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a b s t r a c t

Signal transducers and activators of transcription (STATs) comprise a family of several

transcription factors that are activated by a variety of cytokines, hormones and growth

factors. STATs are activated through tyrosine phosphorylation, mainly by JAK kinases,

which lead to their dimerization, nuclear translocation and regulation of target genes

expression. Stringent mechanisms of signal attenuation are essential for insuring appro-

priate, controlled cellular responses. Among them phosphotyrosine phosphatases (SHPs,

CD45, PTP1B/TC-PTP), protein inhibitors of activated STATs (PIAS) and suppressors of

cytokine signaling (SOCS) inhibit specific and distinct aspects of cytokine signal transduc-

tion. SOCS proteins bind through their SH2 domain to phosphotyrosine residues in either

cytokine receptors or JAK and thus can suppress cytokine signaling. Many recent findings

indicate that SOCS proteins act, in addition, as adaptors that regulate the turnover of certain

substrates by interacting with and activating an E3 ubiquitin ligase. Thus, SOCS proteins act

as negative regulators of JAK/STAT pathways and may represent tumour suppressor genes.

The discovery of oncogenic partner in this signaling pathway, more especially in diverse

hematologic malignancies support a prominent role of deregulated pathways in the patho-

genesis of diseases. Fusion proteins implicating the JH1 domain of JAK2 (TEL-JAK2, BCR-

JAK2), leading to deregulated activity of JAK2, have been described as the result of transloca-

tion. Somatic point mutation in JH2 domain of JAK2 (JAK2V617F), leading also to constitutive

tyrosine phosphorylation of JAK2 and its downstream effectors was reported in myelopro-

liferative disorders. Furthermore, silencing of socs-1 and shp-1 expression by gene methyla-

tion is observed in some cancer cells.
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1. Introduction

Cytokines are secreted glycoproteins, which regulate diverse

biological process through their interaction with multi-

subunit receptor complexes. Binding of cytokine to cell

surface receptors results in receptor oligomerization and

activation of the Janus Kinase (JAK) family of tyrosine

kinases [JAK1, JAK2, JAK3 and tyrosine kinase-2 (TYK2)].

Activated JAKs phosphorylate the cytoplasmic domain of the

receptor, thereby creating recruitment sites for signaling

proteins, such as STATs (signal transducers and activators of

transcription). STATs are phosphorylated by JAKs, dimerize

and subsequently migrate to the nucleus where they

regulate gene transcription. The pathways that convey

signals from the cell surface to the nucleus are tightly

controlled. At least three different classes of negative

regulators exist to limit the strength and duration of cytokine

responsiveness. These include protein tyrosine phospha-

tases, such as Src-homology 2 (SH2)-containing phospha-

tase-1 (SHP-1), CD45 and PTP1B/TC-PTP, protein inhibitors of

activated STATs (PIAS) and the suppressors of cytokine

signaling (SOCS). SOCS gene expression is rapidly induced

upon cytokine stimulation, and by a wide range of other

stimuli including LPS, insulin and chemokines.
Fig. 1 – Schematic representation of JAK2, somatic point mutati

proteins. Proteins are represented with their functional domain

to coiled-coils, shaded box on TEL to oligomerization domain).

corresponding to the kinase and the pseudokinase domain res
A number of diseases including cancer are linked to

deregulation of tyrosine kinases. Constitutive activation of

JAK2 and STATs are believed to mediate neoplastic transfor-

mation and promote abnormal cell proliferation in various

malignancies.

In this review, we will discuss a number of deregulation of

tyrosine kinase JAK2 associated with hematopoietic neoplasia

and will focus on inducible negative regulators and their

implication in oncogenesis.

1.1. JAK/STAT signaling pathways

JAK tyrosine kinases play critical roles in cytokine signaling in

haematopoietic cells. Activation of JAKs occurs as a conse-

quence of ligand-induced aggregation of receptor-associated

JAKs and their subsequent autophosphorylation. JAKs are

involved in the signal transduction of type I receptors (i.e. for

IL2, IL3, IL4, IL5, IL6, IL7, IL13, GM-CSF, GH, PRL, EPO and TPO)

as well as of type II cytokine receptors (for IFN-a, -b, -g). Four

human JAKs have been identified: JAK1, JAK2, JAK3 and TYK2.

