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In this module1 we introduce the important notion of the replacement number, which
generalizes the basic reproductive number R0. We investigate how this number behaves
near the start of an outbreak in two types of models: The first type is based on the uniform
mixing assumption and the second type assumes a contact network that is a random k-
regular graph with small k. We also illustrate a method for estimating the value of R0 from
epidemiological data.

1 The replacement number in models based on the uniform
mixing assumption

1.1 Definition of the replacement number and its basic properties in
compartment-level models

Did it strike you as a bit peculiar that the notation R0 for the most important parameter
in disease modeling involves a subscript 0? The subscript 0 in this notation does double
duty of reminding us what R0 stands for: the mean number of secondary infections that
are caused by a single index case that is introduced at time t = 0 into a population with 0
other infectious, exposed, or removed hosts.

As the outbreak develops, more hosts may become infectious, while other hosts may be
removed. Thus at later times t, the mean number of secondary infections that is caused
by hosts who are infectious at time t will in general be different from R0. In the literature
it is sometimes denoted by R and called the replacement number (see, for example, [1]).
In contrast to R0 that is a fixed constant, the replacement number changes over time and
depends on the current state st of the system. It is somewhat unfortunate that the letter R
is also suggestive of the R-compartment. We already used the notation R(t) for the number
of removed hosts at time t in ODE-models. In order to avoid possible confusion, we will
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use the notation Rstt for the value of the replacement number at time t when the system is
in state st. Whenever we use this notation, we will implicitly assume that there is at least
one infectious host in state st. More precisely, we will use the following definition:

Definition 1 The replacement number Rstt is the mean number of secondary infections
caused by a host i who is infectious at time t when the system is in state st over the time
interval [t, TRi ), where TRi denotes the time of removal of host i after t.

These definitions of Rstt , Rt, and in particular R0, implicitly assume that infectious
hosts will eventually become removed. This will not be the case, for example, in SI-models
without demographics, where TRi in effect is assumed to be infinite for each host. For these
models one can either consider Rstt to be undefined or Rstt =∞. Moreover, in models where
removal does not confer permanent immunity, such as SIS-models, it is important that TRi
in Definition 1 is interpreted as the time when the host will recover from this particular
bout of infection, but not during subsequent bouts that may result from re-infection after
recovery. We will sidestep these complications here by focusing only on SIR-models in the
remainder of this module, although some of the results carry over to other types of models.

In the models that we consider here, the mean length of the interval during which a
host j, who is infectious at time t, will remain infectious after time t does not depend on
how long this host already has been infectious. While somewhat unrealistic, the assumption
greatly simplifies modeling and is embodied in the code of IONTW; see Section 8.6 of the
online appendix to [2] for a discussion. This assumption is also implicit in the classical ODE-
based compartment-level models that were discussed in our module Differential equation
models of disease transmission at this web site. Thus in the models that we are considering
here the number Rstt depends only on the state of the system at time t. The subscript t
is, strictly speaking, redundant. But it will be useful when we want to study how the
replacement number changes over time. In deterministic models such as ODE models,
the state at time t is entirely determined by the initial state of the system. Under the
assumptions of homogeneity of hosts and uniform mixing, in such models Rstt depends
only on t and the numbers of hosts that were initially infectious, susceptible, removed, or
exposed. In this case we will use the symbol Rt for the replacement number at time t
under the assumption that the outbreak started at time t = 0 with 1 infectious host in an
otherwise susceptible population. For time t = 0 we then get exactly the quantity that was
previously defined as R0.

Consider an outbreak that is started by a single index case in a population of size N .
Under the assumptions of uniform mixing and homogeneity of hosts, we will have

Rstt ≤ R0 at all times t ≥ 0 and for all states st,

∀t ∀ε > 0 lim
N→∞

P (Rstt > R0 − ε) = 1.
(1)

Note that unless we are studying a deterministic model, in the second line of (1) we can
only make an estimate of a probability as the state st at time t will usually not be known
with certainty.
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To see why (1) will be true, consider a host j who is infectious at time t. If j is the
only infectious host in state st and all other hosts are susceptible, then Rstt is the mean
number of secondary infections that will be caused by this host and must be equal to R0

by the definition of R0. Host j can infect other hosts only by making effective contact
with them. Under the assumptions of uniform mixing and homogeneity of hosts, it does
not matter which host has number j. Thus the mean number of other hosts with whom j
will make effective contact during j’s interval of infectiousness is always the same. But if
in state st there are other hosts who are no longer susceptible, then a larger proportion of
these effective contacts will not be successful in terms of causing secondary infections. Thus
unless j is the only infectious in state st while all other hosts are still susceptible, the strict
inequality Rstt < R0 will hold. This argument proves the first line of (1).

