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In this module1 we introduce and explore the structure of random regular graphs. More-
over, we compare the predictions of SIR-models on random regular contact networks with
the predictions of corresponding models on Erdős-Rényi networks.

1 Random regular graphs

A graph G is k-regular if every node has the same degree k. Graphs that are k-regular for
some k are called regular.

Let us look at some examples. Open IONTW, click Defaults, and set

num-nodes: 5

After clicking New you will see a picture of the complete graph K5 in the World
window. In this graph each node i has degree ki = 4; it is a 4-regular graph. More
generally, for every N the complete graph KN with N nodes is N − 1-regular.

Now choose

network-type → Empty Graph

and click New again. You will see the empty graph K̄5. Each node in an empty graph
has degree 0. Empty graphs are 0-regular.

For a third example, choose

network-type → Nearest-neighbor 1
num-nodes: 10
d: 2

After clicking New you will see a one-dimensional nearest neighbor graph in the World
window. These graphs are denoted here by G1

NN (N, d); the one that is displayed in your
World window is G1

NN (10, 2). It is a 4-regular graph. You may want to look at the 2-regular
graph G1

NN (20, 1) and the 6-regular graph G1
NN (20, 3) by changing

network-type → Nearest-neighbor 1
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num-nodes: 20
d: 1, 3

Notice that all regular graphs that we have looked at so far have a very rigid structure.
Now suppose empirical data on a large contact network of N hosts indicate that every node
has degree k, but that otherwise there does not seem to be a discernible structure to the
contacts. How should we model disease transmission on such a network? If, for example,
k = 4, then using G1

NN (N, 2) as a model of the (only partially known) contact network
would be dangerous. While G1

NN (N, 2) is a 4-regular graph with the same number of nodes
and degree distribution as the contact network, it has a very special structure that seems to
be absent in the contact network. As we will see in the forthcoming module on clustering
coefficients, this structure may strongly influence the dynamics of disease transmission and
give misleading predictions about transmission on the actual contact network. To be on
the safe side, we want to base our model of disease transmission on networks that assume
nothing beyond the empirically verified property that the degree of each node is k.

In the module Exploring contact patterns between two subpopulations we have introduced
a general construction of a random graph GSQ(N, k̄) that gives instances with a specified
degree SeQuence k̄ = (k1, . . . , kN ). In all other respects, these graphs are completely
generic. Here we will use this construction for the special case when k̄ = (k, . . . , k), that
is, when ki = k for all i. The resulting graphs GSQ(N, k̄) are k-regular but otherwise
completely random. They will henceforth be denoted by GReg(N, k) and called random
(k-)regular graphs.

To illustrate this construction, consider a population of 40 residents of the U.S., each of
whom is married to another person in this population. Assume that we list the population in
increasing order of their Social Security numbers. Let Gspouse be the graph that represents
marital relationships in this population by edges. The information that we have given you
allows you to deduce that Gspouse is a 1-regular graph, but not to whom host 10 is married.

Now choose the following parameter settings:

network-type → Random Regular
num-nodes: 40
lambda: 1

After clicking New you will see an instance of GReg(40, 1). Note that the input field
lambda controls the parameter k in the construction of GReg(N, k). Think about the graph
in the World window as representing the information about the graph Gspouse that we gave
you above. Click Labels and see to whom host 10 is supposed to be married. Now click
New a few more times and see how the graph, and the spouse of host 10, will change from
instance to instance. Would it be fair to say that the construction of GReg(40, 1) embodies
only the information that we gave you about the graph Gspouse?
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2 The connected components of random regular graphs

This part of the module is more theoretical and will be of interest primarily to students of
mathematics. It can be skipped entirely or in part by students who are primarily interested
in disease transmission.

It is interesting to compare the expected properties of GReg(N, k) and GER(N, k). The
mean degree is k in both GReg(N, k) and GER(N, k). But in an Erdős-Rényi random graph
GER(N, k) only the mean degree is equal to k; for individual nodes the degree may be larger
or smaller. One might think though that in other respects GReg(N, k) and GER(N, k) should
be quite similar, but it turns out that there are important differences.

One important difference is that while Erdős-Rényi random graphs GER(N, k) can al-
ways be constructed when k ≤ N − 1, random regular graphs GReg(N, k) do not exist for
some choices of k < N .

Open IONTW, click Defaults, move the speed control slider to the extreme right, and
use the following parameter settings:

network-type → Random Regular
num-nodes: 10
lambda: 5

Click New to create an instance of GReg(10, 5). Now change

num-nodes: 11

and click New again. The World window will stay blank and the Command Center
will display an error message. Experiment with various combinations of even and odd
values of num-nodes and lambda to see when you get a network and when you get an
error message.

