4. Let y = 4x1.5.

(a) Find x such that y = 500.

(b) Find x such that y = 100.

5. Find a power function approximation for
the data in the table. Use the straight-
edge method for power functions and com-
pare the approximations to the given data.
In addition, use a calculator and compare
the calculator results to your straight-
edge results.

(a)
x 1 2 5 10

y 2 20 77 250

(b)

x y

0.2 1.1
4 40
10 120
25 360
60 1,000
100 1,900

(c)

x y

1 425
4 250
15 140
60 80
250 48

1,000 25

6. You investigate how the diversity of grasses
on a meadow changes with area. On the
smallest plot of 50 cm × 50 cm you find
just two species. As you increase the lot
size you detect more and more species.
On the largest plot (50 m × 50 m) you
count 31 different species. The data are
summarized in the table below.

Lot size(m2) No. of Species

0.25 2
1 4
12 7
50 11
120 13
600 21

2, 500 31

Use the straight edge method to find an
approximating power function with x rep-
resenting area, and y for the number of
species.

7. The table below contains the heart rate
at rest for selected mammals (Kong, NIU).

Mass (g) Pulse

Mouse 25 670
Rat 200 420
Guinea pig 300 300
Rabbit 2,000 205
Small dog 5,000 120
Large dog 30,000 85
Man 70,000 72
Horse 450,000 38
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Find an approximating power function
by the straight edge method. Use x for
the mass and y for the heart rate.

Answers

1.

Figure 33: Problem 1 (a)

Figure 34: Problem 1 (b)

2. (a) y = 0.1x2

x y

1 0.1
2 0.4
5 2.5
10 10

(b) y =
3

x
x y

1 3
3 1
6 0.5

(c) y = 3x2/3

x y

1 3

4 7.56 = 6 3
√

2
8 12

3.

Figure 35: Problem 3

Figure 36: Problem 3

4. (a) x = 25

(b) x = 252/3 = 8.550

5. Answers may vary.

(a) y ≈ 2.5x2, use (u, v) = (0, 0.4) and
(u, v) = (1, 2.4)

x 1 2 5 10

y 2 20 77 250

est. 2.5 10 62.5 250

Calculator: y = 2.92x2.01

(b) y = 7x1.2,
use (u, v) = (−0.7, 0) and
(u, v) = (2, 3.3) and some rounding.
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x y est.

0.2 1.1 1.015
4 40 36.95
10 120 110.9
25 360 333.1
60 1000 952.5
100 1900 1758

Calculator: y = 7.581x1.197

(c) y = 400x−0.4,
use (u, v) = (0, 2.6) and
(u, v) = (3, 1.4)

x y est.

1 425 400.0
4 250 229.7
15 140 135.4
60 80 77.77
250 48 43.94
1000 25 25.24

Calculator: y = 429.8x−0.407

6. Answer may vary.

y = 3.4 x0.3

7. Answer may vary.

y = 2, 000 x−0.3

16 Difference Equations

Difference equations are a powerful modeling
tool, which can be easily investigated with com-
puter simulations. Population growth, predator-
prey, host-parasite or disease modeling are typ-
ical applications.

This section makes heavy use of the func-
tion notation, and a review of Chapter 11 is
advisable.

16.1 Introduction

In this introductory section we study an exam-
ple which illustrates the main ideas and con-
cepts behind difference equations.

The Problem: We monitor the deer popu-
lation in a large park, which currently consists
of 1,200 deer. We know that the population in-
creases at 10% annually, and hunting reduces
the herd by 100 animals each year. Predict the
population in the future.

This looks a bit like the discussion of the
the monkey population in the beginning of Chap-
ter 14. We start with a population of 1,200.
The 10% increase results in 120 more deer in
the following year, but we also have to sub-
tract the 100 deer killed by hunters. The new
population becomes

1, 200 + 120− 100 = 1, 220

In the next year we go through the same
process, starting with 1,220 deer, and we ob-
tain

1, 200 + 122− 100 = 1, 242

Repeating the steps one more time leads to31

1, 242 + 124.2− 100 = 1, 266.2

31Round to the nearest integer if the decimal bothers
you.
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The results are summarized in the table be-
low.

Year Population

0 1, 200
1 1, 220
2 1, 242
3 1, 266.2

Our next step is to derive a notation so that
we can express our model mathematically. We
let n be the number of years from the original
count, and we use p(n) for the population32 in
year n.

With this notation out table is to be inter-
preted as

Year Population
n p(n)

n = 0 1, 200 = p(0)
n = 1 1, 220 = p(1)
n = 2 1, 242 = p(2)
n = 3 1, 266.2 = p(3)

p(2) means the population in the second
year, and p(10) stands for the population ten
years later, etc.

What can we say about our model? We
know that p(0) = 1, 200, since this is the orig-
inal deer count, but we don’t have an explicit
formula for the deer population in following
years. Instead, we have a recipe how to move
from one year to the next. If we want the deer
population in the year n, which is written as
p(n), we have to add 10% to last year’s popu-
lation, denoted by p(n− 1), and subtract 100.
This results in the equation

p(n) = p(n− 1) + 0.1 p(n− 1)− 100

which shortens to

p(n) = 1.1 p(n− 1)− 100 (23)

32We use the function notation. p(n) is pronounced
as ”p of n”, and in this example it means the population
in year n.

This is an example of a difference equation.
We need a starting value, and everything else
follows by a domino effect. When n = 1, the
equation (23) becomes

p(1) = 1.1 p(0)− 100

= 1.1 · 1, 200− 100 = 1, 220

Substituting n = 2 into (23) leads to

p(2) = 1.1 p(1)− 100

= 1.1 · 1, 220− 100 = 1, 242

and when n = 3 the difference equation (23)
becomes

p(3) = 1.1 p(2)− 100

= 1.1 · 1, 242− 100 = 1, 266.2

and so on.
It is a unique feature of difference equations

that we can determine p(n) only for integers.
p(2) = 1, 242 and p(3) = 1, 266.2, but p(2.4) is
unspecified.

