
Lab Assignment 1

Modeling the Harvest of Bluefish on the Chesapeake Bay

Written by

Prof. Erin N. Bodine

Prepared for

Math 214: Discrete Math Modeling (Fall 2014)

Rhodes College

PreLab Assignment Due: Thursday, 9/4/2014 before class begins

Lab Assignment Due: Tuesday, 9/9/2014 before class begins

Material from the prelab is covered on the quiz on 9/4/2014.



Discrete Difference Equations 1

Figure 1: Illustration of a bluefish (Pomatomus saltatrix).

Bluefish (Pomatomus saltatrix ) is a species of saltwater

fish that can be found around the world in temperate

and subtropical waters. The harvesting (fishing) of blue-

fish is primarily recreational as the bluefish is a prized

sport fish as they can live up to 12 years and grow up

to 40 inches long. In the 1990s the amount of blue-

fish present along the mid-Atlantic seaboard dropped to

very low levels after several decades of over-fishing/over-

harvesting.

Table 1: Estimated harvest of blushfish
from Chesapeak Bay from 1940 – 1990.

Year Bluefish (lbs)

1940 15,000

1945 150,000

1950 250,000

1955 275,000

1960 270,000

1965 280,000

1970 290,000

1975 650,000

1980 1,200,000

1985 1,500,000

1990 2,750,000

In 1992, the Daily Press newspaper (serving southeastern Virginia) published

data reported the estimated yearly amount of harvested bluefish (in pounds)

from 1940 to 1990, reported every 5 years (see Table 1 for the data). The data

showed how the amount of harvested bluefish had increased exponentially over

the 50 year period.

The goals of this lab assignment are to:

• Estimate the proportion by which harvesting of bluefish from Chesapeake

Bay increased every 5 years.

• Model the exponential growth of bluefish harvesting from Chesapeake Bay

using a discrete exponential growth model.

In this lab, we will be using Matlab to help achieve these goals. Thus, as a part

of this lab you will learn how to do the following in Matlab:

• Create an m-file.

• Generate a graph.

• Write a for-loop.

Matlab Skills

We are going to start out with a tour of Matlab. If you have never used Matlab before this will help you become

familiar with the layout of the Matlab interface, and how to complete some basic tasks in Matlab.

Tour of Matlab

1. In Windows, go to the start menu and find Matlab . The icon for Matlab looks like , and the program

will likely be listed as Matlab R2013a (or a more recent year if the software has been updated). Click on the

program to open it. It make take several seconds before opening.

2. Once Matlab is open you should see a Matlab interface window with a menu bar across the top and several

subwindows below. See Figure 2 for a sample screen shot right after opening Matlab. We will start by

familiarizing ourselves with the elements contained within this Matlab interface window. Figure 3 shows the



Discrete Difference Equations 2

same sample screen shot as in Figure 2 but indicates where various features of the Matlab interface window

are located.

Figure 2: Screen shot of Matlab right after it has been opened.

3. Figure 3 uses numbered red boxes to highlight several key elements of the Matlab interface window.

(1) The location of the current directory or folder. As we work with Matlab we will want to create files

that store our data and execute various commands; these are called m-files (which stands for Matlab

files). In order to access the m-files we create, we need to indicate to Matlab where these files are

located. Red box (1) shows where we set the current folder. In Figure 3 the current folder is set to

C:\Users\bodinee\Documents\MATLAB. To change the current directory click on the “Browse for Folder”

icon next to the current directory location bar, and select the location you desire. Alternatively, you

could click anywhere on the current directory location bar and type in the location of the folder you desire.

(2) The files contained within the current folder. In the current folder shown in Figure 3, there are many files

listed. Note the file naming structure, filename.m, where the .m indicates each file is an m-file. If you

look closely you will see two different icons used for the m-files. This is because there are two different

types of m-files: script m-files and function m-files . A script m-file executes a series of commands.