The second line of (1) essentially says that for any fixed t and sufficiently large population
sizes N , with very high probability the replacement number Rstt will remain very close to R0.
To see why this is true, consider a very large population and a time t near the start of an
outbreak. Then already some other hosts may no longer be susceptible in state st time t,
but, with probability very close to 1, their proportion will be very small. Thus nearly all
effective contacts of an infectious host j will be with susceptible hosts, which is very similar
to the situation for the index case at time 0. Under these additional assumptions, Rstt
should be only insignificantly smaller than R0 .

We want to emphasize that our little proof of (1) works only under suitable assumptions.
We explicitly mentioned the uniform mixing assumption and homogeneity of hosts. We will
see in Section 2 that the uniform mixing assumption is needed for this result. Homogeneity
of hosts is also needed, as it implies that the mean duration of infectiousness 〈τ Ij 〉 is the
same for all hosts j. Our argument also relies on some hidden assumptions that are usually
made but not always clearly spelled out in the literature. One is that for any given pair
of hosts {i, j} the transmission probabilities bi,j or transmission rates βi,j do not change
over time2. A second one is that for different pairs of hosts {i, j} 6= {i′, j′} transmission of
pathogens from host j to host i and from host j′ to host i′ are independent events.

1.2 Initial nearly exponential growth in next-generation SIR-models

Let us consider an agent-based next-generation SIR model with a very large population
size N . Assume that a given outbreak is started by a randomly chosen index case in an
otherwise susceptible population. Moreover, let us assume that (1) holds in this model.
More specifically, let us assume that for some T > 0 and small ε, q > 0 we will have
P (Rstt > R0 − ε) ≥ 1− q for all times t with 0 ≤ t < T .

In this type of model, time is incremented in integer steps that are scaled so that
〈τ I〉 = 1, and each infectious host gets removed at the next time step. What can we say
about the numbers3 |I(t)| of infectious hosts at times t = 1, 2, . . . , T in this model? Since
our agent-based models are stochastic, these numbers are random variables (r.v.s) and we

2See Network-based models of transmission of infectious diseases: a brief overview at this web site.
3Recall that we are using the notation |A| for the size of a set A.
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cannot predict them with certainty. But we can predict their expected values 〈|I(t)|〉, which
will for convenience be denoted here by I(t).

By definition of R0 and since the index case will have been removed by time step 1, we
must have I(1) = R0.

We can have no certainty about the state of the system at time t = 1, but our assumption
implies that with probability ≥ 1− q we will have Rst1 > R0− ε. In this case, each host who
is infectious at time step 1 will cause on average > R0 − ε secondary infections. It follows
that

I(2) ≥ (1− q)I(1)(R0 − ε) = (1− q)R0(R0 − ε). (2)

A similar argument applies at subsequent time steps. Since the probability that at least
one of t−1 events that have probability ≤ q each occurs is bounded from above by (t−1)q,
regardless of independence, this gives by induction:

I(t) ≥ (1− (t− 1)q)R0(R0 − ε)t−1. (3)

A similar argument based on the first line of (1) gives the upper bound

I(t) ≤ Rt0. (4)

If p is any given probability with p < 1 and 0 < R−0 < R0, then for all sufficiently largeN ,
we will be able to choose q, ε small enough so that (1− (t− 1)q) > p and R0− ε > R−0 . For
these choices, (3) together with (4) predict that

∀t ≤ T (R−0 )t ≤ I(t) ≤ Rt0. (5)

If R−0 is chosen very close to R0 and if R0 > 1, (5) predicts nearly exponential growth
(with base R0) of the expected number I(t) of infectious hosts for times t ≤ T , that is, in
the initial stages of an outbreak.

In next-generation models hosts get removed after exactly one time step. Thus in these
models, |I(t)| gives an estimate both of the expected incidence (the rate at which new
infections occur) and the expected prevalence (the total number of infectious hosts) at a
given time. Other types of models allow us to make a distinction between these two notions.
We will examine this distinction for ODE models in the next subsection.

Exercise 1 Determine whether a next-generation SIR-model for which (1) holds predicts
initial near-exponential growth with base R0 for the expected number R(t) of removed hosts
at time t.

