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In this module1 we introduce several definitions of so-called clustering coefficients. A
motivating example shows how these characteristics of the contact network may influence
the spread of an infectious disease. In later sections we explore, both with the help of
IONTW and theoretically, the behavior of clustering coefficients for various network types.

1 A motivating example

Recall2 that the one-dimensional nearest-neighbor networks G1
NN (N, d) are k-regular for

k = 2d when N ≥ 2d + 1. One might expect that diseases would spread on such networks
in similar ways as on random regular graphs GReg(N, k). Let us see whether simulations
confirm this prediction.

Open IONTW, click Defaults, and change the following parameter settings:

infection-prob: 0.5
end-infection-prob: 1
network-type → Random Regular
num-nodes: 200
lambda: 4
d: 2
auto-set: On

Press New to initialize a next-generation SIR-model on a network GReg(200, 4) with
one index case in an otherwise susceptible population. Press Metrics to verify that R0

= 2. By the result of our module The replacement number at this website we should
have Rst

t ≈ 1.5 > 1 for sufficiently small positive t. Thus we would expect to see a significant
proportion of major outbreaks in addition to some minor ones. You may want to run a few
exploratory simulations to check whether this is what you will see in the World window
and the Disease Prevalence plot.
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Now let us confirm the preliminary observations with a lager number of simulations.
Using the template that is provided in the instructions at this website, set up a batch
processing experiment for the current parameter settings with the following specifications:

Define a New experiment.
Repetitions: 100
Measure runs using these reporters:

count turtles with [removed?]

Setup commands:
new-network

Exercise 1 (a) Run the experiment and analyze your data by sorting the output column
from lowest to highest. If you see a distinct gap between minor and major outbreaks, report
the number of minor outbreaks, as well as the mean and maximum values of the output
variable for these outbreaks. Also report the minimum, mean, and maximum for the major
outbreaks, as well as the overall mean.

(b) Are the results consistent with your expectations?

Now choose

network-type → Nearest-neighbor 1

Press New to initialize a next-generation SIR-model on a network G1
NN (200, 2) with

one index case in an otherwise susceptible population. Press Clear on the bar of the
Command Center, then Metrics to verify that <k> = 4 and R0 = 2.

You may want to run a few exploratory simulations to check whether you see similar
results in the World window and the Disease Prevalence plot as for the previous network
type.

Now let us confirm the preliminary observations with setting up and running a batch
processing experiment with 100 runs for the current parameter settings. You may either
define a New experiment or Edit the previous one by replacing

["network-type" "Random Regular"]

with

["network-type" "Nearest-neighbor 1"]

Exercise 2 (a) Run the experiment and analyze your data as in your solution of Exercise 1.

(b) Are the results similar to the one in the previous experiment? If not, does the struc-
ture of G1

NN (200, 4) appear to increase or decrease the severity of outbreaks relative to the
corresponding random regular graph?

What is going on here? Let us take a closer look at Rst
t for small positive t. For the sake

of argument, let us assume t = 1 and 3 nodes j1, j2, j3 are infectious in state st. Each of
these nodes will have one neighbor (the index case) who infected this node and is no longer
susceptible at time t = 1 in state st. Let N1(j) denote the set of nodes i that are adjacent
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to j. In a large random 4-regular graph, with high probability it will be the case that the
union of the neighborhoods N1(j1),N1(j2),N1(j3) contain a total of 9 susceptible nodes to
whom the pathogen could be transmitted by time step 2.

Now let us see how the situation differs in graphs G1
NN (N, 2). For better visualization,

set

num-nodes: 12

Create a New network with one index case in an otherwise susceptible population. In
the World window you will see that N1(j

∗) contains 4 nodes.
Move the speed slider to a very slow setting; adjust for comfortable viewing as needed.

Start a simulation with Go and stop it by pressing Go again. Repeat a few times if need be
until you see a state with exactly 1 removed and 3 infectious nodes in the World window.
Count the number of green nodes at the end of red edges that could become infectious at
the next time step. It will be less than 9. This effect results from the special structure of
the networks and explains the discrepancies that you observed.

There are various ways to quantify this effect. One measure that is popular in the
literature and goes some way towards predicting the decrease in severity of outbreaks are
so-called clustering coefficients. In your World window you will see at least one white
edge with two red endpoints. Look at one of these edges. No effective contact between
its endpoints by time t = 2 can be successful, and in some sense this edge decreases the
number of potential nodes that can become infectious at the next time step by 2 (one for
each endpoint). Clustering coefficients indicate whether we should expect many or relatively
few such edges. They explain some of the decrease in the number of candidates for infection
at the next step from 9 to the one you just found.