JAKs share common domains, termed JAK homology (JH)

domains 1–7, numbered from the C- to the N-terminus (Fig. 1).

The JH7 domain associates with the proline rich conserved

region in cytokine receptors termed Box1, while the JH1
on of JAK2, TEL-JAK2, BCR-JAK2, and PCM1-JAK2 fusion

s and motifs (grey boxes on PCM1 and BCR correspond

JH1–7 are the different domain of JAK2, with JH1 and JH2

pectively.
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Table 1 – Molecular abnormalities of regulators of JAK/
STAT pathways frequently detected in myeloprolifera-
tive disorders

Molecular
abnormality

Disease

PTPN11 mutations Juvenile myelomonocytic leukaemia

(JMML) [39] Myelodysplastic syndrome

(MDS) Chilhood acute myeloid

leukaemia (AML)

Loss of PIAS3

expression

Anaplastic lymphoma kinase-positive

T/null-cell lymphoma (ALK+ TCL) [52]

Loss of PIASy

expression

Myelodisplastic syndrome (MDS) [53]

Mutations of socs-1 Primary mediastinal B-cell lymphoma [101]

Loss of SOCS-1

expression

Primary mediastinal B-cell lymphoma [102]
domain carries the catalytic phosphotyrosine kinase domain

[1]. The function of JH2 domain, which is a pseudokinase

domain, is not completely defined, but there is growing

evidence that it regulates both the basal activity of the JAK

kinase and receptor induced activation of the catalytic

function [2]. The JH3–JH4 region shares some similarity with

SH2 domains but lacks phosphotyrosine binding ability, and

the JH4–JH7 region constitutes the band 4.1 domain [also

known as FERM domain (four-point-one, Ezrin, Radixin,

Moesin)] [3,4]. The FERMdomain is involved in the interactions

between JAKs and other kinases. The only JAK family member

known so far to be involved in human leukaemia is JAK2

(Table 1).

Two fusion genes that involve the JH1 domain of JAK2 have

been described, the first one being ETV6/TEL-JAK2, which

arises as a consequence of a t(9;12) in patients with chronic

myeloproliferative diseases or acute lymphoblastic leukae-

mias [5,6]. The second one BCR-JAK2 was observed in a single

individual with atypical chronic myelogenous leukaemia

(CML) [7]. The amino-terminal region of TEL contains the

pointed (PNT) domain, whichmediates oligomerization of TEL

fusion proteins [8]. Similarly, BCR has been shown to contain

an oligomerizationmotif which is required to activate the BCR

fusion proteins [9]. Another translocation fuses the PCM1 gene

to the JAK2 gene in patients with atypical CML and related

myeloproliferative disorders, but in this case the PCM1-JAK2

fusion protein implicates the JH1 and JH2 domain of JAK2

[10,11] (Fig. 1).

JAK2 kinase has been also described to be activated as the

result of somatic point mutation in JH2 domain (Val617Phe) in

myeloproliferative disorders (MPD) (such as polycethemia

vera (PV), essential thrombocythemia (ET) or myelofibrosis

with myeloid metaplasia (MMM), atypical MPD and myelo-

proliferative syndrome [12–17]) (Fig. 1). The pseudo kinase

suppressed basal JAK2 activity by lowering the Vmax of the

kinase domain but does not affect the Km value. Three

inhibitory regions, namely IR1 (residues 619–670), IR2 (725–757)

and IR3 (758–807), have been defined in the pseudokinase

domain [2]. Val617 is just N-terminal to IR1 and is conserved in

JAK2 ortholog of various animals from fish, frog, bird to mice

[17]. One canpredict that the replacement of Val by Phe in JAK2

should cause major conformation changes. This may disrupt

the inhibitory function of the pseudokinase domain and thus

cause deregulation of the kinase domain. Functional analysis
demonstrates that this mutation confers cytokine-indepen-

dent growth in vitro, deregulates signaling pathways down-

stream of JAK2 and causes autonomous proliferation in a

murine model.

