Stem Cells Regenerative Medicine Signal Transduction

AMY SPROWLES, PHD LECTURER, DEPT. OF BIOLOGICAL SCIENCES

What are stem cells?

- Clonal
- self renewing entity
- multipotent and thus can generate multiple cell types.

Embryonic Stem Cells

 Appear day 5 as inner cell mass of blastocyst

• Pluripotent: able to differentiate into any of the three cellular germ layers:

• Will ultimately form entire embryo

http://embryology.med.unsw.edu.au/Notes/images/wk2.gif

Adult Stem Cells

- Single Cell that self renews and generates differentiated cells of multiple types
- Found in multiple tissue and organ types
 - Bone marrow
 - Muscle
 - o Brain
 - Internal Organs
 - o Skin
 - o Fat
 - o Eye
- Activated in response to tissue damage

5 Billion Blood Cells Produced/Day

Why Embryonic Stem Cells?

Difficult to obtain and expand most adult stem cell populations

- Difficult to procure eggs for SCNT and ethical concerns about cloning
- IPS cells may not be good candidates for regenerative medicine
- Need to increase genetic diversity among existing stem cell pool
- Need to understand basic developmental biology

Embryonic Stem Cell Culture

1984: Sir Martin Evans cultures mouse embryonic stem cells

- 1998: James Thomson cultures first human embryonic stem cell from the inner cell mass of a day 5.0 human blastocyst
- 2008: Human Embryonic Cultures Isolated from a single blastomere

J1 Murine Embryonic Stem Cell Cultures from the BIOL480 Stem Cell Class

Human Embryonic Stem Cell Lines Generated without Embryo Destruction

Young Chung,^{1,6} Irina Klimanskaya,^{1,6} Sandy Becker,¹ Tong Li,¹ Marc Maserati,¹ Shi-Jiang Lu,¹ Tamara Zdravkovic,² Dusko Ilic,³ Olga Genbacev,² Susan Fisher,^{2,4} Ana Krtolica,³ and Robert Lanza^{1,5,*}

http://www.scientificamerican.com/media/inline/65A632E6-0816-AD4F-AE94975827A78F8E_1.jpg

Cell Stem Cell 2008

ESC Behaviors are Regulated by a complex balance of antagonistic signaling pathways

Self Renewal

- Mainenance of Pluripotency
- Proliferation
- Inhibition of differentiation

Signal Transduction Cascades Regulate Cellular Behaviors

Figure 15-1 Molecular Biology of the Cell (© Garland Science 2008)

Uncontrolled Self Renewal/Cell Fate leads to Heterogeneous Tumors

Teratoma formation of BM-M-iPS cells derived from 21-month-old C57BL/6 mice.

© The Author (2011). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved

Journal of Molecular Cell Biology

Evidence Implicates Multiple Signaling Cascades in ES Self Renewal

Copyright © 2005 Nature Publishing Group Nature Reviews | Molecular Cell Biology

Stat 3 Activity Regulated at Many Levels

- Receptor Availability
- JAK Activation
- SHP2 (Src2 Homology Containing phosphatyrosine phosphatase protein)
- SOCS(Suppressor of Cytokine Signaling)
- PIAS3 (Protein inhibitor of activated Stat3)

Gp 130 Activation is required to maintain pluripotency of murine ESC in vitro

Nature Reviews | Neuroscience

Bauer et al. Nature Reviews Neuroscience 8, 221–232 (March 2007) | doi:10.1038/nrn2054

Figure 13-60 Molecular Biology of the Cell (© Garland Science 2008)

Figure 15-54 Molecular Biology of the Cell (© Garland Science 2008)

Walters, T. D. and Griffiths, A. M. (2009) Mechanisms of growth impairment in pediatric Crohn's disease Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2009.124

> nanire GASTROENTEROLOGY & HEPATOLOGY REVIEWS

Figure 4 Proposed mechanism for blockade of IL-6–STAT3 activation by GH

How is Stat3 Regulatory Activity Controlled to regulate ESC Self Renewal?

Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control

Alborz Mahdavi^{1,2}, Ryan E. Davey², Patrick Bhola², Ting Yin¹, Peter W. Zandstra^{1,2*}

1 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada, 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

Homo or Heterodimerization of gp130 Activates two Signaling Cascades

Figure 1 IL-6 activates the JAK/STAT pathway and the MAPK cascade

Representation of the two major pathways activated by IL-6-type cytokines. TF, transcription factor.

Heinrich et al 2003 Biochem J. 374 1-20

MAPK Signaling SHP/ERK Signaling Inhibits Self Renewal and Required for Differentiation

How are these Signaling Networks Controlled to Regulate Self Renewal/vs. Differentiation?

What is the consequence of loss of control?

The Cancer-Stem Cell Hypothesis

Each tumor contains a subset of cancer stem cells that are uniquely responsible for tumor growth, heterogenetity, and metastasis

Cancer Stem Cell is a single cancer cell that can form a tumor following transplantation

STAT3 Promotes Tumor Metastisis

Many components of MAPK signaling are oncogenes

Nature Reviews | Cancer

cJun

- An immediate early gene instrument in initiating the cell cycle primarily through the up-regulation of genes like Cyclin D1.
- Discovered as oncogenic variant, vJun
- It functions in many pathways involved in stem cell self renewal and cellular proliferation

Research Objectives

Test the role of cjun in embroyonic stem cell pluripotency and differentiation

Natalie Grace, Faith Gomes, Diqui Lapenta, Kelly Roelf

Test the role of pluripotency markers in cells overexpressing cJun variants

Lora Davis, Bryan Machado, Nate Meyer, Tawny Neal

Test the role of cjun in embroyonic stem cell pluripotency and differentiation

Hypothesis:

Oncogenic variants of the c Jun oncogene will help maintain the pluripotent state of murine embryonic stem cells

Alternative Hypothesis:

Oncogenic variants of the c Jun oncogene will lead to cellular differentiation of murine embryonic stem cells.

Methods

- Generate stable murine embryonic stem cell lines overexpressing cJun oncogenic and suppressive mutants
- Characterize the pluripotent state of each cell line as compared to normal murine embryonic stem cells
 Morphology
 - Expression of alkaline phosphotase
 - × Expressed in EMS cells
 - Expression of genes expressed in pluripotency
 - × Oct 4 & Nanog

• Characterize the differentiation potential of these cell lines

Test the role of pluripotency markers in cells overexpressing cJun variants

• Hypothesis 1:

Cells transformed by cJun will show upregulation of pluripotency markers

Hypothesis 2:

Cellular transformation by cJun requires expression of pluripotency markers

Methods

- Transform CEF cells with cJun variants
- Test for pluripotency markers
 - o Zic3
 - o cMyc
 - o Oct4
 - o Nanog
 - Telomerase
- Test role of pluripotency markers in cellular transformation

Nate Meyer 2010