Discrete Difference Equations 3

A function m-file can accept input arguments (or variables) and produce output variables (thus making

it similar to a function as we know it in mathematics). In this lab assignment we will learn how to create

script m-files, but later in the semester we will also learn how to create function m-files.

Figure 3: Screen shot of Matlab right after it has been opened. The numbered red boxes show the following elements of the Matlab
interface window: (1) the location of the current directory or folder, (2) files contained within the current folder, (3) the command
window, (4) the workspace, (5) the recent command history, and (6) the menu bar.

(3) The command window. This is the window where commands are executed. To get Matlab to execute

a command, you type the command into the command window and press “Enter”, then the command

is executed and any results are displayed either within the command window (or in a separate window

if a graph is generated). We will try typing several different commands into the command window after

introducing the key elements of the Matlab interface window.

(4) The workspace. The workspace shows all the variables you have created in a Matlab session. Note, once

you close out of Matlab , all the variables in the workspace will be cleared (i.e., deleted). The variables

you generate can be real numbers, or matrices of numbers (if you are not yet familiar with what a matrix

is, think of it as a grid of numbers). Note, though we usually think of matrices as two-dimensional grids of

numbers, Matlab has the ability to handle multi-dimensional matrices.



Discrete Difference Equations 4

(5) The recent command history. This subwindow will keep a running tab of all the commands you have typed

into the command window. If you typed a complex command and want to execute it again, you can scroll

through the command history, double click on the command you want to execute again, and it will execute

in the command window again. Note, that you can also scroll through all previous commands executed

in a Matlab session by using the up and down arrows on the keyboard (when working in the command

window). This is often easier, and makes the presence of the command history subwindow a bit redundant.

If you would like to close the command history subwindow, click on the small circled down arrow in the

top right corner of the subwindow and select close.

(6) The menu bar. The Matlab menu bar has many different icons, all of which are labeled. We will use be

using some of this in this lab.

This button will open of the script editor and create a new untitled m-file. The file however

is not “created” until it is first saved.

This button allows you to customize the layout of the Matlab interface window. If you

click on the button you can select from 4 different built in layouts, and select (or deselect)

various subwindows from for the Matlab interface window. For example, if you removed the

command history window and want to bring it back, you can select it from the Layout menu.

Clicking on this button will clear all the commands from the command window (which is

sometimes useful if you have a lot of failed attempts at command that you would like to clear

away). If you click on the down arrow to the right of this button, it will drop down a menu

with two options: “Command Window” or “Command History”. If you wanted to clear out

the entire command history.

4. You will now attempt to use Matlab to perform some basic calculations.

(a) Click on the command window. To execute a command in Matlab you type the command into the

command window and press Enter. Try typing 3 + 6 * 2. Matlab uses the * character to indicate

multiplication. Notice Matlab obeys the standard order of operations. You can type the command in

with spaces around each mathematical operator (+ and *) or not; it will not effect the result. Notice that

when you execute the command, Matlab returns the answer in the form ans = 15 (though distributed

over a few lines). Matlab is storing the value 15 in a variable called ans (which is short for answer).

If you look in the work space you will see the variable ans listed. The second column of the workspace

shows the value of the variable, which is 15.

General arithmetic in Matlab uses + for addition, - for substraction, * for multiplication, \ for division,

and ^ for exponentiation. Note that spaces and adjacent parentheses do not indicate multiplication. Thus,

2(5−3)(0.1 + 7) must be entered as 2*(5-3)*(0.1+7) where the * is used to indicate each multiplication.

(b) Negative numbers are indicated with a minus sign. Try typing 3 - 6 * 2 into the command window (ans

= -9).

(c) Scientific notation requires the use of the character e. To use scientific notation for a number like 0.0001 =

1× 10−4, use 1e-4. The value immediately after the e, in this case -4, will indicate the placement of the

decimal. Be careful here not to place spaces between the 1, e, or -4, as it will result in an error (try

typing it into the command window and see). Try typing 5.2e-4 + 1e-5 into the command window (ans



Discrete Difference Equations 5

= 5.3000e-04). Note, the default precision of Matlab is set to show 4 digits after the decimal (even in

scientific notation).