Fused to a ‘‘dimerizing’’ protein such as TEL, BCR or PCM1,

JAK2 is probably more strongly activated than that which

occurs as a consequence of Val617Phe mutation. This dimer-

ization leads to diseases such as acute leukaemia or CML

which are more aggressive than PV or ET. The chromosomal

region containing JAK2 gene has been also described to be

amplified in Hodgkin’s lymphomas [18].

In normal physiological conditions, activated JAKs phos-

phorylate additional targets, including both the receptor itself

and the STATs. STATs are latent transcription factors that

reside in the cytoplasm until they become activated by

tyrosine phosphorylation. Activated STATs rapidly translo-

cate into the nucleus, where they bind to specific sequences in

the promoter regions of their target genes and stimulate their

transcription [19]. STATs, like many signal-responsive tran-

scription factors, are found to be regulated by coactivators

belonging to the histone acetyl transferases involved in

chromatin remodelling [20,21]. The terminal transactivation

domain of some STATs contains a serine residue that can

modulate the transcriptional activity of STAT [22] and seems

to be important in coregulator recruitment, which interacts

either directly or through other coactivator proteins [23,24].

The role of constituvely activated STATs, particularly

STAT3 and STAT5, in cellular transformation has been

established by in vitro and in vivo studies and is extensively

reviewed elsewhere [25 and references herein]. The mechan-

isms by which activated STAT can promote tumourigenesis,

appear to be involved at least in part, in deregulated cell

growth and/or prevention of apoptosis [26]. Activated STAT3,

observed in ovarian cancer cell, is localized not only to nuclei

but also to focal adhesion in these cells and may therefore

contribute to enhanced cell invasiveness [27]. The reports that

STAT1-deficient mice develop spontaneous and chemically

induced tumours more rapidly compared to wild-type mice

and that STAT1-deficient cells are more resistant to agents

that induce apoptosis strongly support the argument that

STAT1 acts as a tumour suppressor [28].
2. Regulation of STAT activity

2.1. Constitutive suppressors

2.1.1. Tyrosine phosphatases
As STATs are activated by tyrosine phosphorylation, phospho-

tyrosine phosphatases are likely to play a role in STAT

deactivation. Three families of tyrosine phosphatases are

implicated in negative regulation of JAK/STAT signaling

pathways.

The first to be described were the SH2-containing tyrosine

phosphatases that include SHP1 (previously named PTP1C)

and SHP2 (previously named PTP1D). These phosphatases are

characterized by the presence of two SH2 domains N-terminal

of the canonical 250 amino-acid-long tyrosine phosphatase

domain. These enzymes are mainly cytoplasmic; their SH2

domains allow associationwith phospho-tyrosines present on
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activated receptors or on signaling molecules as well as on

activated JAKs. This association triggers activation of the

phosphatase domain and the subsequent dephosphorylation

of the substrate. In case of a receptor, STATs will no longer be

recruited to it and thus will no longer be phosphorylated and

activated. SHP1 ismainly expressed in hematopoietic cells but

it is also present in epithelial or smooth muscle cells [29], as

opposed to SHP2 which is ubiquitously expressed. SHP1and

SHP2 shared 55% homology at the protein level. Mice deficient

for SHP1 display important immunological and hematopoietic

dysfunctions, and hyperphosphorylation of JAK1 and JAK2

following IFNa, GH or EPO treatment was observed. This gene

is frequently altered in cancer cells. Hypermethylation of

normally unmethylated CpG islands of tumour suppressor

genes is associated with transcriptional silencing and thus is

assumed to play an important role in cancer development and

progression [30,31]. High-frequent silencing of haematopoietic

cell-specific protein tyrosine phosphatase shp-1 gene by

promoter methylation was detected in various kinds of

leukaemia and lymphomas [32,33], myeloma [34] and acute

myeloid leukaemia [35].

