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Theory, models and biology
Theoretical ideas have a rich history in many areas of biology, and new

theories and mathematical models have much to offer in the future.

W
hen scientists want to explain some

aspect of nature, they tend to make

observations of the natural world or

collect experimental data, and then extract

regularities or patterns from these observations

and data, possibly using some form of statistical

analysis. Characterizing these regularities or

patterns can help scientists to generate new

hypotheses, but statistical correlations on their

own do not constitute understanding. Rather, it is

when a mechanistic explanation of the regulari-

ties or patterns is developed from underlying

principles, while relying on as few assumptions as

possible, that a theory is born. A scientific theory

thus provides a unifying framework that can

explain a large class of empirical data. A scientific

theory is also capable of making predictions that

can be tested experimentally. Moreover, a theory

can be refined in the light of new experimental

data, and then be used to make new predictions,

which can also be tested: over time this cycle of

prediction, testing and refinement should result

in a more robust and quantitative theory. Thus,

the union of empirical and quantitative theoret-

ical work should be a hallmark of any scientific

discipline.

Theory has long been celebrated in the

physical sciences, but the situation is very

different in the life sciences. As Conrad Hal

Waddington wrote in 1968, in the preface of

Towards a Theoretical Biology: ‘Theoretical Phys-

ics is a well-recognized discipline, and there are

Departments and Professorships devoted to the

subject in many Universities. In strong contrast to

this situation, Theoretical Biology can hardly be

said to exist as yet as an academic discipline.

There is even little agreement as to what topics

it should deal with or in what manner it should

proceed’.

Yet theory plays a paramount role in biology.

The best known example of a theory in biology is,

of course, the theory of evolution by natural

selection. Charles Darwin may have been

a globe-trotting hands-on naturalist and geolo-

gist, but his outstanding contribution to science

was theoretical. Drawing on fieldwork, fossil

records and the breeding records of domestic

animals and plants, he observed that variations

readily arose and that much of this variability was

heritable. After reading Malthus’ essay on the

repercussions of an exponential growth in pop-

ulation, Darwin reasoned that a struggle for

existence must have selected for the variants that

were most adapted to their local environment. As

different populations adapted to different environ-

ments, he argued that these variations accumu-

lated over time, eventually forming diverse species.

Despite the success of his theory, Darwin never

formalized it in mathematical terms. Rather, he

wrote: ‘I have deeply regretted that I did not

proceed far enough at least to understand

something of the great leading principles of

mathematics; for men thus endowed seem to have

an extra sense’ (May, 2004). Although a theory

does not have to be formulated as a mathematical

model to be useful, the development of such

a model is a hallmark of a maturing theory. The role

of theory and mathematical models in the life

sciences is the focus of this editorial.

By the end of the 1960s, whenWaddington was

bemoaning the lowly status of theoretical biology,
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the field had in fact witnessed major break-

throughs. Early population geneticists such as

Pearson, Fisher, Wright and Haldane had de-

veloped the formulation that Darwin was unable

to construct, providing a mathematical foundation

for the theory of evolution by natural selection. In

the process, they also generated a number of

major advances in statistics. The modern evolu-

tionary synthesis had reconciled the gradualist

Darwinian view of natural selection with a Mende-

lian understanding of genetics, unifying observa-

tions from naturalists, experimental geneticists

and paleontologists. A crucial contribution from

theory came in 1943 when Luria and Delbrück

used mathematical reasoning and experiments to

conclude that mutations arose in the absence of

selection, rather than in response to selection.

And in 1953 the structure of DNA was de-

termined with the help of a theoretical physicist

and the building of physical models (which were

the forerunners of today’s computer simulations).

Elsewhere, the simple and elegant Lotka–

Volterra models of competition and prey-

predation had jump-started theoretical ecology,

Kermack–McKendrick theory had laid a founda-

tion for mathematical epidemiology, and Burnet

had developed the clonal selection theory that

lies at the heart of our understanding of the

adaptive immune system. In neuroscience it is

difficult to overstate the importance of the

Hodgkin–Huxley model of action potentials or

Rall’s use of cable theory to provide a framework

for understanding the complex, dendritic struc-

tures of neurons.

During the past half-century, theory has con-

tinued to advance in diverse areas of biology.

Within evolution and ecology, for example,

evolutionary game theory provided a framework

for thinking about the evolution of strategic

behavior, while kin selection and multi-level

selection theory helped to explain cooperation

and altruism. Life history theory offered a system-

atic way to think about the evolution of senes-

cence, developmental plasticity and reproductive

schedules, among other things, while optimal

foraging theory introduced economic reasoning

into the study of animal foraging. Other examples

include kinetic proofreading in biochemistry, the

Hopfield model of neural networks, and the use of

bifurcation theory and phase-plane analyses in

neuroscience.

Increased computational power has also

allowed biologists to study the structure and

function of proteins, and to simulate complex

biological processes such as morphogenesis,

chemotaxis, the cell division cycle, metabolism

and, in some cases, the workings of the entire

cell. And over the past decade new experimental

tools and techniques have generated such

a staggering amount of data that we are, in the

words of Sydney Brenner, ‘thirsting for some

theoretical framework with which to understand

it’ (Brenner, 2012). This is true in genetics and

genomics, immunology, microbiology, neurosci-

ence and many other areas. New theoretical and

computational models are therefore needed to

make sense of this abundance of data.