(d) Complex numbers require the use the the character i. To represent the complex number 5.2 − 4.7i, use

5.2-4.7i. Note a space between the 4.7 and the i will cause an error. Try typing the following two

command into the command window (make sure to press Enter after each line):

5.2-4.7i * 2.3-i

(5.2-4.7i) * (2.3-i)

Does each command result in the same value? Why or why not? Determine exactly what calculation is

made in each command.

(e) Matlab can only execute commands that “make sense”. If you command does not make sense to Matlab,

an error message (usually in red) will be returned. Try typing (3 + 6 * 2. What does the error message

say? What is wrong with the command that was entered?

(f) Recall that you can scroll through previous commands using the up arrow. Press the up arrow once to see

the previous command (3 + 6 * 2. Now, use the left arrow key to navigate the cursor between the 6 and

the *. Change the command to (3 + 6) * 2. Press Enter. Notice that Matlab returned the result of

this command also in a form similar to the previous error-free command, and also uses the variable ans.

In fact, if you look in the workspace, the value of ans has changed from 15 to 18. Matlab has written

over the old value of ans and replaced it with this new value, 18.

(g) If you want Matlab to hold more than one variable (ans) at a time, you must specify variable names.

Try typing the following two commands into the command window (make sure to press Enter after each

line):

x = 3 + 6 * 2

y = (3 + 6) * 2

You may also choose to use the arrow keys, scroll through the previous commands, and edit them appro-

priately. Notice that two new variables have appeared in the workspace along with their corresponding

values. If you want to change the values of one of the variables it is easy to do so. Try typing x = 5 into

the command window. Notice the change in the value of x in the workspace.

In general, variable names can use letters (upper and lower case), numbers, and the underscore character.

You should note that variables in Matlab are case sensitive, thus the variable x is not the same as the

variable X. Characters and words that represent built-in constants and functions in Matlab cannot/should

not be used as variable names. For example, pi and i in Matlab are use for the mathematical constants

π and
√
−1. You should strive to make variable names descriptive so that they are meaningful. However,

variables can get a little unwieldy if they become too long.

(h) Once you have defined variables in Matlab you can use them in subsequent calculations. Try typing z =

y - x into the command window. Does z evaluate the value you expect? Note the value of the variable

z in the workspace.

(i) Basic scientific functions in Matlab are sin(x) for sin(x), cos(x) for cos(x), tan(x) for tan(x), log(x)

for ln(x), log10(x) for log(x) = log10(x), and exp(x) for ex. Note the the input for the sine, cosine,

and tangent functions are in radians. There are many other built-in functions in Matlab which will be

introduced as we need them.



Discrete Difference Equations 6

Create a Script M-file

You have now successfully executed several commands in the command window. However, what if you wanted to

execute the same set of commands (more than one line of commands) over and over again. It would become tedious

to do this in the command window. For this, we turn to the creation of m-files. In lab we will create script m-files,

but in later lab assignments we will learn how to create function m-files.

1. Open a new script file (see Tour of Matlab section).

2. We are going to write a simple script which asks the user to enter the diameter and height of a cylinder, and

then the script file will calculate the volume of the resulting cylinder. Recall, that the volume of a cylinder

with radius r and height h is V = πr2h. In the m-file editor window, type the following exactly:

L01Ex01.m

1 % Lab 1 Example 1 by Prof Bodine

2 % Find the volume of a cylinder with diameter d and height h

3

4 % Have user enter diameter and height

5 disp(’The script will calculate the volume of a cylinder.’)

6 d = input(’Enter diameter: ’);

7 h = input(’Enter height: ’);

8

9 % Calculate the volume

10 V = pi * (d/2)^2 * h;

11

12 % Display the results

13 disp(’The volume of the cylinder is ’)

14 disp(V)

Once you have created the file save it as L01Ex01.m (which will be our naming convention for Lab 1, Exercise

1). Make sure you make note of where you are saving it. If you save the file in a location other that the current

folder, make sure you change the current folder to the location where the L01Ex01.m file is saved.