Deletion of SHP2 gene is embryonic lethal for mice, thus

revealing a major role for SHP2 in development. SHP2 can

inhibit signaling from IL6 and gp130-containing receptors, but

SHP2 can also function as a positive factor by stabilizing JAK2

protein or inducing src kinase activation [36]. Mutations of

SHP2 (PTPN11), occur in �50% of individuals with Nooman

syndrome. Some of these patients develop myeloproliferative

disease, which usually resolves but can develop into leukae-

mia (Table 1) [37–39]

The second type of tyrosine phosphatase that was reported

to negatively affect JAK/STAT signaling pathways is the

transmembrane tyrosine phosphatase CD45. CD45 is

expressed in hematopoietic cells [40]. It exhibits two phos-

phatase domains in its intracellular part, but only one seems

to be active. CD45 regulates T-cell and B-cell antigen receptor

signals in T and B lymphocytes [41]. Mice deficient for CD45

show hyperactivation of JAK1 and JAK3, associated with a loss

of antigen responses in T and B lymphocytes. However, CD45

has no major effect on cytokine signaling. Moreover, both the

SHPs and CD45 do not directly associate with the JAK kinase

domain, suggesting that other tyrosine phosphatases may

deactivate the JAKs.

The PTP1B (Phospho-Tyrosine Phosphatase 1B) and TC-PTP

(T Cell Protein Tyrosine Phosphatase) tyrosine phosphatases

show great similarities in their catalytic domain. PTP1B is

expressed in many tissues and is located on the cytosolic face

of the endoplasmic reticulum due to a hydrophobic sequence

at its C-terminal end [42]. TC-PTP ismainly hematopoietic and

alternative splicing of its gene allows expression of two

distinct proteins, a p45 nuclear form called TC45 or TC-PTPa,

and a p48 cytoplasmic form called TC48 or TC-PTP1b. Both

PTP1B and TC-PTP selectively recognize a motif centered on

the characteristic double tyrosine residues present in the JAK

activation loop, but each exhibits different specificity for

surrounding residues: PTP1B only interacts with the D/E-

pYpY-K/R sequence present in JAK2 and TYK2 while TC-PTP

interactswith theD/E-pYpY-T/V sequence present in JAK1 and

JAK3. This interaction leads to selective JAK dephosphoryla-

tion and subsequent deactivation. In addition, the nuclear
TC45/TC-PTP1b is responsible for deactivation of nuclear

STAT1 and STAT3, and probably also STAT5 [43]. In accor-

dance with these observations, mice deficient for PTP1B

showed hyperphosphorylation of JAK2, while the absence of

functional TC-PTP in mice induces anemia and splenomegaly

responsible for perinatal death of the animals.

2.1.2. Protein inhibitors of activated STATs (PIAS)
Mammalian protein inhibitors of activated STAT (PIAS) were

initially identified as negative regulators of STAT signaling.

The PIAS family consists of PIAS1, PIAS3, PIASx and PIASy

(for review see [44]). Recent studies indicate that PIAS have a

small ubiquitin-like modifier (SUMO)-E3-ligase activity (for

review see [45]). Co-immunoprecipitation assays have shown

that PIAS3 and PIASx interact with STAT3 and STAT4

respectively, while PIAS1 and PIASy are able to interact with

STAT1 [45]. These PIAS-STAT interactions negatively regulate

the activity of the specific STAT(s) in the complex. It seems

that the SUMO E3 ligase activity of STAT is not implicated in

the regulation of STAT. It has been proposed that PIAS1 and

PIAS3 function by blocking the DNA binding activity of STAT1

and STAT3 respectively [46,47]. In contrast PIASx and PIASy

repress the transcriptional activity of STAT1 and STAT4 by

recruiting corepressormolecules such as histone deacetylases

(HDACs) [48,49]. Gene-targeting studies in mice have been

carried out to understand the physiological functions of PIAS

proteins in cytokine signaling. Pias1�/� mouse embryonic

fibroblasts showed an unexpected specificity in gene regula-

tion. After stimulation by IFN, the removal of PIAS1 results in

the increased expression of only some IFN-induced genes [50].

It has been shown that the differential effect of PIAS1 on the

binding of STAT1 to the promoters of STAT1 target genes

contributes to the observed PIAS1 specificity. PIAS1 has more

profound effects on genes containing weak STAT1-binding

sites than on genes containing a strong STAT1-binding site. In

contrast no alteration of IFN responsive geneswas observed in

piasy�/� cells which can be the result of redundancy in PIAS

proteins [51].