In the literature, nearly exponential growth of the incidence and the prevalence in the
initial stages of an outbreak is sometimes considered the defining property of an epidemic.
This definition is not without problems. As we will see in later modules, not for all types of
contact networks should we expect initial nearly exponential growth for major outbreaks.
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1.3 Initial nearly exponential growth in ODE-based SIR-models

This subsection assumes some familiarity with ODE models of disease transmission as cov-
ered in our module Differential equation models of disease transmission at this web site.
Readers who want to focus exclusively on agent-based network models can skip it.

Consider the ODE version of an SIR-model with population size N :

dS

dt
= −βIS

dI

dt
= βIS − αI

dR

dt
= αI.

(6)

This model is deterministic, so that the state st at time t will be uniquely determined
by the initial condition, that is, the state at time 0. If we assume that at time t = 0 there
is exactly one infectious host while all other hosts are susceptible, we can use the simplified
notation Rt instead of Rstt here. In particular, the probability P (Rstt > R0 − ε) in the
second line of (1) will be either 0 or 1 depending on t, and this line simply translates into
the assertion that

Rt > R0 − ε for all sufficiently small t. (7)

Of course, (7) is vague about the meaning of “sufficiently small t.” Let us consider here
all times t at which a proportion of at least 1− ε of all hosts is still susceptible. It depends
on the parameters α and β how small t actually needs to be in terms of physical time units.
But we can see that all times “sufficiently close to 0” would qualify, as long as N is large
enough so that 1 initially infectious host corresponds to a proportion of less than ε of the
population. This follows from the fact that the solutions of ODEs are continuous functions.
Readers who are interested in more precise estimates may want to do the following exercise:

Exercise 2 Suppose I(0) = 1, S(0) = N − 1, and βN
α > 1

1−ε . Show that if S(0) = N − 1 >

(1−ε)N , then S(t) ≥ (1−ε)N for all t ≤ T , where T = 1
β(N−1)−α ln

(
(εN−1)[β(N−1)−α]

β(N−1) + 1
)

.

In ODE-models, I(t) is the prevalence of the infection, and the incidence is the rate
at which new infections occur. In (6), the latter is the term βIS. Now notice that for all
times t as above we have:

(βN − α)I(t) ≥ dI

dt
= βI(t)S(t)− αI(t) ≥ ((1− ε)βN − α)I(t). (8)

Recall that R0 = βN
α for model (6). Thus as long as R0 >

1
1−ε > 1 and I(t) > 0, both

estimates of dI
dt in (8) are positive.

Now consider the linear ODEs
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dI

dt
= (βN − α)I (9)

and

dI

dt
= ((1− ε)βN − α)I. (10)

Their solutions are the exponential functions I(t) = I(0)e(βN−α)t and I(t) = I(0)e((1−ε)βN−α)t.
It follows from (8) that the solution I(t) of (6) and the corresponding incidence function
βI(t)S(t) satisfy the following inequalities for all t as above:

I(0)e(βN−α)t ≥ I(t) ≥ I(0)e((1−ε)βN−α)t,

βNI(0)e(βN−α)t ≥ βI(t)S(t) ≥ (1− ε)βNI(0)e((1−ε)βN−α)t.
(11)

Thus both the prevalence function I(t) and the incidence function βI(t)S(t) are closely
sandwiched between two exponential functions for all sufficiently small t. We can see that
when R0 > 1, both of these functions initially grow nearly exponentially with base eβN−α.

Recall that when time is scaled so that the mean duration of infectiousness 〈τ I〉 = 1,
then α = 1 and βN ≈ R0. Thus in this case the ODE version of the SIR model predicts
initial nearly exponential growth with base eR0−1. For R0 > 1 this value will be larger
than R0 (due to a phenomenon akin to compounding interest), but when R0 is only slightly
larger than 1, then eR0−1 ≈ R0. For example, if R0 = 1.2, then eR0−1 = 1.2214.

1.4 Estimating R0 from data

The results of this section give us a possible method of estimating R0 from data on the
prevalence or incidence function in the initial states of an outbreak. Suppose we observe an
outbreak of an immunizing infection with 〈τ I〉 = 1 week, and Table 1 gives the numbers of
reported new infections for the first 10 weeks.

Week: 0 1 2 3 4 5 6 7 8 9

New cases: 1 3 6 12 17 26 38 59 57 46

Table 1: Number of reported new cases per week.

Clearly, the incidence did not grow nearly exponentially during the whole time period.
It decreases after week 8, and the growth seems to markedly slow down after week 5. But
when we focus on the data for the first 5 weeks, we may see a nearly exponential increase,
and the base of the exponential function might be a good estimate of R0.

