Lab 1: Introduction to Biology 480 Lab

Bori Mazzag

Jan. 18, 2011

Introduction

2 Modules (some introductory examples)

Biomechanics

- Biomechanics
- Neurophysiology

- Biomechanics
- Neurophysiology
- Neuroanatomy

- Biomechanics
- Neurophysiology
- Neuroanatomy
- Signaling networks

Nature Reviews | Drug Discovery

- Biomechanics
- Neurophysiology
- Neuroanatomy
- Signaling networks
- Gene sequence analysis

- Biomechanics
- Neurophysiology
- Neuroanatomy
- Signaling networks
- Gene sequence analysis

Goal of the labs: familiarize you with software and basic computational approaches to the mathematical problems we will study.

Biomechanics

- Plotting functions (Winplot, Excel)
- Basics of Matlab
- Write simple Matlab scripts to plot a function

Neurophysiology

- Solving differential equations (pplane)
- Solving ODEs with Matlab (built-in solvers, numerical algorithms)
- Phase-plane analysis and bifurcations (pplane, Xpp)
- Example of solving a differential equation

Neuroanatomy

- Turning graphs into a matrix (example)
- Matrix-vector and matrix-matrix operations
- Modify and write Matlab scripts to quantify a graph

Large signaling networks

- Simulating a large system of equations (connections: graph theory and ODEs)
- Sensitivity analysis, dependence on parameters
- Matlab and Simbiology (Matlab toolbox - show example)

Nature Reviews | Drug Discovery

Gene sequence analysis

- Computational algorithms for searching a database
- Algorithms for local and global sequence alignment
- Matlab: bioinformatics toolbox