Cells derived from patients with anaplastic lymphoma

kinase-positive T/null-cell lymphoma which express the

nucleophosmin (NPM)/ALK chimeric kinase as the result of

a translocation show continuous activation of STAT3 due to

the loss of PIAS3 (Table 1) [52]. Furthermore DNA microarray

analysis indicate that piasy is active in normal hematopoietic

stem cells (HSC) or pluripotent stem cells in the indolent stage

ofmyelodysplastic syndrome (MDS), but that the expression of

the gene is suppressed in the cells on transition to the

advanced stage of MDS (Table 1) [53]. This indicates that the

loss of piasymay therefore contribute directly to the growth of

MDS blasts and stage progression.

2.2. Inducible suppressors: suppressors of cytokine
signaling (SOCS) proteins

In addition to the constitutive negative regulators of cytokine

signaling, the inducible SH2 containing proteins belonging

to the SOCS family have been described. Cytokine-inducible

SH2 containing protein (CIS) was the first member of the

family identified, as an immediate-early gene product

induced by IL-2, IL-3 and EPO [54]. CIS then binds to
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phosphorylated Y401 of the EPO receptor, the binding site for

STAT5, thereby suppressing STAT5-mediated signaling [55].

Subsequently, three groups identified a protein similar to CIS,

termed Suppressor of cytokine signaling-1 (SOCS-1), JAK-

Binding protein (JAB), and STAT-induced STAT Inhibitor-1

(SSI-1) [56–58]. SOCS proteins are a family of at least eight

members which bind through their SH2 domain to phospho-

tyrosine residues either in cytokine receptors (in the case of

SOCS-2, SOCS-3, and CIS) [54,59,60] or JAKs (in the case of

SOCS-1) [57]. They can suppress cytokine signaling either by

inhibiting the activity of JAKs, or by competition with STATs

for phosphorylated docking sites on the receptors, or by

targeting bound signaling proteins to the ubiquitin protea-

some pathway through the SOCS box, which is part of an E3

ubiquitin ligase [61]. Thus, the SOCS box may act as a bridge

between SOCS-SH2 interacting proteins and E3 ubiquitin

ligase, and regulate protein turnover by targeting proteins for

polyubiquitination and proteasome-mediated degradation.

SOCS-1 can ubiquitinate and regulate the half life of VAV [62],

of JAK [63–65], the IRS1 and IRS2 adaptor proteins [66]. It has

been observed that SOCS proteins also promote polyubiqui-

tination and degradation of Focal Adhesion Kinase (FAK) in a

SOCS box-dependent manner and inhibit FAK-dependent

signaling events [67].

The level of SOCS-1 seems to be tightly controlled at

different level. Transcription of socs-1 mRNA is rapidly

induced by many cytokines. The presence of GAS elements

in the proximal region of CIS, SOCS-1 or SOCS-3 promoters has

been described by several laboratories, the implication of the

activated STAT in their regulation has been shown upon EPO,

IFN and IL-4 stimulation [68–71].

It has been also reported that SOCS-1 protein stability is

tightly regulated. Stabilization of SOCS proteins by inhibitors

of the proteasome, suggests that cells may regulate SOCS-1

level through the proteasome pathway [72]. Association of

Elongin BC and the SOCS box has been suggested to alter the

stability of the SOCS-1 protein. A recent report indicates that

SOCS-1 is found to colocalize and biochemically copurify with

the microtubule organizing complex (MTOC) and its asso-

ciated 20S proteasome. SOCS-1 may target JAK1, in a SH2

dependent manner, to a perinuclear location resembling the

MTOC-associated 20S proteasome, this observation was only

shown in the case of overexpression of the two proteins SOCS-

1 with JAK1 [73]. Phosphorylation by PIM kinases prolongs the

half-life of the SOCS-1 protein and potentiates the inhibitory

effect of SOCS-1 on JAK-STAT activation [74].

SOCS-1 may function as a tumour suppressor gene and its

down regulation may contribute to tumour progression [75].