Each of the white edges with red endpoints that you see is an edge of a triangle whose
third endpoint is the grey node that represents the index case. Clustering coefficients can be
defined by counting the number of potential triangles; high clustering coefficients indicate
that there are a lot of them; low clustering coefficients indicate few.

Let us see how this works. Change

infection-prob: 1

Create a New network, run a simulation in slow motion for exactly one time step.
Count the number of white edges that connect two red nodes. There should be 3 of them;
each one is part of a triangle whose third vertex is the index case and whose other two edges
are grey.

Are 3 white edges a lot? To make sense of the phrases a lot or few we need to compare
the observed numbers with some benchmark. In the case of clustering coefficients, the
benchmark is the complete graph.

Choose
network-type → Complete Graph
num-nodes: 5

Create a New network. Run a simulation in slow motion for exactly one time step
and count the number of white edges that connect red nodes. This number gives us the
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benchmark; it is the number of edges in a complete graph Kn, where n is the size of N1(j
∗)

in the previous experiment. In our case n = 4 and the number of edges in the complete
graph is 6.

If we divide the number of white edges that we observed in the previous experiment
by 6, we obtain the node clustering coefficient of the index case. The formal definition will
be given in the next section.

2 Definitions of clustering coefficients

Several subtly different notions of clustering coefficient aka transitivity have been studied
in the literature. One always needs to carefully read the definition to see what, exactly,
these terms mean in the given source. We will work with four such notions in this chapter.
Here we give only their definitions and briefly describe their properties. In later sections we
will explore these notions at a more leisurely pace.

Consider a node i in a graph G. Recall that N1(i) denotes the set of i’s neighbors, that
is, nodes that are adjacent to i. Let tr(i) denote the number of edges {j1, j2} ∈ E(G) such
that j1, j2 ∈ N1. The number tr(i) is exactly the number of triangles that node i forms
with two of its neighbors. Let ki denote the degree of node i.

Watts and Strogatz [4] define the node3 clustering coefficient C(i) of i by dividing tr(i)
by its maximum possible value ki(ki − 1)/2.

C(i) =
2tr(i)

ki(ki − 1)
. (1)

If G represents friendships among people, the clustering coefficient C(i) measures the
ratio of the number of friendships between any two of i’s friends relative to a situation where
all these friends would induce a complete subgraph of G. Mathematicians actually refer to
such sets that induce complete subgraphs as cliques.

The network clustering coefficient C is defined as the mean of the node clustering coef-
ficients C(i):

C =
1

N

N∑
i=1

C(i). (2)

Unfortunately, this definition of C only makes sense if all nodes have degree ki ≥ 2. If
ki < 2, then C(i) is undefined. While one could define C in this case by taking the sum
in (2) only over those nodes for which ki ≥ 2, and replacing N in the factor 1

N by their
number, here we take a different route. If ki ≤ 1 and (1) does not give a definition of C(i),

then we interpret C(i) in (2) as the edge density, that is, the probability 2|E(G)|
N(N−1) that two

randomly chosen nodes are adjacent in G.
In Section 1 we have already seen one interpretation of clustering coefficients. Here is

an alternative interpretation that is often given in the literature. Consider a network G.

3Some authors refer to node clustering coefficients as local clustering coefficients.
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Suppose we randomly pick a node i, and then we randomly pick two nodes j1, j2 that are
adjacent to i. Does this procedure make it more likely or less likely that the pair {j1, j2}
forms an edge in a given graph, relative to a completely random choice of j1, j2?

To make sense of this question, let us first observe that our procedure requires that
j1, j2 ∈ N1(i). If {j1, j2} is an edge, then the subgraph Gind({i, j1, j2}) of G that is induced4

by the set of nodes {j1, j2, j3} will form a triangle. If G contains relatively many triangles,
as will be the case in large nearest neighbor graphs with d > 1, we might expect that the
answer will be “more likely.” On the other hand, we should expect the answer to be “less
likely” if G contains only relatively few triangles. If G does contain some edges but no
triangles at all, as in trees or graphs G1

NN (N, 1) for N > 3, then {j1, j2} simply cannot be
an edge and the answer will definitely be “less likely.”