Exercise 1 Why is it impossible to have a k-regular graph with N nodes when both k and N
are odd?

Erdős-Rényi random graphs GER(N,λ) with λ > 1 are predicted to contain a giant
component that comprises about %(λ)N nodes. Recall from our module Exploring Erdős-
Rényi random graphs with IONTW that %(1.5) = 0.5828, %(2) = 0.7968 and %(3) = 0.9405.
As a warm-up, let us remind ourselves how we can test these predictions with IONTW.
Choose the following parameter settings:

model-time: → Discrete
infection-prob: 1
end-infection-prob: 1
network-type → Erdos-Renyi
num-nodes: 200
lambda: 2
auto-set: On

Use New to create a network and make sure that it gets initialized to one infectious
node in an otherwise susceptible population. After you click Go, the nodes in the connected
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component of the initially infectious node j∗ will turn grey. Run about 10 simulations. Use
New to create a new network for each of them. See how the theoretical predictions match
what you see in the World window and Disease Prevalence plot at the end of each.
Then set

lambda: 3

and run 10 simulations as before. Do you see a clear distinction between a giant con-
nected component and small connected components? Did you observe any moderate-sized
components?

Now we are ready to explore random regular graphs. SinceGER(200, k) andGReg(200, k)
will have roughly the same mean degree k and the connectivity is supposed to be random
in respects other than the restriction on the degree distribution, one might expect that the
structure of these two types of random graphs should be similar. In particular, one might
expect similar distributions of the sizes of the connected components.

Let’s explore whether this prediction holds up. Choose

network-type → Random Regular

and keep all other parameters fixed. This will set up a graph GReg(200, k), where k
corresponds to the input parameter lambda. Repeat the previous experiments in this
subsection, first with k = 3 and then with k = 2.

Are your observations similar or are they different from what you observed for Erdős-
Rényi random networks?

It will be better to collect more data to make sure that what you saw is not a fluke.
Using the template that is provided in the instructions for the modules at this web site,
conduct two batch processing experiments of 100 runs each for GReg(200, k) with k = 2, 3
that record the numbers of removed nodes at the end of each run. For these experiments,
keep auto-set switched On and use

Measure runs using these reporters:
count turtles with [removed?]

length(item 0 conncomp)

Setup commands:
new-network

compute-shortest-paths

Be sure to retain your data for further analysis.

Exercise 2 (a) Sort the data from the lowest to the highest values in the output column
count turtles with [removed?].

(b) Describe the observation in terms of the distribution of the sizes of the connected com-
ponent of the randomly chosen initially infectious node j∗.

(c) The data in the last output column, length(item 0 conncomp), give you the sizes of
the largest component. How are they related to the data in the column that you analyzed in
point (b)? Describe the distribution of the data in this column.
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(d) Compare your observations with the theoretical predictions for Erdős-Rényi random
graphs: Does it appear to be the case that in the graphs GReg(200, k) for k = 2, 3 there is
a dichotomy between many very small components in addition to one giant component that
comprises roughly a fixed fraction of all nodes?

In Exercise 2 you almost certainly observed significant discrepancies between the sizes
of the connected components of a randomly chosen node j∗ in graphs GReg(N, k) and the
predictions of these sizes for GER(N, k) that were discussed in our module Exploring Erdős-
Rényi random graphs with IONTW at this web site. For k ≥ 3 it can be proved that the
graphs GReg(N, k) will a.a.s. be connected, so that the largest component encompasses the
entire graph(see, for example, Section 7.6 of [1]). Is this consistent with your observations
for GReg(200, 3) in Exercise 2?

In Section 1 you already looked at instances of GReg(N, 1) and saw that all connected
components have size 2. Again, this is different from the picture for GER(N, 1), where many
isolated nodes are predicted and the size of the largest connected component should scale
proportionally to N2/3 [1, 8].

The most interesting case occurs for k = 2. Let us explore a few small instances. Use
the following parameter settings:

network-type → Random Regular
num-nodes: 7
lambda: 2
auto-set: Off

Click New repeatedly and look at about 20 instances of GReg(7, 2).

Exercise 3 (a) Are all the graphs that you see connected?

(b) Explain why each of these graphs must be a disjoint union of cycles.
(c) Find the possible sizes of the connected components of GReg(7, 2) and GReg(200, 2).