This is in stark contrast to exponential mod-
els. If we set hunting aside, the difference equa-
tion becomes

p(n) = 1.1 p(n− 1)

In an equivalent exponential model we would
use r = 0.1, M = 1 + r = 1.1 and y0 = 1, 200,
with solution

y = 1, 200 · 1.1x (24)

It can be shown that p(n) matches the expo-
nential growth formula33 (24), but it is only
defined for integers. On the other hand, there
is no problem with setting x = 2.4 in (24) to
obtain y = 1, 200 · 1.12.4 = 1, 508.4. Graphi-
cally, the exponential model leads to a smooth
curve (red), while the difference equation pro-
duces a scatter plot (blue).

33p(n) = 1, 200 · 1.1n
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This graph also contrasts the difference be-
tween discrete and continuous variables. The
p(n) are defined at the positive integers only,
which makes n a discrete variable, while y is
defined for all x, and x is a continuous variable.

It is usually very difficult and not very use-
ful to find explicit solutions to difference equa-
tions. Instead, we let computers do numerical
calculations, and focus on qualitative features,
such as

will the points grow indefinitely?
will the population become extinct?
will the system settle for a steady state?

and so on.

16.2 First Order Difference Equations

We will use the letter p to denote the state
variable, and the state of the system at a par-
ticular time n is denoted by p(n). In difference
equations, the state of the system changes as
time progresses. This change is driven by an
update function f , which depends on the state
of the system itself.

In its most general form, a first order dif-
ference equation has the structure

p(n) = p(n− 1) + f(p(n− 1)) (25)

where

n ≥ 0 counting index, must be an
integer, usually time (years, days,
seconds or even generations)

p(n) state of the system at time n,
frequently a population
p(0) initial condition

f(p) update function, describes
how p changes

A difference equation has the characteris-
tics of a feed-back loop: For the given state
p(n − 1), we identify the update f(p(n − 1)),
and then change the state of the system in the
next time step to p(n) = p(n−1)+f(p(n−1)).

The update function f(p), along with the
initial condition p(0), determine the behavior
of the system in the future. When p(0) is given,
we can use n = 1 in (25) to obtain

p(1) = p(0) + f(p(0))

which makes p(1) a known quantity. Now set
n = 2, then

p(2) = p(1) + f(p(1))

is known, and continuing in this fashion, we
can compute p(n) for any number n (we just
have to be patient if n is very big, or use a
computer to speed things up).

After this abstract and fairly general intro-
duction, and we turn to specific examples.

Example: The opening example we had 1,200
deer to begin with. This makes for

p(0) = 1, 200

as initial condition. The change from one year
to the next was the 10% population increase
minus the deer lost to hunting. Therefore the
update function becomes

f(p) = 0.1p− 100
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and we can now assemble the difference equa-
tion according to (25):

p(n) = p(n− 1) + 0.1p(n− 1)− 100

which is equivalent to (23).
Let’s take another look at the f(p) term.

Initially we have p = 1, 200 deer, and terefore
(substitute)

f(1, 200) = 0.1 · 1, 200− 100 = 20

Thus, the population will increase by 20 an-
imals, and the new population becomes p =
1, 220. When we substitute this number into
f , we find that

f(1, 220) = 0.1 · 1, 220− 100 = 22

and we will have 1, 220 + 22 = 1, 242 deer in
the next year. If for some reason the deer pop-
ulation becomes 2,000, then

f(2, 000) = 0.1 · 2, 000− 100 = 100

and the following year will see 2, 100 deer.
Slogan: If you want to calculate the new

value p(n), plug the current value p(n−1) into
the formula for f , and add the result to p(n−
1).

Example: Research suggests that a migratory
bird population decreases by 8% annually. The
last count in 2010 showed 7,600 birds.

We construct a difference equation for this
scenario: If n stands for the years after 2010,
we have p(0) = 7, 600 as initial condition. The
8% decrease can be modeled by

f(p) = 0.92p

and the difference equation becomes

p(n) = p(n− 1)− 0.08p(n− 1)

= 0.92p(n− 1)

Example: Consider

a(n) = a(n− 1) + 12

a(0) = 100

Here a increases by 12 each time (f(a) = 12 is a
constant function), beginning with a(0) = 100.
The next terms are

a(1) = a(0) + 12 = 100 + 12 = 112

a(2) = a(1) + 12 = 112 + 12 = 124

a(3) = a(2) + 12 = 124 + 12 = 136

and so on.

Example (New Car Loan): This example is
not biological, but the same ideas apply: You
borrow $10,000 for a new car. The interest
rate is 4.8%, and you make monthly payments
of $400.

Let B(n) stand for the balance on your loan
after n months. Clearly, B(0) = 10, 000, which
is the original loan amount. From one month
to the next, your debt increases by 4.8%

12 =
0.4%, while your payment lowers the debt by
$400. The balance B on your loan will change
by

f(B) = 0.004 B − 400

and the difference equation becomes

B(n) = B(n− 1) + 0.004B(n− 1)− 400

= 1.004B(n− 1)− 400

After one month your outstanding debt is

B(1) = 10, 000 + 0.004 · 10, 000− 400

= 10, 000 + 40− 400 = 9, 640

In words: You owe $10,000, you accumulate
$40 in interest, and your payment reduces the
debt by $400.

It is very tedious (and dull) to continue
these computations by hand. The resulting
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data are known as an amortization schedule
in the business world. As it turns out, the
loan will be paid off in just 27 months. In the
real world, customers take out four year loans,
and the monthly payments in this case would
be $229.39, rather than $400. This is done by
adjusting the payments so that B(48) ≈ 0.

As the models get more sophisticated, the
update function f will be more complex, and
the difference equation may become very clut-
tered. When you experiment with difference
equations and you calculate iterates without a
computer, it may be advisable to break up the
steps and compute the update f(p(n−1)) first,
and then form p(n) = p(n− 1) + f(p(n− 1).

Example: We take p(0) = 25 as initial pop-
ulation and use the update function

f(p) =
p · (100− p)
p+ 100

This is a special case of the Beverton-Holt model,
which in turn is a variation of logistic growth,
which we will study below. The resulting equa-
tion becomes

p(n)

= p(n− 1) +
p(n− 1) (100− p(n− 1))

p(n− 1) + 100

is not terribly confusing, nonetheless, we will
compute the update first, and then form p(n).

We have p(0) = 25. Now we form f(25),
that is, we substitute 25 for p, and obtain

f(25) =
25 · (100− 25)

25 + 100
=

25 · 75

125
= 15

This is the update, and the new population is
p(1) = 25 + 15 = 40.