Intuitively, one would expect the answer “more likely” for networks of social contacts.
Two randomly chosen friends of yours are more likely to be friends of each other than
two randomly chosen persons. The set of all your friends is unlikely to induce a complete
subgraph, or form a single clique, in the contact network, but it is rather likely that there
will be cliques among them (in the mathematical sense, not in the sense of the colloquial
overtones of the word). You and your friends will form a cluster in the friendship graph.

Figure 1: The graph G1.

Consider, for example, the graph G1 of Figure 1. It is supposed to model a social
contact network as described in Exercise 9.19 of [1]. Note that in this network, for example,
N1(9) = {6, 7, 8} is a single clique, while N1(11) is the union of two cliques {5, 7, 8} and
{2, 10}.

4The subgraph Gind(V −) of a graph G that is induced by a subset V − ⊆ V (G) is the graph with vertex
set V − and whose edges are exactly those pairs of vertices in V − that are edges in G.
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But what, exactly, do the phrases “relatively few” and “relatively many” triangles (or
cliques of size 3) mean? As we will illustrate in Section 3, the network clustering coefficient C
does not all by itself tell us whether two randomly chosen nodes are more likely, on average,
to be adjacent in G if they share a common neighbor. To remedy this drawback of the
network clustering coefficient C, let us introduce normalized clustering coefficients. These
are obtained by dividing by the edge density, that is, by the probability 2|E(G)|

N(N−1) that two
randomly chosen nodes are adjacent in G:

Cnorm(i) = C(i)
N(N − 1)

2|E(G)|
and

Cnorm = C
N(N − 1)

2|E(G)|
= C

N − 1

〈k〉
=

1

N

N∑
i=1

Cnorm(i).

(3)

The second equality in the definition of Cnorm follows from the fact that 2|E(G)| = 〈k〉N .
If C(i) is undefined in the sense of (1) for some node i, in (3) we again interpret C(i)

as the edge density and obtain Cnorm(i) = 1 in this case.
While C(i), C are numbers between 0 and 1, the normalized clustering coefficients can

take any nonnegative rational numbers as values. A value Cnorm(i) > 1 indicates that the
nodes in N1(i) are more likely than average to be adjacent; a value Cnorm(i) < 1 indicates
that for average i the nodes in N1(i) are less likely to be adjacent than randomly chosen
nodes. If Cnorm > 1 we will say the graph exhibits clustering; if Cnorm < 1 we will say that
the graph avoids clustering.

Exercise 3 Find the clustering coefficients C(i), C, Cnorm(i), Cnorm for (each node i of)
each of the following graphs and determine whether the graph exhibits or avoids clustering.

(a) For the graph G1
NN (9, 2).

(b) For the graph G2
NN (15, 1).

(c) For the graph G1 of Figure 1.

Exercise 4 Give an intuitive argument that for large N the normalized clustering coeffi-
cient Cnorm in GER(N,λ) should be very close to 1.

Many large contact networks G of interest in the study of disease transmission are sparse,
which means that the edge density is very low. For such networks the values of the network
clustering coefficient will be very close to 0 and become informative only if we compare
them with a benchmark. The commonly accepted benchmark is the graph GER(N,λ) with
the same number of nodes N and the same mean degree 〈k〉 = λ as the network G. As you
can see from Exercise 4, our normalized network clustering coefficients Cnorm are defined
in such a way that they directly give this comparison.

For many empirically studied networks the values Cnorm are very large. This seems to
be especially true if the number of nodes is large. For example, a study of the connectivity
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of 6, 374 servers of the internet [3] found a network with Cnorm = 400, a study of the
collaborations of 449,913 film actors [2] found a network with Cnorm = 800, and a study of
the network of 282 neurons of C. elegans found a network with Cnorm = 5.7 [4].

This indicates that these networks exhibit some form of strong clustering. A mathe-
matically precise definition of this notion poses a new mathematical challenge: How large
would Cnorm need to be so that we could confidently say that the clustering in this network
is “strong”? For any given network size N , there is a theoretical upper bound on Cnorm,
but no finite upper bound exists if we allow N to be arbitrarily large. A mathematically
meaningful definition of strong clustering will require us to consider a class of graphs that
contains graphs of arbitrarily large size N . We can then say that this class of graphs ex-
hibits strong clustering if Cnorm → ∞ a.a.s. (asymptotically almost surely), which means
here that for every probability q < 1 and fixed Ctarget there exists N(q, Ctarget) such that
a randomly drawn network of size N > N(q, Ctarget) in this class will with probability > q
satisfy the inequality Cnorm > Ctarget.

