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In this module1 we introduce the so-called friendship paradox and illustrate how it
affects disease transmission on networks that exhibit this phenomenon.

1 The friendship paradox

Why do your friends have more friends than you do? The question may sound offensive.
We don’t even know you. How can we assume than you have fewer friends than your friends
have on average? Because most people do. This so-called friendship paradox has first been
described and studied in [1]. It does seem counterintuitive: If we are talking about the
average number of friends of average friends of an average person, shouldn’t this average
out to the average number of friends of an average person?

Enough loose talk about averages that makes the average person’s head spin. Let’s
steady our thoughts with some solid mathematical definitions. Consider a graph G that
represents friendships between persons numbered 1, . . . , N . The degree ki of node i rep-
resents the number of i’s friends. The “average” number of friends of a randomly chosen
person can be most naturally interpreted as the mean degree 〈k〉 that is given by

〈k〉 =
1

N

N∑
i=1

ki. (1)

For a fixed i who has at least one friend the mean number of friends of i’s friends,
denoted by 〈kf 〉i, can be calculated as

〈kf 〉i =
1

ki

∑
{j: {i,j}∈E(G)}

kj . (2)

For i with ki = 0 the notion of “mean number of friends of i’s friends” is meaningless. We
leave 〈kf 〉i undefined in this case. Let N1+ denote the number of nodes i of degree ki ≥ 1.

∗ c©Winfried Just, Hannah Callender, and M. Drew LaMar 2014
†Department of Mathematics, Ohio University, Athens, OH 45701 E-mail: mathjust@gmail.com
‡University of Portland E-mail: callende@up.edu
§The College of William and Mary E-mail: drew.lamar@gmail.com
1This version was originally posted at https:qubeshub.org/iontw

1



If N1+ ≥ 1 we can define the mean of the mean number of friends of friends of a randomly
chosen node i as

〈kf 〉 =
1

N1+

∑
{i: ki≥1}

〈kf 〉i. (3)

In this terminology, we can express the friendship paradox as the strict inequality

〈kf 〉 > 〈k〉. (4)

Inequality (4) is a mathematically rigorous statement, but is it true? Actually, not
in all graphs G. If it is, then we will write that G exhibits the friendship paradox with
excess 〈kf 〉 − 〈k〉.

Let us look at two illustrative examples. Open IONTW, click Defaults, and choose

network-type → Nearest-neighbor 1
num-nodes: 9
d: 2

Create a network by pressing New. The graph that you see in the World window is an
example of a one-dimensional nearest neighbor network and will be denoted by G1

NN (9, 2).

Exercise 1 Calculate 〈k〉 and 〈kf 〉 for the graph G1
NN (9, 2). Does this graph exhibit the

friendship paradox?

Now change

network-type → Nearest-neighbor 2
num-nodes: 6
d: 1

Create a network by pressing New. The graph that you see in the World window is an
example of a two-dimensional nearest neighbor network and will be denoted by G2

NN (6, 1).

Exercise 2 Calculate 〈k〉 and 〈kf 〉 for the graph G2
NN (6, 1). Does this graph exhibit the

friendship paradox?

We will rigorously prove in Section 4 that the inequality 〈kf 〉 ≥ 〈k〉 holds in all graphs
and that the strict inequality (4) holds in most graphs. For now, you may want to do the
following exercise:

Exercise 3 (a) Find a common-sense explanation for the fact that some graphs do exhibit
the friendship paradox.

(b) Form a conjecture about sufficient and necessary conditions for the structure of graphs
that do not exhibit the friendship paradox.
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2 The friendship paradox and models of disease transmission
on contact networks

The friendship paradox certainly does look surprising, but does it have anything to do with
disease transmission on networks? A lot, actually. Consider a next generation SIR-model
on a network G. In such a model, R0 ≈ b〈k〉. Assume for simplicity that the exact equality
R0 = b〈k〉 holds and that the network size N is very large. Consider an outbreak that is
started by an index case j∗ in an otherwise susceptible population. Then R0 = b〈k〉.

Recall the definition of the replacement number Rst
1 from the previous module2. It

is the mean number of secondary infections that will be caused by an average host who
is infectious at time 1 in state st. Whenever we use this notation, we implicitly assume
that there is at least one infectious host in state st. As we have seen, even for very large
population sizes N , the number Rst

1 may be significantly smaller than R0. The reason is
that if nodes tend to have small degrees, each host who is infectious at time t = 1 has at
least one adjacent host who is no longer susceptible.