Now we repeat the process with p = 40.
Then

f(40) =
40 · (100− 40)

40 + 100
=

120

7
= 17.14

and the new population is p(2) = 40 + 17.14 =
57.14.

At this point the computations become messy.
We summarize our results for the first five it-
erations in a table.

n p(n) f(p(n))

0 25 15
1 40 17.14
2 57.14 15.58
3 72.73 11.48
4 84.21 7.22
5 91.43

Graphs. As mentioned in the introduc-
tion, scatter plots are a natural way to depict
the results of difference equations. The inputs
are integers, and the gaps between the points
are a characteristic feature. The graph below
shows the solution to

a(n) = 0.6a(n− 1) + 24

a(0) = 0

Terminology and Notation. A differ-
ence equation is usually written as

p(n)− p(n− 1) = f(p(n− 1))

which emphasizes the change of the state p. If
we set

∆p = p(n)− p(n− 1)

it becomes

∆p = f(p(n− 1))
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and we see that the change of p is determined
by the update function f . This approach al-
lows for a nice connection to the ”differential
equation”

dp

dx
= f(p)

which the continuous variable counterpart to
a difference equation. Differential equations
are a Calculus based field of mathematics, and
they are widely used in science and engineer-
ing, and they are becoming an increasingly im-
portant tool in the life sciences.

Equations of the form

p(n) = g(p(n− 1))

are called recurrence relations or iterative equa-
tions, with g being the iteration function. The
two concepts are completely equivalent when
we use

g(p) = p+ f(p)

but the perspective is different. For example,
the difference equation

p(n)− p(n− 1) = 0.2p(n− 1)

emphasizes that p increases by 0.2 = 20% each
time, while the same process written as

p(n) = 1.2p(n− 1)

indicates that p grows by a factor of 1.2 in
every step. Both are equivalent but they are
expressed from different points of view. We
will use the terms difference equation, iteration
process or recurrence relation interchangeably.

Some authors like to up the index by 1 and
write

p(n+ 1) = p(n) + f(p(n))

while others prefer subscripts for indexing, and
the equations become

pn = pn−1 + f(pn−1) = g(pn−1)

or

pn+1 = pn + f(pn) = g(pn)

All of these describe the same process; they
are packaged differently, but the mathematics
remains the same.

16.2.1 Computers and Calculators

Explicit solutions to difference equation are the
exception. There is a class of special cases (the
affine equations) which admit solution formu-
las, but in most cases we have to settle for
numerical results. We have seen before that
these computations can be very tedious and
time consuming and we turn to computing de-
vices for a remedy.

The MODE setting for graphing calcula-
tors34 often contains a SEQ option (SEQ stands
for sequence). It is designed to construct a se-
quence of numbers from the iterative formula

u(n) = g(u(n− 1))

Once you are in the SEQ mode, and you select
”Y=” you will be asked for a number of things:

nMin starting value of index.
u(n) implement the formula here;

use 2ND u (above the 7) for u
and the X,T,Θ,n key for n.

u(nMin) initial condition.

A plot of the solution can be obtained with
the GRAPH key, and TABLE returns the so-
lution in tabular form.

Example: We solve

a(n) = a(n− 1)

+0.25a(n− 1)(4− a(n− 1))

a(0) = 0.1

34This is in reference to TI calculators. Check user
manuals for other brands.
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numerically. Here the iteration function is

g(a) = a+ 0.25a(1− a)

Once SEQ has been selected, the entries in
”Y=” should be

nMin = 0
u(n) = u(n-1) + 0.25*u(n-1)*(4-u(n-1))
u(nMin) = { 0.1 }

The name of the variable is immaterial, and
we have to live with the fact that we have to
use u in place of a.

The TABLE command returns

n u(n)

0 .1
1 .1975
2 .38525
3 .73339
4 1.3323
...

...

and with GRAPH we can visualize the result.

In EXCEL we can use relative cell refer-
ences and the quick fill handle to obtain the
same table. We stick to the same example,
and the result is shown below.

The left part contains the EXCEL output, the
right part displays the actual cell entries. The
column with the index n is included for con-
venience, and the values of a(n) are shown in
column B.

The cell B2 contains the initial value a(0) =
0.1. The cell B3 directly below it implements
the recurrence formula and calculates a(1). It
starts with an ”=”, like all formulas in EXCEL
do, and then it makes repeated reference to cell
B2. In fact, we are entering g(B2), that is, any
occurrence of a in the formula for g is replaced
by B2.

The next cell in the column is B4 and it
contains a(2). Its computation requires calcu-
lation of g(B3), and we redo the last step with
B2 replaced by B3. As we go down the col-
umn, we have to repeat this process over and
over. Fortunately, we only have to enter the
formula only once in B3; for the rest we use
the fill feature35. The cell references will be
updated automatically.

EXCEL makes it very easy to display the
solutions graphically as a scatter plot.

16.3 Steady States and Stability

A steady state of a difference equation is a
value of the state variable which does not change
anymore.

Example: Consider (we have seen this exam-
ple before)

a(n) = 0.6a(n− 1) + 24

If a(0) = 60, then

a(1) = 0.6 · 60 + 24 = 36 + 24 = 60

35Go to the lower right of the cell until a ”+” appears.
Then hold and drag.
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and we see that a(n) = 60 for all subsequent
terms36.

A steady state is also called a fixed point
or an equilibrium. It is a value p∗ of the state
variable such that

p(n) = p(n− 1) = p∗

To find a steady state, replace both, p(n) and
p(n−1), by p and solve the resulting equation.
The solutions p∗ are the desired fixed points.

Example: Consider (we have used this exam-
ple in the computer section)

p(n) = p(n− 1)

+0.25p(n− 1)(4− p(n− 1))

Setting p(n) = p(n− 1) = p leads to

p = p+ 0.25 p (4− p)
0 = 0.25 p (4− p)

and we have two equilibria, namely p∗ = 0 and
p∗ = 4.

Check: If p(0) = 0, then

p(1) = 0 + 0.25 · 0 · (4− 0) = 0

and if p(0) = 4, then

p(1) = 0 + 0.25 · 4 · (4− 4) = 4

If the difference equation has the form (25)
we can argue that the update f(p) must vanish
for steady states, and we can find fixed points
by setting f(p) = 0.