Yet, despite this rich history, the divide

between theoretical and empirical biologists

seems to persist, even in areas with a long history

of both types of work, such as ecology and

evolutionary biology (Haller, 2014). One reason

for this is that the complexity of real biological

systems often requires relatively sophisticated

mathematics, which means that many theoretical

papers do not resonate with empirical biologists.

This complexity has many sources: the number of

interacting parts in even the simplest living cell

presents a formidable challenge for a theoretical

biologist, as does the heterogeneity that is

intrinsic to biological systems. Moreover, inter-

actions among these parts can span a large

range of time scales (from picoseconds for

electron transfer in photochemical reactions, to

billions of years for evolution) and length scales

(from molecules to cells, from organisms to

ecosystems).

As a result, theoretical biologists often need

to make a trade-off between abstraction and

realism (or between the qualitative and the

quantitative) when building mathematical mod-

els. The appropriate level of abstraction will
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depend on the question of interest. For exam-

ple, simplifying assumptions can be made to

develop a highly abstract model that reveals

general features shared by many systems and

thus improves our understanding of some

aspect of biology. However, such a model is

unlikely to produce quantitative predictions for

any particular system. On the other hand,

a highly detailed model that contains many

equations and parameters is unlikely to improve

intuitive understanding of a system or process.

However, if the various parameters in the model

can be measured to a credible level, then these

models should be able to make quantitative

predictions about a given system or process.

Part of the challenge in model building is to

choose the right level of abstraction despite the

complexity of biological processes. In other words,

we need to work out what aspects of this

biological complexity we can ignore and still gain

critical insights about a biological phenomenon.

So how can we increase interactions and

collaborations between theoretical biologists

and empirical biologists for the benefit of the

discipline as a whole? First, universities and

institutions should ensure that biology students

are taught more about theoretical and mathe-

matical techniques, including ideas from physics

that have already been successfully applied to

biological questions (such as statistical mechanics

and nonlinear dynamics). Laboratory work could

also be extended to include exercises that

involve computer simulations. These changes

would help biologists to better communicate

with theorists and, more importantly, to incorpo-

rate quantitative thinking into their own work.

There are signs that this is starting to happen: the

sixth edition of Molecular Biology of the Cell, for

example, includes examples where ordinary

differential equations are used to model gene

regulation and to explain switch-like and

oscillatory dynamics. It would be good to see

more mathematics in biology textbooks.

Second, theoretical biologists could do more

to increase the chances that their papers will

resonate with empirical biologists. The primary

audience for some theory papers will be other

theorists, and like all papers aimed at a specialist

readership, these papers will be a challenging

read for non-specialists. However, the potential

impact of most theoretical papers—especially

modeling papers—could be increased by follow-

ing a few simple guidelines. The first thing to do

is to clearly state the goal of the modeling: is the

aim to organize data emerging from high-

throughput experiments, to test a particular

hypothesis, to uncover the basic mechanisms

driving some phenomenon, to evaluate the

feasibility of an intuitive argument, to make

specific predictions, or something else? How does

the model or theory relate to and differ from

previous models, and what are its advantages and

disadvantages? What assumptions have been

made, and what are the justifications for these?

How were the parameters in the model chosen?

Mathematical papers can be made more

accessible by giving step-by-step derivations for

equations, and intuitive explanations for how

these equations reflect the biological process

under investigation, even if this involves covering

material that may already be familiar to other

theoretical biologists. Schematic diagrams can

also help. Finally, it is important to relate the

conclusions back to biology. This includes clearly

stating which conclusions are not surprising (in

the sense that they are straightforward deriva-

tives of the empirical results used to constrain

a model), which insights are novel, and which

predictions are worthy of empirical tests. Theo-

retical biologists can also benefit from wet lab

experience to help them appreciate what doing

an experiment involves.

Third, empirical biologists could make their

work more accessible and valuable to theorists.

For example, all the relevant datasets should be

included in papers. Moreover, where possible,

time-course data should be collected, rather than

just ‘end-point’ data, as this will allow dynamical

processes to be studied. And when the experi-

mental measurements in a paper differ from

previous measurements in a significant way, it

would help theorists (and others) to build on the

work if the authors discussed possible reasons for

these differences. Taken together the recommen-

dations outlined above should lead to improved

collaboration between theoretical and empirical

biologists.

Theoretical biologists could do more
to increase the chances that their
papers will resonate with empirical
biologists.
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eLife welcomes theoretical and modeling

papers in all areas of biology, especially papers

that report new biological insights, make sub-

stantial predictions that can be tested, or help to

resolve contradictory empirical findings. Papers

that report new theories or algorithms that have

the potential to solve important biological prob-

lems are also welcome. Papers can also be as long

(or as short) as necessary. Across the life sciences

we aim to publish papers that are insightful and

change the way that other researchers think about

their subject (Malhotra and Marder, 2015).

Theory and modeling are no exception.
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