Let us carefully consider what happens at time t = 1: All nodes that are infectious at
time t = 1 are adjacent to j∗. If j∗ was randomly chosen, then on average the infectious
nodes at time t = 1 will have 〈kf 〉 adjacent nodes, one of whom is j∗. Thus we get the
following upper bound for next-generation SIR models:

Rst
1 ≤ b(〈kf 〉 − 1) = R0

〈kf 〉 − 1

〈k〉
. (5)

In k-regular graphs we always have 〈kf 〉 = 〈k〉 = k, and the right-hand side of (5) is

identical with the estimate Rub = R0
〈k〉−1
〈k〉 that you will have discovered in the module on

the replacement number. For random regular graphs GReg(N, k) with sufficiently large N
we then found that Rst

t ≈ R0
k−1
k for sufficiently small t. This gave a prediction of slower

initial growth of an outbreak than what the uniform mixing assumption would predict for
the given value of R0.

For networks other than random regular graphs, the situation may be much more com-

plicated. First of all R0
〈kf 〉−1
〈k〉 may be smaller, equal to, or larger than R0, depending on

the excess in the friendship paradox for the given contact network. In the latter case, the
first line of Equation (1) of our module on the replacement number will be violated!

Second, the estimate Rst
1 ≤ b(〈kf 〉− 1) does not always imply that Rst

1 ≈ b(〈kf 〉− 1) for
sufficiently large N , not even when the graph is regular. We will examine this phenomenon
in our module on clustering coefficients.

Third, we cannot automatically generalize the inequality Rst
1 ≤ b(〈kf 〉 − 1) to Rst

t ≤
b(〈kf 〉−1) for all t > 1. For example, Rst

2 depends on the mean number of friends of friends
of friends of a randomly chosen index case. As we will illustrate in a later module, for some
network types the latter number may significantly exceed 〈kf 〉.

In many types of networks though, the estimate (5) can be generalized to

2The replacement number, posted at https:qubeshub.org/iontw
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Rst
t ≈ b(〈kf 〉 − 1) (6)

for sufficiently large N and sufficiently small t.
If the approximation (6) is valid in the initial stages of an outbreak, the arguments

of our module on the replacement number apply, and R0
〈kf 〉−1
〈k〉 instead of R0 becomes a

reliable predictor for the expected initial growth of an outbreak and the probability z∞
that introduction of one index case into an otherwise susceptible population will cause
only a minor outbreak. In particular, if (6) is valid and 〈kf 〉 − 〈k〉 = 1, we might expect
the spread of diseases on such networks to closely match the predictions derived under
the uniform mixing assumption. This is exactly what we observed in our explorations of
next-generation models based on Erdős-Rényi networks3!

Exercise 4 Consider a next-generation SIR-model on an Erdős-Rényi network GER(N,λ).
Assume that N is very large relative to λ.

(a) Show that 〈kf 〉 − 〈k〉 ≈ 1.

(b) Assume an initial state with one index case in an otherwise susceptible population and let
ε > 0. Show that for any given t > 0 the probability P (|Rst

t − b(〈kf 〉− 1)| < ε) approaches 1
as N → ∞ so that (6) becomes a valid approximation. Hint: It can be shown that for any
given t and probability q < 1, there exists a bound B(t, λ, q) such that with probability at
least q the total number of nodes that are no longer susceptible at time t is at most B =
B(t, λ, q), regardless of population size N . You may want to use this result in your argument
rather than deriving it yourself.

3 Exploring the effect of the friendship paradox on disease
transmission with IONTW

In this section we explore disease transmission on some networks that exhibit the friendship
paradox with large excess.

Open IONTW, click Defaults, move the speed control slider to the extreme right, and
choose

network-type → Regular Tree
lambda: 1
d: 9

Press New to create a star tree with N = 10 nodes and then make it look nice by
pressing Spring, waiting until it has taken a nice shape, pressing Spring again and then
Scale to make it better fit the World window. Press Labels and recall that the root is
labeled 0 by NetLogo and the other nodes are numbered from 1 to 9. The tree in your
World window is an example of a star tree GST (N) with N = 10 nodes, N − 1 = 9 leaves,
and one node, the root, with degree N − 1 = 9.

3See modules Exploring random regular graphs with IONTW and The replacement number at this web
site https:qubeshub.org/iontw
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Exercise 5 (a) Calculate 〈k〉 and 〈kf 〉 as well as the excess 〈kf 〉 − 〈k〉 for this network.

(b) Generalize the result of part (a) to star trees GST (N) with arbitrary numbers N ≥ 2 of
nodes.