Example:

p(n) = p(n− 1)

+0.25p(n− 1)(4− p(n− 1))

36Difference equations follow a domino effect. If there
is no change in the step from n = 0 to n = 1, then there
are no changes in the later steps and a(n) will remain
constant.

Here f(p) = 0.25 p (4 − p), and p∗ = 0 and
p∗ = 4 result in f(p∗) = 0.

Fixed points can be stable or unstable. Fig-
ure 37 shows solutions to

p(n) = p(n− 1)

+0.25p(n− 1)(4− p(n− 1))

with different starting values. When started
exactly at p(0) = 0 or p(0) = 4, the trajec-
tories remain constant. The solutions starting
at p(0) = ±0.1 move away from zero, which
makes p∗ = 0 an unstable equilibrium. On the
other hand, solutions appear to be pulled to-
ward p∗ = 4, and we call this a stable steady
state.

Figure 37: Stability Example

Can we predict stability without calculat-
ing iterates and turning to graphs?

To answer this question, we go back to the
standard form of a difference equation

p(n) = p(n− 1) + f(p(n− 1))

If f(p(n− 1)) > 0, then

p(n) > p(n− 1)

and the values of p will increase. Conversely,
if f(p(n− 1)) < 0, then

p(n) < p(n− 1)
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Figure 38: An Update Function

and p decreases. For f(p(n− 1)) = 0, we find
that p(n) = p(n − 1) = p∗, and we are at a
fixed point.

In the graph in Figure 38 depicts an exam-
ple of an update function. The states p make
up the horizontal axis (in our previous graphs,
p was shown along the vertical axis). When the
curve lies above the p-axis, the iterates p(n)
become bigger, and the flow goes to the right;
when the curve lies below the p-axis, the sit-
uation is reversed. The p-intercepts make up
the steady states.

Still in reference to Figure 38, the steady
states on the outside must be unstable: If p >
p∗, the update is positive and p becomes even
bigger and moves away from p∗. Conversely, if
p < p∗, the update will be negative, and again
p moves away from p∗. Therefore, a steady
state will be unstable if f(p) changes from neg-
ative to positive at p∗, or in other words, a
steady state p∗ is unstable, if f has a positive
slope37 at p∗.

It is tempting to say that p∗ is stable, if
f(p) has a negative slope at p∗. But it is not
that simple. If p < p∗ and f(p) > 0, then p
will increase. But if f is very steep, and f(p) is
very large, the increase may be so large that we
overshoot p∗ by a lot and move further away

37We use this term loosely. Straight lines have the
same slope everywhere, for other curves the slopes vary.
Calculus defines the slope of a function f(x) at a par-
ticular point x as the derivative, denoted by f ′(x), and
a major portion of Calculus is devoted to the study of
derivatives.

from it, however, on the other side from where
we started. As it turns out, p∗ is stable, if
f(p) has a negative slope at p∗, and the slope
is between −2 and 0.

A careful sketch of f will reveal the slope at
any point, and as a rule of thumb, be cautious
if the update function is steep at a fixed point.

Example: We return to

p(n) = p(n− 1)

+0.25p(n− 1)(4− p(n− 1))

where f(p) = 0.25 p (4 − p). The graph of f
becomes

The two fixed points are located at the the
points where the curve intersects with the hor-
izontal axis (p∗ = 0 and p∗ = 4). f(p) is posi-
tive between p = 0 and p = 4. This is the re-
gion where the points p(n) are increasing (look
at the labels on the vertical axis in Figure 37).
Outside that range f is negative and the iter-
ates decrease.

At the point p∗ = 0, the graph of f switches
from negative to positive, and the equilibrium
is unstable. At p∗ = 4, f changes from positive
to negative, and the slope is −1, as a careful
sketch reveals. Thus, p∗ = 4 is stable.

Example:

p(n) = 1.1p(n− 1)− 100

This is the opening example (23) of the deer
population.

First we have to identify f . Subtracting
p(n− 1) on both sides results in

p(n)− p(n− 1) = 0.1p(n− 1)− 100

157



Hence, (replace p(n− 1) by p)

f(p) = 0.1p− 100

The equation f(p) = 0 has solution p∗ =
1, 000. When 1, 000 deer are present, a 10%
increase leads to 100 more animals, which is
exactly the amount lost to hunting, and the
population will remain constant.

f is a line with a positive slope, and therefore
the steady state is unstable.

In the original example we had the initial
count p(0) = 1, 200, and the iterates move
away from p∗ = 1, 000 toward positive infin-
ity.

If we use p(0) = 800 as initial condition, we
find that

p(1) = 1.1 · 800− 100 = 780

p(2) = 1.1 · 780− 100 = 758

p(3) = 1.1 · 758− 100 = 733.8

and we see that the iterates move away from
p∗ = 1, 000, this time toward negative infinity,
and the model becomes meaningless once the
population falls below zero (extinction).

Example: Here we explore what happens when
f has a negative slope, but it is too steep. Let

f(p) = −2.5p+ 10

f(p) = 0 leads to p∗ = 4, and because the
slope of f is less than −2, this steady state is
unstable.

Suppose that we start very close to p∗ with
p(0) = 3.9. Then

f(3.9) = −2.5 · 3.9 + 10 = 0.25

p(1) = 3.9 + f(3.9) = 4.15

f(4.15) = −2.5 · 4.15 + 10 = −0.375

p(2) = 4.15− 0.375 = 3.775

and we see that the iterates move away from
p∗ = 4 in an alternating fashion.

A lot more can be said about stability with
the tools of Calculus. But this is beyond the
scope of this workbook.

16.3.1 Affine Equations

This section is all math. Its main purpose is
to give a little background for an important
class of difference equations. It can be used as
reference material or as additional reading for
the interested student. The remainder of the
workbook will not make use of the material in
this section.

It is possible to find exact solution formu-
las for the class of affine difference equations.
We shall present these formulas, and show how
they can be derived.

Definition: Difference equations of the form

p(n) = p(n− 1) + r p(n− 1) + k (26)

are called affine. Here r and k are constants.
In this case the associated update function

f(p) = r p+ k

is linear, with slope r and intercept k.