Now, let us take a moment to understand everything contained within this script.

(a) Anything after a % is a comment. This means it is NOT a command executed by the script, but a helpful

note to yourself and other. These notes are helpful to yourself if you are attempting to use code you wrote

quite some time ago, and helpful to other who may be looking at your code for the first time and trying

to understand what it does. It may seem silly to have comments in this simple script (there are 5 lines

of comments and 6 lines of actual executable code), but it becoming increasingly more important as your

code becomes lengthier.

The first two comments (lines 1-2) provide a label for the script, the author’s name, and the purpose of

the script. It is a good coding habit to always use the first few lines of a script for this purpose. The

comments on lines 4, 9, and 12 describe what the immediate subsequent lines of code do.

(b) This script uses two of Matlab’s built-in functions: input and disp. The input function provides a way



Discrete Difference Equations 7

for a user to feed information into the program/script while it is running. In this case, the script will

ask the user to enter the diameter and the height of the cylinder. The disp function will display the text

(placed in single quotes) and variables. Both the input and disp functions only takes one argument.

(c) Note that some of the lines of code end with a semicolon. In Matlab a semicolon placed at the end of a

line of code will suppress the output of that line of code. We will experiment with this shortly.

(d) Take a moment to review the code. Do you understand what each line of code is doing? If not, now

is the time to stop and ask your instructor or another student (preferably one who has some experience

with writing code).

3. Now it is time to try executing the script file. Matlab provide a couple of ways to accomplish this: you can

press F5 on your keyboard, you can click on the run button in the editor, or you can type the name of the file

(without the .m) into the command window.

Prof B’s Personal Preference: When I am running code in Matlab I prefer to have the script editor window

as a subwindow in the Matlab interface window. To do this click on the circled down arrow in the upper right

corner of the script editor window. Select “Dock Editor”. If you do not like this set up you can always undo it

by going through the same steps but selecting to undock.

Run the L01Ex01.m script file. Enter 3.4 for the diameter and 4.6 for the height when prompted into the

command window. Do you get 41.7643 for the volume? What appears in the workspace? Try running the

script again and using different value for the diameter and height. Verify that the script is producing the

correct volume each time.

4. Go back to the script editor and delete the semicolon at the end of line 6. Now run the script file again. What

happens? Do you feel it is better to replace the semicolon or keep it removed?

Generate a Graph

It is often helpful to be able to display data graphically. For example, consider the cell density data from Motivating

Example 1 in the reference readings (see Table 2). The table shows the density of an E. coli cell culture measured

every 30 minutes for 3 hours. Let us plot the data shown in this table.

Table 2: Optical Density of E. coli cell culture.

Time (hours) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Cell Density (OD600) 0.055 0.120 0.231 0.360 0.516 0.821 1.300

1. The built-in function in Matlab for plotting is plot(x,y) where x and y are arrays of values which give the

horizontal and vertical coordinates of points on the graph. Note, an array is simply a list of numbers. To create

an array in Matlab you can enter the numbers individually between a set of square brackets with spaces

between each number. For example,

t = [0.0 0.5 1.0 1.5 2.0 2.5 3.0]



Discrete Difference Equations 8

which is the set of time values from Table 2. If you have a lot of data to enter and it takes more than one

line, place three dots (...) at the end of each line that is continued onto the next. However, if you have

evenly spaced data (like the time data in Table 2) we can use Matlab’s colon notation. For example, [0:10]

produces an array of integers from 0 to 10, i.e., 0, 1, 2, 3, . . . , 9, 10. However, [0:2:10], produces numbers

from 0 to 10 in increments of 2, that is, 0, 2, 4, 6, 8, 10. Thus, we could have created the time array by using

t = [0:0.5:3]

2. Open a new script file. In the m-file editor window, type the following exactly:

L01Ex02.m

1 % Lab 1 Example 2 by Prof Bodine

2 % Produce a Plot of the Cell Density Data

3

4 % Enter the data where t is time and d is cell density

5 t = [0:0.5:3];

6 d = [0.055 0.120 0.231 0.360 0.516 0.821 1.300];

7

8 % Generate the plot

9 plot(t,d,’ro’)

10 xlabel(’Time (hours)’)

11 ylabel(’Cell density (OD_{600})’)

Save this script as L01Ex02.m in the same folder as L01Ex01.m.