It is not immediately clear though what the exact distribution of the sizes of these
components of the largest component of GReg(N, 2) should be. In fact, there are several
different methods for generating instances of random regular graphs, and the answer may
depend on which particular method is used. Different methods for generating random graphs
with specified degree sequences, and in particular, random regular graphs, are reviewed in
[5, 6].

IONTW performs a Markov Chain Monte Carlo edge switching procedure [7] to ran-
domize and get an approximate uniform realization after first constructing the graph using
Havel-Hakimi algorithm [2, 3]. Now look again at the data that you collected for Exercise 2.
These data give you an idea about the distribution of the sizes of the connected component
and the largest connected component for this method of generating GReg(200, 2).
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3 Disease transmission on random regular networks

Now let us explore the spread of infectious disease on random regular graphs. As a warm-up,
let us first revisit our old friends, the Erdős-Rényi graphs GER(200, 2).

Open IONTW, click Defaults, move the speed control slider to the extreme right, and
use the following parameter settings:

model-time → Discrete
infection-prob: 0.75
end-infection-prob: 1
network-type → Erdos-Renyi
num-nodes: 200
lambda: = 2
auto-set: On

This sets up a next-generation SIR-model. In Module 6 of [4] we found that for next-
generation SIR-models the predictions for the spread of infections on Erdős-Rényi contact
networks were practically identical to the predictions under the uniform mixing assumption
for the given value of R0.

Use New to create a network and then click Metrics. Scroll up the Command Center
to look up R0 and verify that R0 for our model is reasonably close to 1.5.

If everything seems fine, we are ready to Go. We would expect to see minor outbreaks
about 42% of the time and major outbreaks with final size near %(1.5) = 0.5828 about 58%
of the time. Do a few runs to see whether this works out as expected.

Now set

lambda: 3
infection-prob: 0.5

This should give the same value R0 ≈ 1.5. Check by clicking New and then Metrics,
do a few test runs, and see whether the predictions still seem to play out as expected.

Now choose

network-type → Random Regular

and retain all other parameter settings. Check with New and Metrics that R0 ≈ 1.5.
Before we run any simulations, let us take a minute to think what we should expect:

R0 = 1.5 is the same as previously; so is the mean degree 〈k〉 = 3. Thus we might
perhaps get similar results as for Erdős-Rényi networks. But in view of the results that
were discussed in Section 2, we would also expect the connected component of the index case
to be the entire graph. Perhaps this might cause more frequent and larger major outbreaks
on networks GReg(200, 3) than on networks GER(200, 3)? Let’s see.

Run about 10 exploratory simulations and observe what is going on in the World
window and the Disease Prevalence plot. Are your observations consistent with your
expectations? If not, check whether all parameter settings are as specified. If not, correct
and run another 10 exploratory simulations. Do you still not see what one might expect?
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Let’s get serious and run a batch of 100 simulations with these settings. Follow the
template that is provided in the instructions for using our modules at this web site to define
and run a New batch processing experiment for the current parameter settings. Use the
following specifications:
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network

Exercise 4 (a) Sort your output columns from lowest to highest.

(b) Do you see a distinct gap between major and minor outbreaks? Do you see many
outbreaks with final size near 0.58?

(c) Does the structure of GReg(N, 3) appear to make outbreaks larger or smaller relative to
what we might predict for GER(N, 3)?

(d) Does the structure of GReg(N, 3) appear to make outbreaks larger or smaller relative to
what we might predict under the uniform mixing assumption?

Puzzled? Let us see what happens in GReg(200, 2). Change the following settings:

lambda: 2
infection-prob = 0.75

Click New and the Metrics to verify that R0 = 1.5. Next repeat the exploratory
simulations in explorations that you had done prior to the batch processing experiment. Do
you observe any outbreaks that one might classify as “major?”

Now run a similar batch processing experiment for the current settings as you had done
for Exercise 4. Be sure to either create a New experiment or to edit the value for both
"lambda" in the dialogue window.

Exercise 5 (a) Sort your output columns from lowest to highest.

(b) Do you see a distinct gap between major and minor outbreaks? Do you see many
outbreaks with final size near 0.58?

(c) Does the structure of GReg(N, 2) appear to make outbreaks larger or smaller relative to
what we might predict for GER(N, 2)?

(d) Does the structure of GReg(N, 2) appear to make outbreaks larger or smaller relative to
what we might predict under the uniform mixing assumption?

What is going on here? Try to find an explanation for the observed discrepancies between
the predicted spread of the infection on GER(200, 3), GER(200, 3) and the observed pattern
for GReg(200, 3), GReg(200, 2). We will give the explanation in the forthcoming module on
the so-called replacement number.
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