Special Case: Linear Growth
Here r = 0, and the difference equation

becomes

p(n) = p(n− 1) + k (27)
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that is, we add k at each iteration.
The solution is given by

p(n) = kn+ p(0)

which is a linear function for the variable n
with slope k and intercept p(0).

The verification of this formula requires two
steps. First we check the initial condition, and
it is plain that for n = 0 we obtain p(0) = p(0).
Next, we test the difference equation. We be-
gin on the right of (27), substitute the solution
with n replaced by n− 1, and simplify:

p(n− 1) + k

= k(n− 1) + p(0) + k

= kn− k + p(0) + k = kn+ p(0)

= p(n)

and we are done.
Steady states are redundant. Since f(p) =

k, equilibria are only possible if k = 0. But
then

p(n) = p(n− 1)

and any value is an equilibrium, because noth-
ing changes.

Special Case: Exponential Growth.
Here we consider the case where k = 0,

which results in

p(n) = p(n− 1) + r p(n− 1) (28)

The update function becomes f(p) = r p, which
is a line of slope r passing though the origin.

The solution is given by

p(n) = p(0)(1 + r)n (29)

which is an exponential function with multi-
plier M = 1 + r.

For n = 0 we have p(0) on both sides, and
the initial condition is confirmed. Again, be-
ginning on the right of (28), we substitute the

solution and simplify:

p(n− 1) + r p(n− 1)

= (1 + r) p(n− 1)

= (1 + r) p(0) (1 + r)n−1

= p(0) (1 + r)n

= p(n)

This shows that the function (29) satisfies the
difference equation (28).

The update function is

f(p) = r p

The case r = 0 is redundant. For r 6= 0 it
follows that p∗ = 0 is the only steady state. It
is stable if and only if the slope satisfies −2 <
r < 0.

The general affine equation (26) has the
update function f(p) = rp + k, and setting
f(p) = 0 leads to

p∗ = −k
r

as the only fixed point. It is stable if −2 < r <
0, because then the slope of f is in the desired
range.

Our next goal is to derive a solution for-
mula, and we use a common technique (trick)
of applied math: Instead of using the popula-
tion values p directly, we use a new variable y
to measure by how much we deviate from the
equilibrium p∗. The relationship becomes

p = y + p∗ or y = p− p∗

and we use whichever formula is more suiting.
p follows a difference equation, and we con-

struct the corresponding equation for y:

y(n)

= p(n)− p∗

= p(n− 1) + r p(n− 1) + k − p∗
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= y(n− 1) + p∗

+r (y(n− 1) + p∗) + k − p∗

= y(n− 1) + r y(n− 1) + r

(
−k
r

)
+ k

= y(n− 1) + r y(n− 1)

Thus, y(n) follows an exponential growth
model, and we already found a solution for-
mula for this case. Using (29) we have

y(n) = y(0)(1 + r)n

and back-substitution yields

p(n)

= y(n) + p∗

= y(0)(1 + r)n + p∗

= (p(0)− p∗)(1 + r)n + p∗

= p(0)(1 + r)n + p∗(1− (1 + r)n)

and thus

p(n) = p(0)(1 + r)n + p∗(1− (1 + r)n) (30)

When −2 < r < 0, we have −1 < (1 + r) <
1, and high powers of this number will become
very small. In this case, the terms (1 + r)n

become negligible, and formula (30) shows that
p(n) ≈ p∗, no matter where we start initially.
Again, this confirms that the steady state is
stable.

We review older examples using the new
formula (30).

Example: In the introductory section we looked
at deer populations following the difference equa-
tion

p(n) = p(n− 1) + 0.1p(n− 1)− 100

This is an affine equation with r = 0.1 and
k = −100. The steady state is

p∗ = −k
r

= 1, 000

It is unstable, because r > 0.
We had the initial condition p(0) = 1, 200

and formula (30) yields

p(n) = 1, 200 · 1.1n + 1, 000 · (1− 1.1n)

For example, if we are interested in p(3) we
find that

p(3) = 1, 200 · 1.13 + 1, 000 · (1− 1.13)

= 1597.2− 331 = 1, 266.2

without having to compute p(1), p(2) and p(3)
successively.

If the initial condition is changed to p(0) =
800, as we did later in the stability discussion,
and we still are interested in p(3), we get

p(3) = 800 · 1.13 + 1, 000 · (1− 1.13)

= 1597.2− 331 = 733.8

Example: The new car loan study falls into
the category of affine equations. Here we had

B(n) = B(n− 1) + 0.004B(n− 1)− 400

with B(0) = 10, 000. In this case

f(B) = 0.004B − 400

and r = 0.004 and k = −400.
The steady state is B∗ = −−400

0.004 = 100, 000
and we have

B(n) = 10, 000 ·1.004n+100, 000 ·(1−1.004n)

So, for instance, the remaining debt after one
year is

B(12)

= 10, 000 · 1.00412 + 100, 000 · (1− 1.00412)

= 10, 490.70− 4907.02 = 5, 583.68

What is the significance of the steady state?
For one, it is unstable, because r > 0. Sec-
ondly, if the balance for some reason equals
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$100,000 exactly, then a $400 payment cov-
ers the interest only, and the debt remains the
same. The person who owes more that $100,000,
will get deeper in debt with just $400 pay-
ments; the person who owes less than $100,000
will eventually be debt-free with regular $400
installments.

Example:

a(n) = 0.6 a(n− 1) + 24 a(0) = 0

This example was used in graphing and in the
stability discussion.

When we subtract a(n − 1) on both sides,
we find that

a(n)− a(n− 1) = −0.4 a(n− 1) + 24

Therefore,

f(a) = −0.4a+ 24

and r = −0.4 and k = 24. The equilibrium

a∗ = − 24

−0.4
= 60

is stable, because −2 < r < 0. Formula (30)
implies that

a(n) = 60 (1− 0.6n)

In the graphing example the value a(10)
was found in a successive computation. Our
formula yields

a(10) = 60 (1− 0.610)

= 60 (1− 0.006, 065) = 59.64

which, of course, coincides with the value we
have found before.

16.4 Logistic Growth

The exponential model

p(n) = p(n− 1) + r p(n− 1)

is a good way to describe population growth,
but it suffers from a big handicap: The popula-
tions will always increase, at the same constant
rate, and they will grow without bound. This
is not realistic. As a population gets larger, the
fight for resources will become more intense,
and the growth should slow down.