Note that in our terminology it makes sense to say that a given network exhibits or
avoids clustering. But the phrase “strong clustering” does not make sense for an individual
network; it applies only to classes of networks. By Exercise 4, for any given λ the class of
Erdős-Rényi networks GER(N,λ) does not exhibit strong clustering. In the next section
you will see examples of classes that do.

3 Exploring clustering coefficients of selected networks

Open IONTW and press Defaults. Work with the following parameter settings:

network-type → Erdos-Renyi
lambda: 8
num-nodes: 20, 40, 80, 160, 320

For each of the specified network sizes create one network with New and then press
Metrics before creating the next network. When you are done, use the double arrow on
the bar Command Center to enlarge this window and look at the statistics that you
collected.

Exercise 5 (a) Which limit do the values of Edge density appear to approach as N in-
creases?

(b) Which limit do the values of Clustering coefficient appear to approach as N in-
creases?

(c) Which limit do the values of Normalized clustering coefficient appear to approach
as N increases?

(d) Are these results consistent with what you learned in Section 2?

Press Clear to clean up the Command Center and minimize this window. Change

network-type → Nearest-neighbor 1
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d: 2

Repeat the steps of the data collection that you did for Erdős-Rényi networks of the
sizes specified above. As you proceed, you may want to visualize the distribution of the
values of C(i) by choosing

plot-metric → Normalized Coeffs

and pressing Update.

Exercise 6 (a) How would you describe the behavior of the values of Edge density as N
increases?

(b) How would you describe the behavior of the values of Clustering coefficient as N
increases?

(c) How would you describe the behavior of Normalized clustering coefficient as N
increases?

(d) Does the class of networks G1
NN (N, 2) appear to exhibit strong clustering?

Retain your statistics for reference and change

network-type → Nearest-neighbor 2
num-nodes: 25, 36, 100, 225

Repeat the steps that you did for the previous types of networks to collect data on
networks G2

NN (N2, 2) of the specified sizes N2. Inspect the data.

Exercise 7 (a) How would you describe the behavior of the values of Edge density as N
increases?

(b) How would you describe the behavior of the values of Clustering coefficient as
N increases? How is the behavior different from the one that you observed for nearest
neighbor 1 networks and how would you explain the difference?

(c) How would you describe the behavior of Normalized clustering coefficient as N
increases?

(d) Does the class of networks G2
NN (N2, 2) appear to exhibit strong clustering?

Now set

d: 1

Press New and then Metrics. The command center will show you that both clustering
coefficients C and Cnorm are 0. This should be expected from the definitions, as the graph
in the World window contains no triangles whatsoever.

Next let us explore what kind of information the different types of clustering coefficients
give us about the relative likelihood that two neighbors of a randomly chosen node will
form an edge compared with two randomly chosen nodes. Consider the graphs in Figures 2
and 3. We can calculate their clustering coefficients according to formulas of Subsection 2
as follows: For i ≤ 10 we get tr(i) = 0 = C(i); for i > 10 we get tr(i) = 1 and C(i) = 1.
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Figure 2: The graph G2.

By taking the mean we get the same network clustering coefficient C = 3
13 ≈ 0.23 for both

graphs.
Since the graph G2 contains a total of 13 edges, the probability that two randomly

chosen nodes are adjacent is equal to 13

(132 )
≈ 0.17. Thus the average probability that two

randomly chosen neighbors of a randomly chosen node are adjacent, as represented by the
clustering coefficient C, is larger than for two nodes that are chosen completely randomly.
In contrast, in G3 the probability that two randomly chosen nodes are adjacent is equal
to 33

(132 )
≈ 0.29, which is larger than the clustering coefficient. It follows that in G3, on

average, the probability that two nodes in the neighborhood N1(i) of a randomly chosen
node i will be smaller than for completely randomly chosen nodes. Thus all by itself, the
network clustering coefficient C does not give us information whether two friends of one’s
friends are more likely to be friends than two randomly chosen people.

In contrast, the normalized network clustering coefficients give you this information. A
value Cnorm(i) > 1 indicates that the nodes in N1(i) are more likely than average to be
adjacent; a value Cnorm < 1 indicates that for average i the nodes in N1(i) are less likely to
be adjacent than randomly chosen nodes. Let us check how this works out for the graphs G2

and G3 above.

