ABOUT THE LAB:

The main goal of this lab is to familiarize you with a Matlab. A number of on-line resources are also given to you as a reference for future labs. We will complete Exercise 1 together. You will need to turn in your responses to Exercise 2 on Moodle.

EXERCISES:

Exercise 1. We will do this exercise together. You will not turn in your work from this exercise.

- (a) Getting help in Matlab online resources, "help" and "lookfor".
- (b) Operations on scalars (and order of operations).
- (c) Defining vectors and matrices, finding rows, columns and portions of matrices.
- (d) Some matrix operations.
- (e) Graphing functions and editing graphs.
- (f) Writing if- for- and while-loops.
- (g) User-defined Matlab functions.
- (h) A few words about turning in your work.

Exercise 2. In the paper "Biomechanics of quadrupedal walking: how do four-legged animals achieve inverted pendulum-like movements?" (Journal of Experimental Biology 207, 3545-3558 (2004)) Griffin, Main and Farley derive a model of displacement of the center of mass given by the following formula:

$$z_{com} = M_h \cos(\omega t) + M_f \cos(\omega t - \theta').$$

In this formula, M_h and M_f refer to the fraction (0-1) of the hind and fore pendulum, respectively. The constant, ω denotes the pendulum frequency and θ' is the phase-shift between the hind and fore pendulums.

(a) Plot z_{com} as a function of time of $M_h = 0.7$, $M_f = 0.3$, $\omega = 1$ (1/s) and $\theta' = 2$. Label your axes and give your figure a title.

(b) Vary the phase-shift, θ' between the hind and fore pendulums. Plot 3 figures on the same graph for 3 values of θ' . (Indicate which values of θ' were used. Explain your figure.

(c) Using the baseline value of θ' , change the pendulum frequency. Again plot 3 curves on the same graph, label and again explain how z_{com} changes with θ' .

(d) Imagine that the fraction of of the hind and fore pendulum shifts during walking. Find the period of one step (using baseline values of ω and θ'). Assume that during the first half of the period (ie. while z_{com} is decreasing), M_f is decreasing from 1 to 0, then, as z_{com} increases, so does M_f . (Also assume that $M_h + M_f = 1$.) Plot z_{com} using these assumptions. (e) Write a Matlab function that for any values of ω and θ sets $M_f = 0.7$ when z_{com} is decreasing and $M_f = 0.3$ when z_{com} is decreasing and plots z_{com} . Include the function and a figure generated by your script as your response to this question.