Exercise 3 Try to estimate R0 based on the given data for the first 5 weeks.
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(a) Assume that a next-generation model would adequately predict the initial stages of the
outbreak for which Table 1 gives data.

(b) How would the result change if we were to base the method on an ODE version of the
SIR-model with time scaled to 〈τ I〉 = 1 instead?

The method we suggested for Exercise 3 works well for giving ball-park figures, but
it has its problems. First of all, it can work only if the number of reported cases gives
a fairly reliable estimate of the actual incidence function. For real outbreaks in human
populations, this may not be a realistic assumption; see [2] for a discussion. Moreover, the
method is based on a particular model; as we have seen, it may give slightly different values
for continuous-time and next-generation models. For either type of model, the method
assumes that the bounds on the replacement number that we derived in this section are
valid in the initial stages of an outbreak. These were derived under the uniform mixing
assumption. The next section will give you a glimpse into how the situation may change in
models that assume spread of the infection on a given contact network.

2 The replacement number in network-based models

The results of Section 1 crucially depended on (1), which was derived under the uniform
mixing assumption. In network-based models, the uniform mixing assumption usually fails,
and we might conjecture that (1) may fail as well. We will show here that this can indeed
happen for the second line of (1); in later modules we will show that the first line of (1)
may also fail in some network-based models.

Open IONTW, click Defaults, and change the following parameter settings:

time-step: 1
infection-prob: 0.75
end-infection-prob: 1
network-type → Random Regular
num-nodes: 15
lambda: 2
auto-set: On

Click New to create an instance of GReg(15, 2) with one index case. Click Metrics and
verify that R0 = 1.5 in this model.

Press Labels to see the numbers associated with each node, and record the number
assigned to the initially infectious node. Now set the speed slider to a very slow setting;
adjust for comfortable viewing as needed. Record the numbers of the nodes that are infec-
tious after each tick; that is after each time step of the simulation, and try to make out
who infected whom.

In our run, node 8 was initially infectious and infected nodes 0 and 6; we recorded this
as

8→ 0, 6.
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For the next time steps of the infection we observed

0→ 10 6→ 13

10→ 4

4→ 13

13→ 11.

(12)

This was the end of the outbreak.
Record such lists for about 5 outbreaks. Now record, for each time step at which any

new infections occurred, the mean number of secondary infections caused by each of the
currently infectious nodes. For our list we would get:

2 at step 1 (as node 8 infected two nodes)
1 at step 2 (as each of the two infectious nodes caused 1 secondary infection)
0.5 at step 3 (as only one of the two infectious nodes caused a secondary infection)
1 at step 4
1 at step 5
0 at step 6

This is interesting. In this model we have R0 = 1.5, which means that by step 1 on
average 1.5 secondary infections will have been caused by the index case. We saw 2, which
is as close as it gets to R0. The means that we calculated for steps t = 1, 2, . . . , 6 give very
crude estimates of Rstt , averaged over all possible states st at time t. According to (1), for
small t we might expect averages close to 1.5, but for t > 0 we never observed a value
above 1, and we bet you didn’t either. Why?

Exercise 4 (a) Show that in a next-generation model with a 2-regular graph a host who is
infectious at any time t > 0 can cause at most 1 secondary infection.

(b) Let k be any positive integer and consider a next generation network-based SIR-model
with probability b of effective contact over a unit time interval. Find R0. Then generalize
part (a) to derive an upper bound Rub for Rstt that applies to all t > 0 if the contact network
is k-regular.

(c) Test your prediction of point (b) with running some simulations in slow motion for
b = 0.5 and networks GReg(16, 3).

If you solved part (b) of Exercise 4 correctly, then you will have found that for all t > 0
we must have

• Rub ≤ 0.75 if b = 0.75, and the contact network is 2-regular,

• Rub ≤ 1 if b = 0.5, and the contact network is 3-regular.

Since R0 = 1.5 in both cases, we can see that the second line of (1) fails for 2-regular
and 3-regular graphs, even when the number of nodes N is very large.
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Now recall our derivation of the upper bound (4) for I(t). The same argument applies
here, and in view of your result for Exercise 4(b), for next-generation SIR-models on large
k-regular graphs we can estimate

I(t) ≤ R0R
t−1
ub . (13)

The alert reader will have noticed that the complete graphs that we use as contact
networks for studying the uniform mixing assumption are k-regular graphs with k = N −1.
Thus the upper bound (13) does apply to them. However, if N is very large, the difference
between R0 and Rub as calculated in your solution of Exercise 4(b) becomes negligible so
that (13) does not invalidate the results that we derived in Subsection 1.2.