Overexpression of SOCS-1 suppresses the growth of cells

transformed either by an oncogenic form of the KIT receptor

or by the TEL-JAK2 fusion protein, but implicates different

function of SOCS-1 proteins, since the presence of SH2

domain of SOCS-1 is required for the inhibition of TEL-JAK2,

whereas it is not required for the inhibition of KIT [76]. Direct

transcriptional repression of the socs-1 tumour suppressor

gene by proto-oncoproteins has been described either for the

transcriptional repressor GFI-1B [77] or the transcription

factor ETS-1 [71]. More recently it has been shown that the

hepatitis C virus (HCV) core protein down regulates the

expression of socs-1 gene, by interfering with the intracel-
lular signaling pathway, and may thus contribute to the

pathogenesis in HCV infection including hepatocarcinogen-

esis [78].

In the exploration of the mechanisms underlying the

down-regulation of socs-1 gene, it has been reported that the

silencing of the socs-1 gene by hypermethylation is associated

with the development of hepatocellular carcinoma [79–81].

Methylation of CpG islands in the region of tumour suppressor

genes induces a block to transcriptional initiation. The sites

responsible for silencing tumour suppressor genes generally

reside in the promoter (or 50 UTR) region. However some

exceptional observations have been reported, where these

sites are located in exons or introns [82]. In the case of the socs-

1 gene, hypermethylation occurs also inside the translated

exon2. Subsequent studies found hypermethylation of socs-1

in different solid tumours [83–89] as well as in haematopoietic

diseases [90–97]. In most cases, the restoration of SOCS-1 in

cell lines suppressed cell growth. The inactivation of socs-1

gene by aberrant methylation leads, at least partially, to an

activation of effectors of JAK/STAT pathways [97]. The finding

that socs-1 is frequently silenced in malignancies, mainly as a

result of hypermethylation, reinforced the idea that socs-1may

function as a tumour suppressor gene. The expression of socs-

3, which shows the highest homology to socs-1, has also been

reported to be invalidated by methylation in hepatocellular

carcinoma. The loss of socs-3 expression confers cell advan-

tage in growth andmigration by enhancing JAK/STAT and FAK

signaling [98]. socs-3methylation is also frequently observed in

head and neck squamous cell carcinoma [99] and as for all the

previous described examples it is associatedwith activation of

the JAK/STAT pathway and of expression of downstream

target genes.

Recently, amplification of the JAK2 gene and constitutive

phosphorylation of JAK2 in primary mediastinal large B-cell

lymphoma (MedB-1 cell line) has been described [100]. The

constitutive activation is not associated with an overexpres-

sion at the protein level, but is due to delayed protein

degradation. This is caused by a biallelic mutation of SOCS-

1which abrogates SOCS box function of the protein [101]. Thus

the assumption is that mutated and loss of function of socs-1

might be the cause for sustained activation and low turnover

of JAK2. A large biallelic chromosomal deletion on 16p13.13

including the entire SOCS-1 gene was observed in Karpas

1106P, another primary mediastinal large B-cell lymphoma

cell line [102]. In addition the simultaneous loss of function by

gene methylation of shp-1 and socs-1 is observed in the

pathogenesis of myeloma [34].

Constitutive activation of JAK/STAT pathways or inactiva-

tion of negative regulators of JAK/STAT pathways is observed

in severalmyeloproliferative diseases. Although activation of

JAK/STAT pathways leads to enhanced expression of socs-1,

constitutive activation of JAK2 by either point mutation or by

fusion proteins exhibit transforming properties often linked

to STAT activation [5,75,103]. Escape from the SOCS-1

negative feedback could be due to the nature of the JAK2

fusion protein in which the JH1 conformation might be

different from the wild type JAK2. The connection between

aberrant activation of JAK/STAT pathways and silencing of

socs-1 is not demonstrated even though it is tempting to

speculate that the events leading to most aggressive
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pathologies might implicate at the same time deregulation of

positive and negative regulators of JAK/STAT pathways.
3. Conclusion

Negative regulation of signal transduction is necessary for an

appropriate cellular and physiological response to cytokine

stimulation. Over the past few years, several different

mechanisms by which cytokine signaling is attenuated have

been identified. The discovery of oncogenic partner in this

signaling pathway, more especially in diverse hematologic

malignancies supports a prominent role of deregulated

pathways in the pathogenesis of diseases. The functional

relationship between JAK2 activation and SOCS-1 hyper-

methylation remains speculative, but they may collaborate

in pathogenesis.
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