Exercise 8 Calculate Cnorm(i) for all nodes i and Cnorm in the graphs G2 and G3 of
Figures 2 and 3.
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Figure 3: The graph G3.

4 Mathematical explorations of normalized clustering coef-
ficients

In this section we present four theoretical results that will be of interest primarily to students
with a strong mathematical background. The topics range from normalized clustering
coefficients in trees, Erdős-Rényi graphs, and generic random graphs for given degree
distributions to a general theorem on strong clustering. The four topics are independent of
each other.

As a warm-up, we recommend the following exercise.

Exercise 9 Suppose that G is a tree. Find a formula for Cnorm(G) in terms of the number
of leaves and show that we always have Cnorm < 1 if G has N > 2 nodes.

Exercise 4 of Section 2 shows that the normalized clustering coefficient Cnorm inGER(N,λ)
will be very close to 1. Clustering coefficients Cnorm(i) for individual nodes may substan-
tially differ from 1 though. To see this, choose

network-type → Erdos-Renyi
num-nodes: 200
lambda: 2

Create a New network and press Metrics to look up the normalized clustering coeffi-
cient. It should be close to 1. The clustering coefficient should on average be a very small
positive number. If it is 0 in your example, try again until you see a small positive number.

Now choose

plot-metric → Normalized Coeffs
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and press Update to see the distribution of the normalized node clustering coeffi-
cients Cnorm(i). Most of them will be equal to 0, but a few may take very high values.

In view of our results on the degree distribution in Erdős-Rényi networks, most neigh-
borhoods N1(i) will have size on the order of λ = p(N − 1). If λ is very small relative to N ,
we should expect that C(i) = 0 for most i. In this situation even a single edge between
nodes in N1(i) will result in very large values of Cnorm(i). Thus, in general, the values
of Cnorm(i) will show a large range, but the effect will mostly cancel out if we compute the
mean Cnorm.

Exercise 10 Assume N is very large, but λ = 2.

(a) Derive a rough estimate of the expected maximum value of these coefficients.

(b) Check whether your estimate matches the values that IONTW displays in the plot Net-
work Metrics for option plot-metric → Normalized Coeff .

For generic random graphs, there is an interesting relation between Cnorm and the excess
〈kf 〉− 〈k〉 in the friendship paradox (for definitions, see our module The friendship paradox
at this website).

Exercise 11 (a) Suppose q̄ is a degree distribution with q0 = q1 = 0. Show that generic
random graphs GD(N, q̄) of large size N will satisfy

Cnorm > 1 if 〈kf 〉 − 〈k〉 > 1 and

Cnorm < 1 if 〈kf 〉 − 〈k〉 < 1.

(b) What can you deduce about Cnorm for generic k-regular graphs GReg(N, k) with k ≥ 2?

The results of Exercises 6 and 7 suggest that the classes of networks G1
NN (N, 2) and

G2
NN (N2, 2) exhibit strong clustering. Let us now state and prove a general theorem that

implies that this is indeed the case.

Theorem 1 Suppose we are given a class of graphs G(N) that contains representatives of
arbitrarily large sizes N . Moreover, assume that the mean degree 〈k〉 approaches a finite
limit as N increases without bound, and tr(i) ≥ 1 for each node i in all graphs G(N). Then
this class exhibits strong clustering.

First note that for all fixed d ≥ 1 and sufficiently large N the graphs G1
NN (N, d) are

2d regular and thus satisfy the first assumption of Theorem 1. The graphs G2
NN (N2, d) are

not regular, but one can show that they still satisfy this first assumption for any fixed value
of d. Thus in all these classes there exists some finite upper bound kmax on the degrees so
that ki ≤ kmax for all nodes i in all graphs G(N) of the class.

Exercise 12 (a) Find an upper bound on the degree of any node in G2
NN (N2, d) that does

not depend on N .

(b) Show that the graphs G1
NN (N, d) and G2

NN (N2, d) with N > 2 and d > 1 have the
property that tr(i) ≥ 1 for each node i.
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Thus Theorem 1 implies that all classes G1
NN (N, d) and G2

NN (N2, d) with fixed d > 1
exhibit strong clustering.

Exercise 13 Prove Theorem 1 under the additional assumption that there exists some finite
upper bound kmax on the degrees so that ki ≤ kmax for all nodes i in all graphs G(N).
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