Let us explore a tree with d = 9 but more levels. Change

lambda: 2

Press New to create a tree with N = 91 nodes and then make it look nice by pressing
Spring, waiting until it has taken a nice shape, pressing Spring again and then Scale to
make it better fit the World window.

Exercise 6 Calculate 〈k〉 and 〈kf 〉 as well as the excess 〈kf 〉 − 〈k〉 for this network.

Wow! The excess in the friendship paradox for each of the networks that we have
explored so far is much larger than the mean degree! Does our claim that “if you are like
most people, your friends have more friends than you do” still sound outrageous?

Let us explore how such a large excess might influence the spread of infectious diseases
on the regular tree with 91 nodes.

Use the following parameter settings to set up a next-generation SIR-model:

model-time → Discrete
infection-prob: 0.4
end-infection-prob: 1
auto-set: On

Press New to make one node infectious. Press Metrics and look up and record the
value of R0 in the Command Center. It should be clearly less than 1.

As we explained in Section 2, the mean value 〈Rst
1 〉 will be larger than R0 in this model.

Here the mean is taken over all states st with at least 1 infectious host that can occur
at time t = 1 when the initial state contains exactly one infectious host in an otherwise
susceptible population,

Exercise 7 Use the results of Section 2 and Exercise 6 to calculate 〈Rst
1 〉 for this model.

Now set up and run a batch processing experiment for the current parameter settings
following the template that is given in the instructions posted at this web site on how to
use our modules. Work with the following specifications:

Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network
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Exercise 8 Open your output file and order the column with the header count turtles

with [removed?] from largest to smallest. Record the maximum and the mean final sizes
of the observed outbreaks.

Now let us compare the results with those for corresponding models on contact networks
that are random regular graphs GReg(91, 2) with the same number of nodes. Note that for
these graphs the mean degree 2 is even slightly larger than the mean degree 〈k〉 that you
found in Exercise 6 for the regular tree of the previous batch processing experiment. This
should translate into an almost identical but even slightly larger value of R0 compared with
the current model. Change

network-type → Random Regular

Press New to create a network, then Metrics, look up the value of R0 in the Command
Center and compare it with the value that you found for the previous model.

Set up and run a batch processing experiment for the current parameter settings with
the following specifications:

Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network

Exercise 9 (a) Open your output file and order the column with the header count turtles

with [removed?] from largest to smallest. Record the maximum and the mean final sizes
of the observed outbreaks.

(b) Compare your findings with the ones of Exercise 8. How does the structure of the regular
tree appear to influence the dynamics of the model?

In our next example we will have R0 = 0.65. Before we introduce the example itself,
let us get a baseline idea about the predictions for an SIR-model with the uniform mixing
assumption for this value of R0. Change the following parameter settings:

infection-prob: 0.0066
network-type → Complete Graph
num-nodes: 100

Create a New network. Then press Metrics and look up the value of R0 for this
model in the Command Center. It should be very close to and actually slightly larger
than 0.65. Recall that for an SIR-model with R0 < 1 under the uniform mixing assumption
only minor outbreaks are predicted. Let us see how this prediction works out in a relatively
small population of size N = 100.

Set up and run a batch processing experiment for the current parameter settings with
the following specifications:
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Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network

Exercise 10 Open your output file and order the column with the header count turtles

with [removed?] from largest to smallest. Record the maximum and the mean final sizes
of the observed outbreaks, as well as the numbers of runs where at least 10 hosts experienced
infection and of those runs where no secondary infections whatsoever occurred.

Now let us study our second example of disease transmission on a large network that
exhibits the friendship paradox. Change

infection-prob: 0.1

If you have not already done so, download the sample input file degreesFP.txt from our
web site and save it in the same directory where you keep IONTW. Press Load and open this
file. The network that you will see in the World window is a generic graph GSQ(100, k̄)
for the degree sequence k̄ that specifies degree ki = 2 for each node i = 0, . . . , 74 and
degree ki = 20 for each node i = 75, . . . , 99. Generic graphs GSQ(N, k̄) were defined in
our module Exploring contact patterns between two subpopulations. You may want to press
Labels and Update the Degree Distribution to see how the specified degree sequence
relates to the picture in the World window.

This graph has a mean degree of 〈k〉 = 6.5. We will see in Exercise 16 of the next section
that this graph exhibits the friendship paradox with rather large excess.

Press Metrics and look up the value of R0 for this model in the Command Center.
It should be equal to 0.65.