Now, let us take a moment to understand everything contained within this script.

(a) Take a moment to read the comments. Do you understand what each section of the script is doing?

(b) Note the plot command now has an additional third input (after the t and d). This third input indicates

the color (red) and marker shape (circles) of each of the points on the graph. In the command window

type help plot (and scroll up) to see a list of the possible colors, marker shapes, and line styles that can

be used with the plot command.

(c) This script also uses Matlab’s built-in functions xlabel, and ylabel. These commands place text along

the horizontal and vertical axes, respectively.

(d) Take another moment to review the code. Do you understand what each line of code is doing? If

not, now is the time to stop and ask.

3. Run the script file. A window containing the graph should appear and should look like Figure 4. What does

the workspace in the Matlab interface window look like? Pay specific attention the value column.

4. Change line 9 in the code to plot(t,d,’r0-’) and run the script. What happens? How does the plot change?

Note, the plot window may not automatically “pop up” again. You may need to relocate the window to see

the changes that have been made.

5. Change line 9 in the code to plot(t,d,’r0) and run the script. You should get an error message. Does the

error message make sense? Do you see what is now wrong with line 9 of the code?



Discrete Difference Equations 9

6. Change line 9 in the code to plot(t,m,’r0’) and run the script. You should get an error message. Does the

error message make sense? Do you see what is now wrong with line 9 of the code?

Figure 4: Plot produced from L01Ex02.m script.

Write a For-Loop

In Motivating Example 1 from the reference readings we took the average of ratios of cell densities at consecutive

time steps to determine the value of a parameter c in the discrete exponential growth model xn+1 = cxn. Calculating

the values of these ratios was not so bad since we only had seven data points. However, this would become tedious

for larger data sets. Matlab is an excellent tool for performing the same calculation many times. When you want

to repeat the same type of calculation again and again, you use computer coding construct called a loop. There are

two types of loops: for-loops and while-loops. For-loops execute a block f code a specified number of times, where

as a while-loop executes a block of code until a (logical) condition is met which is triggered by an event in the loop.

Since we know how many ratios we need to calculate (the number of data points minus 1), we will use a for-loop. In

later lab assignments we will learn how to construct while-loops.

1. To access the ith element of an array x in Matlab we use x(i). Your workspace should still contain the array

d, if not, run L01Ex02.m again. In the command window type d(3) and press Enter. This should return the

3rd element of the array d. Now, try d(5) and press Enter. This should return the 5th element of the array d.

2. In the command window type d(10) and press Enter. This should return an error message. What does the

error message say? Why was there an error message?

3. In the command window type d(0) and press Enter. This will return a different error message. Note that in

Matlab the indexes for arrays start at 1, thus all index values (the value between the parentheses) should be

positive integers. Does this error message make sense?

4. Open a new script file. In the m-file editor window, type the following exactly:



Discrete Difference Equations 10

L01Ex03.m

1 % Lab 1 Example 3 by Prof Bodine

2 % Calculate the proportion by which the cell density is increasing each

3 % time step

4

5 % Enter the data where d is cell density

6 d = [0.055 0.120 0.231 0.360 0.516 0.821 1.300];

7

8 % Caculate the ratio of consecutive data points

9 N = length(d) - 1;

10 for i = 1:N

11 ratio(i) = d(i+1)/d(i);

12 end

13

14 % Caculate the mean ratio

15 a = mean(ratio);

16

17 % Display the % population increase

18 r = (a-1) * 100;

19 fprintf(’Every 30 minutes the cell density increases by %3.1f%%\n’, r)

Once you have created the file save it as L01Ex03.m in the same folder as the other example m-files.