However, if k is as small as 2 or 3, the difference between R0 and Rub may drastically
alter the predictions of the model. For example, when b = 0.75 and k = 2, then I(t) ≤
1.5(0.75)t−1, so that I(t) quickly approaches 0 even when the network is very large. This
explains what we saw in the explorations of Section 3 of our module Exploring random
regular graphs with IONTW at this web site! In our simulations for random 2-regular
contact networks with these parameter settings, all observed outbreaks were minor, despite
the fact that R0 > 1. The results for parameter settings b = 0.5 and k = 3 were less
clear-cut. As Rub = 1 in this case, we might expect that these outcomes would be similar
to what one would see in compartment-level models with R0 = 1. Mathematical theory
predicts that all outbreaks will be minor for compartment-level models with R0 = 1, but
for moderately large population sizes this can still translate into a significant fraction of
hosts who will experience infection.

Exercise 5 Prove that the following version of (1) holds for next-generation SIR-models
of disease transmission on contact networks of type GReg(N, k) for the value of Rub that
you found in Exercise 4(b):

Rstt ≤ Rub at all times t > 0 and for all states st,

∀t ∀ε > 0 lim
N→∞

P (Rstt > Rub − ε) = 1.
(14)

Now the same argument that we used to derive (3) under the assumption of uniform
mixing gives the following analogue for next-generation SIR-models when the contact net-
work is of type GReg(N, k), both k and t are fixed, and the population size N is sufficiently
large:

I(t) ≥ (1− (t− 1)q)R0(Rub − ε)t−1. (15)

As in (3), the value q can be chosen arbitrarily close to 0. When Rub > 1, the bounds (13)
and (15) on the mean number of infectious hosts I(t) in the initial stages of an outbreak in
a sufficiently large population predict initially nearly exponential growth of the number of
infectious hosts, roughly like R0R

t−1
ub . When Rub > 1, this will still give nearly exponential

initial growth, but the base of the exponential function will no longer be ≈ R0, but ≈ Rub <
R0.
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Let us try to confirm these predictions by running experiments. Change the current
parameter settings in IONTW to:

infection-prob: 0.8
num-nodes: 200
lambda: 3

Set up and run a batch processing experiment for the current parameter settings with
100 repetitions by using our template with the following specifications:

Measure runs using these reporters:
count turtles with [infectious?]

Setup commands:
new-network

Time limit: 2

The output column will report the actual numbers of infectious hosts at time step 2.

Then repeat the experiment with

Time limit: 3

and run a third experiment with

Time limit: 4

Be sure to choose different names for each experiment so as not to overwrite the data
in your output files.

Exercise 6 Compute mean values for the data in the last columns of your three output files.
Do these outcomes give a good match for the prediction that I(t) ≈ R0R

t−1
ub for t = 2, 3, 4?

If there seem to be significant discrepancies, how could you explain them?

One might expect that the derivation of Rub in Exercise 4(b) and the resulting estimates
of I(t) for the initial stages of an outbreak will carry over to other types of large networks
with small mean degrees, such as Erdős-Rényi networks GER(200, 3). To verify this predic-
tion, Edit your previous batch processing experiment by changing one entry in the input
field Vary variables as follows from

["network-type" "Random Regular"]

to

["network-type" "Erdos-Renyi"]

and run first with

Time limit: 2

and then with

Time limit: 3

Exercise 7 Compute mean values for the data in the last columns of your two output files.
Do these outcomes give a good match for the prediction that I(t) ≈ R0R

t−1
ub for t = 2, 3 or

are they closer to the prediction I(t) ≈ Rt0 that we had derived under the uniform mixing
assumption?
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Recall that in Section 3 of our module Exploring random regular graphs with IONTW we
discovered significant differences between simulations of outbreaks in models with contact
networks GER(200, 3) and GReg(200, 3) with identical disease transmission parameters. The
results of Exercise 7 go some way towards explaining these observations: It seems that
initial growth in the former models will be nearly exponential with base R0, while initial
growth in the latter models will be nearly exponential with base Rub < R0. We can now
understand why the base should be Rub when the contact network is a random regular
graph GReg(200, 3).

But why should the base still be R0 for Erdős-Rényi contact networks GER(200, 3)?
After all, in both types of contact networks, nodes have small degrees and each host who
becomes infectious at any time t > 0 will already have at least one neighbor who is no
longer susceptible.

Something else must be going on here. But what? To find out, work through our module
The friendship paradox at this web site.
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