Let us run some preliminary explorations of disease transmission in this network. Press
Set to introduce one infectious node, then Go. Examine the Disease Prevalence plot to
see what happened in this outbreak. Repeat about 10 times by first pressing Reset, then
Set, and then Go. Pay attention to both the information in the Disease Prevalence
plot and in the World window. The latter will show you which node becomes initially
infectious, and which nodes experience infection during the simulated outbreak. Formulate
a tentative conjecture about this connection.

Now change

min-deg: 3

This will have the effect that the initially infectious node is randomly chosen from among
the nodes that have degree larger than 2. In our network, all of these nodes have degree 20.
Repeat the previous explorations for the new settings.

Exercise 11 Formulate a conjecture about the relationship between the final sizes of out-
breaks and the choice of the initially infectious node based on these explorations. Also write
down your observations about the set of nodes that experience infection during outbreaks.
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Now let us try to confirm your conjecture of Exercise 11 with three batch processing
experiments for the current parameter settings. Set up and run the first experiment with
the following specifications:

Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
load-from-file "degreesFP.txt"

ask n-of 1 turtles [become-infectious]

In the dialogue box Run options set
Simultaneous runs in parallel: 1

The specifications given above assume that you did save the file degreesFP.txt in
the same directory where you keep IONTW. If you prefer saving this file in a different
directory, such as the one named examples, you will need to modify the first line of Setup
commands as follows:

load-from-file "examples/degreesFP.txt"

In this experiment, the initially infectious node will be chosen randomly from among all
100 nodes.

For the second experiment, choose the following specifications:

Duplicate the previous experiment and then Edit it as follows:
Choose a new suggestive Experiment name.
Replace

ask n-of 1 turtles [become-infectious]

with

ask n-of 1 turtles with [count link-neighbors > 2] [become-infectious]

Then run the experiment with

Simultaneous runs in parallel: 1

In this experiment, the initially infectious node will be chosen randomly from among
the 25 nodes with degree > 2, that is, with degree 20.

For the third experiment, choose the following specifications:

Duplicate the previous experiment and then Edit it as follows:
Choose a new suggestive Experiment name.
Replace

ask n-of 1 turtles with [count link-neighbors > 2] [become-infectious]

with

ask n-of 1 turtles [count link-neighbors <3] [become-infectious]

Then run the experiment with

Simultaneous runs in parallel: 1
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In this experiment, the initially infectious node will be chosen randomly from among
the 75 nodes with degree 2.

Exercise 12 (a) For each output file order the column with the header count turtles

with [removed?] from largest to smallest. Record the maximum and the mean final sizes
of the observed outbreaks, as well as the numbers of runs where at least 10 hosts experienced
infection and for those runs where no secondary infections whatsoever occurred.

(b) Compare the results of these findings between the three experiments and with the re-
sults that you obtained in Exercise 10 for the same value of R0 under the uniform mixing
assumption.

(c) How would you interpret the observations you made in point (b) in view of the fact
that the models of the contact networks in the last three experiments exhibit the friendship
paradox with large excess? How well does your conjecture of Exercise 11 hold up?

4 The proof of the friendship paradox

The material in this section will primarily be of interest to advanced undergraduate and
graduate students of mathematics.

Let G be a graph. Think of the edges of G as representing friendships between people.
Recall from Section 1 that the friendship paradox asserts that 〈kf 〉 > 〈k〉, where 〈k〉 can
be interpreted as the mean number of friends of a randomly chosen i and 〈kf 〉 can be
interpreted as the mean number of friends of the friends of a randomly chosen i.

Theorem 1 The inequality 〈kf 〉 ≥ 〈k〉 holds in every graph G. Moreover, 〈kf 〉 = 〈k〉 if,
and only if, G contains no isolated nodes and ki = kj for every edge {i, j} ∈ E(G).

Exercise 13 Show that 〈kf 〉 can be expressed as

〈kf 〉 =
1

N1+

∑
{i,j}∈E(G)

kj
ki

+
ki
kj
. (7)

Exercise 14 Prove Theorem 1.

Thus the only graphs that do not exhibit the friendship paradox are graphs in which all
connected components are regular. In these graphs every friend of i has exactly the same
number of friends as i has.

