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In this module! we introduce a construction of generic random graphs for a given degree
sequence or degree distribution and explore whether mixing between hosts who belong to
different subpopulations is assortative or disassortative.

1 Introduction

Sometimes a population of hosts can naturally be partitioned into two or more disjoint
subpopulations that differ in certain characteristics. For example, the human population
can be naturally partitioned into the subpopulation of residents of different countries. People
in a given country tend to make more contacts with residents of the same country than with
residents of a different country. We say that the mixing pattern in this case is assortative.
On the other hand, when studying sexual contact networks, we would consider a partition
of the population into males and females. Since most sexual contacts are made between
members of different subpopulations for this partition, the mixing pattern in this case would
be disassortative.

Of particular interest in disease modeling are partitions into subpopulations that differ
by the the propensity of making contacts. In terms of the contact network we might consider
a partition into subpopulation A of all hosts 7 who have degree k; > © and subpopulation B
of all hosts ¢ who have degree k; < ©, where O is a suitably chosen threshold. For such
partitions it is less obvious than in the examples of the previous paragraph whether the
mixing pattern should be considered assortative or disassortative. In this module we will
explore one such example with IONTW and derive a mathematically rigorous condition for
making this distinction.
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2 Generic graphs for a given degree distribution

Suppose G is a given graph with vertex set V(G) = {1,...,N}. For each nonnegative
integer k, let @@ count the number of nodes ¢ with degree k, and let ¢ = % Thus Qg
represents the number of nodes with degree k, while g represents the proportion of nodes
with degree k. While the symbols @01, )2, @3 in other contexts may denote quartiles, here
they have a different meaning.

Since the maximum possible degree in any graph with N nodes is N — 1, the mean

degree (k) can be computed in this terminology as:
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As every edge contains two nodes, we have
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where #(E(G)) denotes the number of edges in the graph G. Thus (1) implies the following
useful expression:
(k) = QEN(G)‘, or, equivalently, (k)N =2|E(GQ)|. (3)

In instances of Erdés-Rényi random graphs Ggr(N, \), the degree distribution ¢ will
be close to binomial and can be approximated for large N by a Poisson distribution or
a normal distribution [1]. For many empirically studied contact networks, very different
degree distributions have been found. One would want to study disease transmission on
such networks by using different types of random networks with degree distributions that
more closely match the empirically observed ones. We present here a general construction
that gives random graphs whose degree distributions closely match a given one, but which
are generic in all other aspects.

Let us first assume we have N nodes and the degree k; of each node i is given. Let k =
(k1,...,kn) be the sequence of these degrees. A graph Ggso(N,k) with the given degree
SeQuence can be constructed as follows: First attach k; half-edges or stubs on each node 3.
Then randomly draw pairs of stubs, without replacement, and connect the pairs to form
actual edges.

Now assume that we are given only a probability distribution ¢ = (¢1,g2,...) of the
degrees of a random graph so that g represents the probability that the degree of a randomly
chosen node i is k, that is, P(k; = k) = ¢qx. Then we can construct a graph Gp(N,q)
with the given degree Distribution by first drawing k; randomly from this distribution,
independently for each 4, and then constructing Gp(N,q) = Gsq(N, k) for the resulting
sequence k of degrees.



This does not always work (think about a situation where we accidentally draw k; >
N — 1 or if >k turns out to be odd, so that (2) will be violated). Even for legitimate
degree sequences the construction is somewhat difficult to implement on a computer, as
we may sometimes draw two stubs of the same vertex or stubs for two vertices that have
already been connected earlier by an edge. These difficulties do not need to overly concern
us here as our goal is mathematical analysis of the resulting graph, not implementation.

3 Exploring an example with IONTW

Open IONTW, press Defaults and choose
network-type — Custom Distribution

Consider a small class of 10 students, 4 of whom are majoring in biology and 6 of whom
are majoring in math. Each of the math majors has exactly 2 friends in this class, and each
of the biology students has exactly 3 friends in this class. To create such a network with
IONTW, write two lines

degrees
[3333222222]

into a plain text file and save the file under the name degrees. txt in the same directory
in which you keep IONTW. In the World window a network with 10 nodes should appear.
Press Labels and figure out who are the math majors and how this info is coded in the file
degrees.txt. Repeat a few times by pressing Load and opening degrees.txt.