Now, let us take a moment to understand everything contained within this script.

(a) You should be able to understand lines 1 - 6 based on the previous examples.

(b) In line 9 we create a new variable N and give it the value of the length of the array d minus 1. Note,

length is a built-in function in Matlab that take an array as the input.

(c) The for-loop start on line 10. We know it is a for-loop because it uses the reserved Matlab word for.

Note, you cannot use for as a variable name. After the for we define the index variable as i and set it

to take on values 1 up to N, increasing by increments of 1 (notice this is the same Matlab colon notation

used for arrays). This means that for the first pass through the loop, the variable i will have a value of

1; the second pass through the loop, the variable i will have a value of 2; . . . ; the N th pass through the

loop, the variable i will have a value of N, which will be the last pass through the loop. After the last pass

through the loop, Matlab will move down to start executing the next line of code, in this case line 15.

(d) Let us examine line 11 more closely. During each pass through the loop, we calculate the ratio d(i+1)/d(i)

where i is the loop index and d(i) indicates the tth element of the array d. Each calculated ratio is then

stored in the ith position of a new array called ratio. The array ratio is initially created during the first

pass through the loop, and a new value is appended on to the end of the array during each pass through

the loop.

(e) In line 15 we use the built-in Matlab function mean to calculate the mean or average of the values in the

array ratio.



Discrete Difference Equations 11

(f) You should understand line 18. The command in line 19 is similar to display, but allows a bit more

flexibility in how the information is displayed. The function fprintf allows you to create was is called a

format string which describes exactly how numbers and strings (a “string” of characters; thinks words

and sentences) will be displayed. With fprintf you can display strings and variables on the same line,

which you cannot do with the disp function. Within the string (between the single quotes) you can have

text and if you want to include the value of a variable you use the follow format: %w.dx, where w is the

total number of digits you want to display, d is the number of digits you want after the decimal, and x

specifics what type of formate you number is in

• d for integers,

• f for real numbers,

• e for scientific notation, and

• g to switch between f and e as needed.

In line 19 we use %3.1f which indicates that we have a real number, and we want to display 3 digits with

only 1 digit after the decimal. The %% is how we allow the percent sign character to appear since this

character normally indicates a comment in the code. The \n forces Matlab to go to the next line. If we

do not have the \n, the next thing we print or try to type into the command window will be on the same

line.

Notice that the fprintf function in line 19 has two inputs: the string (between the single quotes) and

the variable r. Thus, the number filled into the string where the %3.1f occurs is given by the value of

the variable r. If the string contains multiple formated values then the all of the appropriate variables are

listed after the string separated by commas. For example, we could a line between lines 11 and 12 which

prints out the value of each ratio:

fprintf(’Ratio %d is %4.3f.\n’, i, ratio(i))

(g) Take another moment to review the code. Do you understand what each line of code is doing? If

not, now is the time to stop and ask.

5. Run the script file. What is printed out in the command window? What appears in the workspace?

6. Change line 19 to have %4.2f instead of %3.1f and run the script file. How does this change what is printed

out in the command window?

7. Change line 9 to N = length(d); and run the script file. You should get an error message. What does the

error message say? Does it make sense? Correct line 9.

8. Add the line fprintf(’Ratio %d is %4.3f.\n’, i, ratio(i)) between the currently lines 11 and 12. How

many times is the fprintf function executed when the script is run once?

This completes the Matlab Skills portion of this lab assignment. You are now ready to complete the prelab assig-

ment.