In your solution for Exercise 3 you may have found the following explanation of the
friendship paradox: Consider randomly chosen nodes i and j. Then j is more likely to
be i’s friend if j has a lot of friends. In other words, the friends of a randomly chosen i
tend to have more than the average number of friends, exactly as the friendship paradox
predicts. For a mathematically formal version of this argument, consider a generic random
graph GSQ(N, k̄) with a given degree sequence. These graphs were introduced in our module

9



Exploring contact patterns between two subpopulations at this web site. Let i be a randomly
chosen node i in this graph. In the construction of GSQ(N, k̄) we attach ki stubs to it.
Consider a given stub stb and another node j. Then stb could be linked with any one
of the kj stubs at j. Thus the probability that stub stb will eventually form part of an
edge {i, j} is proportional to kj . In particular, i is more likely to be adjacent to nodes that
have above-average degrees.

By taking the argument of the previous paragraph one step further we can derive a nice
estimate for the expected value of the excess 〈kf 〉−〈k〉 in G = GSQ(N, k̄) (or G = GD(N, q̄)
for the corresponding degree distribution q̄). A pair {i, j} will become an edge in GSQ(N, k̄)
if, and only if, some stub at i will be linked with some stub at j. The probability that a
given stub at i will be linked with a given stub at j is approximately equal to 1∑N

i=1 ki
. For

ki, kj � N this implies that the probability that {i, j} becomes an edge is roughly equal to

the product
kikj∑N
i=1 ki

. Since
∑

i=1 ki = 〈k〉N , we get

P ({i, j} ∈ E(G)) ≈ kikj∑N
i=1 ki

≈ kikj
〈k〉N

. (8)

Substituting (8) in (7) gives the following estimate of the expected value of 〈kf 〉:

〈kf 〉 =
1

N1+

∑
{i,j}∈E(G)

kj
ki

+
ki
kj

≈ 1

2N1+

N∑
i=1

∑
j 6=i

P ({i, j} ∈ E(G))

(
kj
ki

+
ki
kj

)

≈ 1

2N1+

N∑
i=1

N∑
j=1

P ({i, j} ∈ E(G))

(
kj
ki

+
ki
kj

)

≈ 1

2N1+

N∑
i=1

N∑
j=1

k2i + k2j
〈k〉N

.

(9)

Here we needed to divide by 2 since each edge joins two stubs and will be considered
twice in the summation.

The approximation in the second line of (9) will be valid if the probability of creating a
loop {i, i} in the process of linking the stubs will be very small relative to the probability
of creating bona fide edges. This will usually (but not always!) be the case.

Exercise 15 Consider a degree sequence k̄ with Q0 = 0 or a degree distribution q̄ with q0 =
0. Use the above observations to prove that for large N the graphs G = GSQ(N, k̄) or
G = GD(N, q̄) will have the following properties:
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〈kf 〉 ≈
V ar(k)

〈k〉
+ 〈k〉,

〈kf 〉 − 〈k〉 ≈
V ar(k)

〈k〉
,

(10)

where V ar(k) denotes the variance of the degree distribution.

For example, k-regular random graphs are graphs of the form G = GD(N, q̄) with qk = 1.
In these graphs we have V ar(k) = 0 and (10) confirms that these graphs do not exhibit the
friendship paradox.

Exercise 16 Use the result of Exercise 15 to estimate 〈kf 〉 and the excess 〈kf 〉 − 〈k〉 for a
graph GSQ(100, k̄) that has 75 nodes of degree 2 and 25 nodes of degree 20.

The result of Exercise 15 applies only to graphs that are very similar toG = GSQ(N, k̄) or
G = GD(N, q̄) for the given degree distribution. Recall from our module Exploring contact
patterns between two subpopulations that graphs G = GSQ(N, k̄) are neither assortative nor
disassortative by degree. In contrast, consider a graph G with several connected components
that are k-regular, but not for the same k. Theorem 1 implies that G will not exhibit the
friendship paradox although V ar(k)

〈k〉 will be positive. Such graphs are completely assortative

by degree. We can see that for graphs that exhibit strong assortativity by degree (10) might
substantially overestimate the magnitude of the excess 〈kf 〉 − 〈k〉.

How about strong disassortativity by degree? Will (10) tend to underestimate 〈kf 〉−〈k〉?
Consider a star tree GST (N) with N − 1 leaves and one node, the root, with degree N − 1.
You already calculated 〈kf 〉 for GST (N) in Exercise 5. Note that star trees GST (N) with
N > 2 are completely disassortative by degree, as for each edge {i, j} one of the nodes must
be a leaf with degree 1 while the other node must be the root with degree N − 1 > 1.

Exercise 17 Compute V ar(k)
〈k〉 + 〈k〉 for GST (N) and compare the result with the value

of 〈kf 〉 that you obtained in your solution of Exercise 5.
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