The logistic growth model addresses this
situation. It uses a population dependent growth
rate with two important parameters, the maxi-
mum growth rate rm and the carrying capacity
K.

The maximum growth rate rm is the rate
associated with unlimited resources. This rate
applies when the population is rather small.
The other parameter is the carrying capacity
K. This is the maximum population size which
the environment can support. If the popula-
tion gets past this point, it will encounter a
negative growth rate and and it will decline.

A linear function is the simplest way to ac-
commodate this description. We use

r = rm −
rm
K

p = rm

(
1− p

K

)
When p = 0, we get r = rm, and at carrying
capacity we have p = K and r = 0.
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Upon substitution, the former exponential
model now becomes the logistic model

p(n) = p(n− 1) +

rm

(
1− p(n− 1)

K

)
p(n− 1) (31)

Example: With rm = 0.1 and K = 1, 000, the
logistic model (31) has the form

p(n)

= p(n− 1) + 0.1

(
1− p(n− 1)

1, 000

)
p(n− 1)

The graph shows the solution with p(0) = 75
as initial condition

The points are so close that the scatter plot
looks like a smooth curve. We also observe the
typical S-shape of logistic growth curves.

Example: Here we contrast the exponential
versus the logistic model. We use rm = 0.1,
K = 500 and p(0) = 10. The exponential
model is

p(n) = p(n− 1) + 0.1 p(n− 1)

while the logistic model becomes

p(n)

= p(n− 1) + 0.1

(
1− p(n− 1)

500

)
p(n− 1)

= p(n− 1) + 0.01 p(n− 1)− p(n− 1)2

5, 000

Both solutions are displayed in the figure be-
low.

We can clearly see that the exponential model
grows toward infinity, while the logistic model
approaches the carrying capacity K = 500.
In the early stages, until about n = 20, both
curves are pretty much identical, at least it ap-
pears as such in the graph, and we call it the
exponential growth phase of logistic growth. Here
the population size p is fairly small, compared
to the carrying capacity, and the population
grows as if the resources were unlimited.

The fastest growth in the logistic model oc-
curs when the population reaches p = 250 =
1
2 K. This is called the inflection point. There-
after the growth decelerates and it will ap-
proach zero as the population approaches the
steady state K = 500.

It follows from formula (31), that the up-
date function for logistic growth is

f(p) = rm

(
1− p

K

)
p

= rmp −
rm p2

K

just replace p(n− 1) by the variable p. In this
regard, logistic growth is exponential growth
(f(p) = rmp) with a quadratic correction term

(− rm p2

K ). If p is fairly small compared to the
carrying capacity, we do not have to worry
about this term, but as the populations in-
creases, the quadratic term becomes more and
more relevant.

Stability. We see from the factored form
of the update function that

f(0) = 0 and f(K) = 0

162



which shows that logistic growth has steady
states p∗ = 0 and p∗ = K. The graph of f is
a parabola opening downward. It increases at
p∗ = 0, which makes this steady state unstable.
f decreases at p∗ = K, and the this steady
state is stable, unless f is too steep38.

The fastest growth occurs when p is one half
of the carrying capacity.

At carrying capacity the population has reached
the maximum attainable population size. This
is a state of fierce competition and fight for
survival, as the environment cannot support
additional organisms.

Epidemics. Logistic growth is not limited
to population models. In our next example we
look at a model for the spread of a contagious
disease. By p we denote the proportion of in-
fected individuals. Then the uninfected pro-
portion is q = 1− p, because the infected plus
the uninfected proportions have to add to one.
The disease is spreading whenever infected in-
dividuals come into contact with not infected
individuals, and the increase of infected indi-
viduals is proportional to the product pq. This,
by the way, is a from of the mass-action law.
The update function then becomes

f(p) = r p q = r (1− p) p

38The carrying capacity K is stable, if 0 < rmax < 2.
Periodic, yet stable, patterns appear for 1 < r < 2
and cyclic behavior and chaotic patterns evolve if 2 ≤
rmax < 3.

for some constant r. This is logistic growth for
K = 1 = 100%, and the iterations become

p(n)

= p(n− 1) + r (1− p(n− 1)) p(n− 1)

In this model all individuals will eventu-
ally become infected, because p will always ap-
proach carrying capacity in logistic growth. The
model assumes that interactions between indi-
viduals are random, it does not allow for re-
covery from the disease, and it does not dis-
tinguish between susceptible individuals and
those who have built up an immunity. But, de-
spite of all of its shortfalls, it is a good starting
point for the study of epidemics.

16.4.1 Logistic Approximations

Collected data may show a logistic trend, but
since we do not have an explicit formula for
the logistic iterates, it makes it difficult to de-
termine a suited approximation.

Calculus uses the curve

p =
K

1 + ae−rx

to describe logistic growth. Here a has to be
selected to match the initial condition at x = 0

p(0) =
K

1 + a

and e is the Euler constant e = 2.718, 281, . . ..
The formula for p is found by solving the

logistic differential equation39. While not an
exact solution of the logistic difference equa-
tion (31), it is a fairly good approximation.

Unfortunately, logistic approximation is not
a trendline option in EXCEL, but the graph-
ing calculator has this capability: Enter the

39This is the equation (Calculus required)

dp

dx
= r

(
1− p

K

)
p
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data into lists with STAT and EDIT, as usual.
Then use STAT and CALC, and select ”Logis-
tic”. The calculator will provide values for K,
a and r in the logistic function.

Example: Consider the data

n p

0 2
1 3
2 5
4 12
6 18
10 24

We enter the values into two lists on a calcu-
lator, and select the logistic approximation as
described above. The calculator responds with

y = c/(1 + ae ∧ (−bx))

a = 12.17918098

b = .5934057215

c = 24.66931882

and the logistic approximation of the data be-
comes

p =
24.669

1 + 12.179e−0.59341x

A graph of the points with the approximating
curve is given below.