Discrete Difference Equations 12

PreLab Assignment

1. Create a script m-file called PLab01 YourLastName.m where YourLastName is replaced with your last name.

Your name and a description of the script’s main purpose should be in the first few lines of the script as

comment lines. Your script should be well commented and perform the following tasks:

(a) Calculate the values of x1, x2, . . . , x6 using the model xn+1 = 1.7xn with x0 = 0.055. Store all the values

(including x0) in an array called x. Recall that 0 cannot be used as an array index. For full credit, you

must use a for-loop to complete this task.

(b) Generate one plot with both the original data from Table 2 and the data generated from your model on

the same graph. To accomplish this use the command hold on; after your first plot command. This

will make the points from your second plot command appear on the same graph. After the second plot

command use hold off;. Make sure that the axes of your graph are appropriately labeled.

(c) Use a for-loop to calculate the difference between the actual data and your model (use datai − xi). Use

an fprintf statement within the loop to print out the difference accurate to 0.001.

2. Before you run your script, in the command window type diary PLab01 YourLastName.out. This will save

everything that you type and Matlab displays in a *.out file (and output file). Now, run your script, and

then type diary off. Save the resulting graph as a PLab01Graph01 YourLastName.jpg. To do this, in the

figure window select “Save as. . . ” from the File menu, select the appropriate folder, set the filename, select

“JPEG image (*.jpg) for “Save as type:“, and press Save.

3. Submit your script PLab01 YourLastName.m, your diary file PLab01 YourLastName.out, and your image file

PLab01Graph01 YourLastName.jpg.

Lab Assignment

1. Create a script m-file called Lab01 YourLastName.m. Your name and a description of the script’s main purpose

should be in the first few lines of the script as comment lines. Your script should be well commented and

perform the following tasks:

(a) Enter the data for the bluefish harvest yields into two arrays: year containing the year data and fish

containing the pounds of bluefish harvest for each year.

(b) Use a for-loop to calculate the ratios of bluefish harvest yields (in lbs) at consecutive time steps. Use the

fprintf function to print out the value of each ratio. The calculate the mean value of the ratios and store

this in the variable a.

(c) Use a for-loop to generate the values for the sequence xn = anx0 where x0 = 15, 000. Generate the values

of sequence for n = 1, 2, . . . , 10, and store all the values (including x0) in an array called x. Recall that 0

cannot be used as an array index.

(d) Generate one plot with both the original bluefish harvest yield data and the data generated from your

model on the same graph. Make sure the axes of your graph are appropriately labeled.



Discrete Difference Equations 13

2. Before running your script, create a diary file with the name Lab01 YourLastName.out. Now, run your script

then close the diary. Save a copy of this graph as Lab01GraphA YourLastName.jpg. Examine the information

print out in the command window and the graph. Why is this model a bad model?

3. The use of a discrete exponential growth model in this case is not a bad choice, but the value of a leads to

“problems”. Devise a scheme for determining a better value for a. Write down (in words) how you plan to find

a better value for a, then find that plan. There is no one correct way to find a better value of a. You are in

essence hypothesizing as to how you might improve your model, and then testing your hypothesis. Good old

Scientific method!

For any new models you test use a for-loop to generate the values of the sequence yn = bny0 where y0 = 15, 000

and b is the better a. Generate the values of sequence for n = 1, 2, . . . , 10, and store all the values (including

y0) in an array called y. Do not delete any of the content of your Lab01 YourLastName.m file to generate your

new model. However, you can change your graph to plot the original data and your new model instead of

the problematic model proposed above. Save a copy of the graph display the model you decide is “best” as

Lab01GraphB YourLastName.jpg.

4. Submit:

• 1 script file (Lab01 YourLastName.m)

• 2 image files (Lab01GraphA YourLastName.jpg and Lab01GraphB YourLastName.jpg)

• 1 output file (Lab01 YourLastName.out)

• 1 paragraph containing an explanation of why the original computation of a was a poor parameter choice

for this model, a description of your method for finding a better estimation of the parameter value a, the

final parameter value you decided upon, and what criteria you used for deciding that particular parameter

value is “better” than other choices.


	Tour of Matlab 
	Create a Script M-file
	Generate a Graph
	Write a For-Loop