Do the networks that you see in your World window exhibit assortative or disassortative
mixing?

Actually, the networks that you create in this way should, on average, neither be assor-
tative nor disassortative. The reason is that it is an instance of Ggg(10, k), where k is the
degree sequence that you specified in the file degrees.txt. The code creates 3 stubs for
each bio major and 2 stubs for each math major and then combines them randomly into
edges, regardless of the major of the students that are represented by the nodes of each
stub. However, due to random fluctuations, each particular instance you actually see may
exhibit slightly assortative or slightly disassortative mixing. Let us figure out which is the
case for our particular instance that is displayed in Figure 1.

We had changed the labels by entering in the the following commands in the observer>
line:

3] [ set label "bio" ]
2] [ set label "math" ]

Let us count the three types of edges in the instance that we see in our World window:

ask turtles with [count link-neighbors
ask turtles with [count link-neighbors

3 edges of type {bio, bio}
6 edges of type {bio, math} (4)
3 edges of type {math, math}
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Figure 1: The graph of friendships between bio and math majors.

Now it certainly looks like this network might be disassortative as both the bio and the
math majors formed more friendships with a student who majors in the other field. But we
should not jump to conclusions too quickly. After all, there are more math majors in this
class that the bio majors could select their friends from, and the bio majors are more likely
to form friendships in the first place.

How would the proportions need to look like if the mixing were neither assortative nor
disassortitive? We could perhaps estimate these proportions by calculating means for many
instances that our software creates. But this would be very tedious. Let us instead try to
derive a formula by analyzing the construction of the random graphs Ggg(10, k).

It is worth considering this problem in a more general context. Suppose we have a large
population of size N that is partitioned into two disjoint subpopulations of bio and math
majors, of sizes B and M respectively. Moreover, assume that the degree of each node that
represents a bio major is k and the degree of each node that represents a math major is /.
Then the bio subpopulation would contribute Bk stubs and the math subpopulation would
contribute M/{ stubs. Let p = % denote the proportion of stubs attached to nodes that

represent bio majors, and let g = % denote the proportion of stubs attached to nodes
that represent math majors.

Exercise 1 Find the values of B, M, k,{,p and q for the degree distribution in our example
of Gsg(10,k).



Now consider how an edge is formed in the construction of Gsg(N,k): By randomly
drawing two stubs and joining them. The sampling needs to be done without replacement
here, which adds some complications. But except near the end of the construction we could
approximate it very well by sampling without replacement, which should get the following
probabilities of creating edges of the three different types:

P({bio,bio}) = p*, P({bio,math}) = 2pq, P({math,math}) = ¢*. (5)

Exercise 2 Have you seen such proportions before in your biology classes? What were
these proportions called and what is the connection with the context in which you saw them?

Now we might consider a given network assortative if the observed proportion of edges
{bio, math} is less than 2pq, and disassortative if this proportion is larger than than 2pq.

Exercise 3 (a) Which counts would correspond to (5) for Gsg(10,k)?
(b) Were we correct in classifying the network with the counts given in (4) as disassortative?

(¢) Now test whether the network that you see in the World window of your IONTW
interface is assortative or disassortative.
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Sample solutions for the exercises
Exploring contact patterns between two subpopulations

Sample solution for Exercise 1: Since there are 4 bio majors and 6 math majors, we
have B =4 and M = 6. Each node that represents a bio major has degree kK = 3 and each
node that represents a math major has degree £ = 2. Thus p = ﬁ@w = % = % =gq. O

Sample solution for Exercise 2: Equation (5) is the same as the Hardy-Weinberg Law.
Read “stub at bio node” as “allele A,” “stub at math node” as “allele a,” “edge {bio, bio}”
as AA homozygote,” “edge {bio, math}” as “heterozygote” and you will see the connection.

If the phenotypic effects of the gene under consideration cause carries of allele A to
preferentially mate with other carriers of allele A and carriers of allele a to preferentially
mate with other carriers of allele a, we will see assortative mating and fewer heterozygotes
than what would be predicted by the Hardy-Weinberg law. [J

Sample solution for Exercise 3: (a) By the result of Exercise 1 we have p? = ¢° i
and 2pq = % Since there are 12 edges total, the counts of the edges should be exactly as
in (4).

(b) No. The network should be considered neither assortative nor disassortative. [J