Rounded to three significant digits, the cal-
culator found K = c = 24.669 as carrying ca-
pacity; for the rate we have rm = b = 0.593,

and with x = 0 we see that p(0) becomes

p(0) =
24.669

1 + 12.179
= 1.87

The solution to the associated difference
equation

p(n)

= p(n− 1) + 0.593

(
1− p(n− 1)

24.7

)
p(n− 1)

with p(0) = 1.87, along with the original data
is given below. The approximations are a good
match at the ends, but there are some gaps in
the center.

n p(n) data

0 1.87 2
1 2.89 3
2 4.41 5
3 6.56
4 9.42 12
5 12.87
6 16.53 18
7 19.77
8 22.11
9 23.48
10 24.17 24

16.5 Worked Problems

1. Find a difference equation for the given
situation, and calculate the first three it-
erates. Find steady states, if possible,
and address their stability.

(a) You work through a math book at
6 pages per day, beginning on page
23.

(b) Beginning with $200, a child spends
half of its money in any given week,
while also getting a $10 allowance.
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(c) A fish population in a lake decreases
at an annual rate of 5%. To combat
this decline, 400 fish are released
each year. In the beginning there
are 5,000 fish in the lake.

(d) Bacteria grow at a maximum rate
of 3% per minute. We start with 25
bacteria, and the carrying capacity
is 10,000. Use a logistic model.

Solutions:

(a) If p denotes the starting page, we
know that p(0) = 23, and the up-
date function is f(p) = 6. The dif-
ference equation then takes the form

p(n) = p(n− 1) + 6

and the first iterates become

p(1) = p(0) + 6 = 23 + 6 = 29

p(2) = p(1) + 6 = 29 + 6 = 35

p(3) = p(2) + 6 = 35 + 6 = 41

There are no steady states, because
f(p) = 6 6= 0.

(b) We let p(n) be the available funds
at the beginning of week n. Then
p(0) = 200. For the update we find

f(p) = −1

2
p+ 10

This results in

p(n) = p(n− 1)− p(n− 1)

2
+ 10

=
p(n− 1)

2
+ 10

The story of the first three weeks is

p(1) =
200

2
+ 10 = 110

p(2) =
110

2
+ 10 = 65

p(3) =
65

2
+ 10 = 42.50

The money disappears quickly, but
the steady influx of $10 keeps the
child from being broke. The steady
state is found from f(p) = 0, and
we see that

p∗ = 20

At this level the child spends $10
each week, and get the money back
in form of the allowance. f(p) is a
line with a negative slope, which is
between −2 and 0, and the steady
state is stable.

(c) Let p(n) be the fish population in
year n. Then p(0) = 5, 000. The
update function is

f(p) = −0.05p+ 400

The equation f(p) = 0 yields

p∗ =
400

0.05
= 8, 000

When 8,000 fish are present, a 5%
decline means the loss of 400 fish,
which is balanced by restocking. The
equilibrium is stable, because f is a
line with a negative slope between
−2 and 0.

The difference equation becomes

p(n)

= p(n− 1)− 0.05p(n− 1) + 400

= 0.95p(n− 1) + 400

and for the first iterations we have

p(1) = 0.95 · 5, 000 + 400 = 5, 150

p(2) = 0.95 · 5, 515 + 400 = 5, 292.5

p(3) = 0.95 · 5, 292.5 + 400 = 5, 427.9
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(d) This is a logistic growth problem.
The information translates into

rm = 0.03

K = 10, 000

p(0) = 25

and the equation becomes

p(n) = p(n− 1) +

0.03

(
1− p(n− 1)

10, 000

)
p(n− 1)

The next iterates are (calculator)

p(1) = 25.748

p(2) = 26.519

p(3) = 27.312

This is still in the exponential growth
phase (25 is much less than 10,000),
and the bacteria grow at 3% per
minute. Incidentally, p(24) = 50.7
and initially the doubling time is a
little under 24 minutes.

The growth function is

f(p) = 0.03

(
1− p

10, 000

)
p

with steady states p∗ = 0 (unstable)
and p∗ = 10, 000 (stable).

2. Compute a(5) from

(a) a(n) = 0.8 · a(n− 1)
a(0) = 250

(b) a(n) =
a(n− 1)

2
+ 20

a(0) = 80

and find a general formula for a(n).

Solutions

(a) Here we multiply by 0.8 repeatedly.

a(1) = 0.8 · 250 = 200

a(2) = 0.8 · 200 = 160

a(3) = 0.8 · 160 = 128

a(4) = 0.8 · 128 = 102.4

a(5) = 0.8 · 102.4 = 81.92

The formula for the iterates is

a(n) = 250 · 0.8n

This follows from formula (29) with
r = −0.2.

(b) Here the rule is: Beginning with 80,
take half of the current value and
add 20. This results in

a(1) =
80

2
+ 20 = 60

a(2) =
60

2
+ 20 = 50

a(3) =
50

2
+ 20 = 45

a(4) =
45

2
+ 20 = 42.5

a(5) =
42.5

2
+ 20 = 41.25

By looking at the data, we notice
that in each step we cut the distance
to a∗ = 40 in half, and the general
formula becomes

a(n) = 40 +
40

2n

We could also use formula (30) with
a∗ = 40, r = −0.5 and a(0) = 80:

a(n)

= 80 ·
(

1

2

)n
+ 40 ·

(
1−

(
1

2

)n)
= 40 + (80− 40) ·

(
1

2

)n
= 40 +

40

2n

166



3. Find a difference equation for the data in
the table.

(a)

n p(n)

0 65
1 69
2 73
3 77
4 81

(b)

n p(n)

0 80
1 120
2 180
3 270
4 405

(c)

n p(n)

0 81
1 54
2 36
3 24
4 16

Solutions: In this type of problem you
have to identify a pattern in the table,
and then translate it into an update func-
tion and a difference equation. Nothing
can be done if you don’t see the pattern.

(a) Here the values go up by 4 in each
step. The update is f(p) = 4 and
the difference equation becomes

p(n) = p(n− 1) + 4

(b) We add one half of the number each
time. This makes f(p) = p/2 and
we have

p(n) = p(n− 1) +
p(n− 1)

2
= 1.5 p(n− 1)

(c) Here we take 2/3 of the current num-
ber, and the equation becomes

p(n) =
2

3
p(n− 1)

The update is f(p) = −p/3, be-
cause if 2/3 are left, then 1/3 must
have been taken out.

4. Consider the update function

f(p) =
p (p− 4) (10− p)

50

Compute p(3) for the initial values

(a) p(0) = 3

(b) p(0) = 4

(c) p(0) = 5

Solutions: In all cases we compute the
update f(p) first, and then determine the
next p.

(a) f(3) = 3·(−1)·7
50 = −21

40 = −0.525
Therefore

p(1) = 3− 0.525 = 2.475

Following the same pattern we ob-
tain

f(2.475) = −0.710

p(2) = 2.475− 0.710 = 1.765

f(1.765) = −0.812

p(3) = 1.765− 0.812 = 0.953

(b) We have f(4) = 0, which makes
p∗ = 4 an equilibrium point, and

a(0) = a(1) = a(2) = a(3) = 4

(c) Routine calculations result in

n p(n) f(p(n))

0 5 0.625
1 5.625 1.000
2 6.625 1.467
3 8.092
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5. Find the equilibria when

(a) p(n) = 0.25p(n− 1) + 300

(b) p(n) = 1.2p(n− 1)− 80

(c) p(n) = p(n− 1)

+0.4
(
1− p(n−1)

250

)
p(n− 1)

and discuss their stability.

Solutions:

(a) If we substitute p = p(n) = p(n−1),
we find that

p = 0.25p+ 300

which results in the solution p∗ =
400 as steady state. Is it stable?
First, we determine update function.
Subtraction yields

p(n)− p(n− 1)

= −0.75p(n− 1) + 300

Hence,

f(p) = −0.75p+ 300

The update function is linear with
slope between −2 and 0, and there-
fore the steady state is stable.

(b) We begin by finding the update:

p(n)− p(n− 1)

= 0.2p(n− 1)− 80

Thus, f(p) = 0.2p−80. The steady
state is found from f(p) = 0, with
solution p∗ = 400. f has a positive
slope, therefore the steady state is
unstable.

(c) This is a logistic growth problem.
The steady states are p∗ = 0 and
p∗ = 250.

In logistic growth, p∗ = 0 always is
an unstable steady state, because if
only very few organisms are present,
the population will start growing and
thus move away from p∗ = 0.

The maximum growth rate in this
example is rmax = 0.4, and the car-
rying capacity is stable, because 0 <
rmax < 2.

6. Find the steady states for the update func-
tion

f(p) =
p (p− 4) (10− p)

50

and discuss stability.

Solution: Steady states are solutions of
f(p) = 0, and thus we have p∗ = 0, p∗ =
4 and p∗ = 10 as equilibria. The graph
of f is given below.

The slopes at p∗ = 0 and p∗ = 10 are
negative, and above −2. Therefore these
points are stable. At p∗ = 4 we have
a positive slope, and this steady state is
unstable.

This update function was used above. We
saw that p∗ = 4 was a steady state, and
when the iterations were started at p(0) =
3, the iterates moved away toward 0, while
for p(0) = 5 the iterates moved toward
10. This illuminates the unstable nature
of the equilibrium.

7. Epidemics. An epidemic spreads ac-
cording to the law

p(n)
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= p(n− 1) + 0.6(1− p(n− 1))p(n− 1)

where n measures time in months, and
p(n) is the proportion of infected indi-
viduals in the n-th month. Initially 3%
of the population is infected. How many
will be infected after 4 month? How many
after one year?

Solution: This problem is purely compu-
tational. p(0) = 0.03 is known, and we
are asked to compute p(4) and p(12).

n p(n)

0 0.030
1 0.047
2 0.075
3 0.116
4 0.178
5 0.265
6 0.382
7 0.524
8 0.673
9 0.805
10 0.899
11 0.954
12 0.980

We see that after four months about 18%
are infected, and that after one year 98%
of the population carry the disease.

8. It was stated in the discussion of logis-
tic growth that the carrying capacity is
stable if 0 < rmax < 2. In this problem
we compute a few iterations when rmax
is close to 2.

Compute p(1) though p(10) for logistic
growth with rmax = 1.8, K = 1000 and
p(0) = 50, and graph the result.

Again, this is a purely computational prob-
lem. The first values are p(1) = 135.5,
p(2) = 346.4 and p(3) = 753.9. Because

rmax = 1.8 > 1 we will overshoot the car-
rying capacity, then bounce back below
it, and keep oscillating about K = 1, 000
and gradually close in on this value.

16.6 Exercises

1. Find p(5) from

(a) p(n) = p(n− 1) + 4, p(0) = 25

(b) p(n) = 1.1p(n− 1) , p(0) = 60

(c) p(n) = 2p(n− 1)− 10, p(0) = 12

2. Find p(5) from p(n) = 1
2 p(n − 1) + 3

and

(a) p(0) = 36

(b) p(0) = 0

(c) p(0) = 6

3. Find a difference equation for the values
in the table and fill in the missing values.

n p(n)

0 28
1 25
2 22
3 19
4
5

n p(n)

0 81
1 108
2 144
3 192
4
5

4. Find the equilibria for the difference equa-
tions, and discuss their stability.

(a) p(n) = 1.05p(n− 1)− 200

(b) p(n) = 0.75p(n− 1) + 68
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(c) p(n) = p(n− 1)

+0.03
(
1− p(n−1)

12

)
p(n− 1)

5. Spread of a Disease. p(n) is the per-
centage of infected people at time n, the
quantity 1 − p(n) is the percentage of
not-infected people. The disease spreads
whenever infected and uninfected people
come in contact; this is represented by
the product p(n − 1)(1 − p(n − 1)), and
we arrive at the difference equation

p(n) = p(n− 1) + p(n− 1)(1− p(n− 1))

Given that initially 1% of the population
are infected, what percentage is infected
at time n = 5, what percentage when
n = 10?

6. Use a calculator to find a logistic approx-
imation for the data

x p

0 3
3 15
8 80
12 117
15 123

Answers

1. (a) 45

(b) 96.6

(c) 74

2. (a) 6.9375

(b) 5.8125

(c) 6

3. p(n) = p(n− 1)− 3

n p(n)

0 28
1 25
2 22
3 19
4 16
5 13

p(n) = 4
3 p(n− 1)

n p(n)

0 81
1 108
2 144
3 192
4 256
5 341.3

4. (a) p∗ = 4, 000, stable

(b) p∗ = 272, stable

(c) p∗ = 0, unstable and
p∗ = 12, stable

5. 27.5% and 99.997%

6. p =
125

1 + 35.4e−0.518x

rmax = 0.5183, K = 125.0, p(0) = 3.434
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