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This module1 has two parts. The first part is purely conceptual and invites readers to
critically evaluate popular claims based on Stanley Milgram’s famous experiment that gave
birth to the phrases “small-world property” and “six degrees of separation.” In the second
part we use IONTW to explore distances between nodes in several types of networks. We
also explore various possible formal definitions of the small-world property and propose one
that is suitable for classes of disconnected networks. The parts are somewhat independent
of each other, but we recommend that the reader work through both parts in the order given
here. The exercises within each part should definitely not be attempted out of sequence.

1 Milgram’s famous “six degrees of separation” experiment

Consider the network GFN whose nodes represent humans and whose edges connect any
two persons who are acquainted on a first-name basis. Let d(i, j) be the distance between
two nodes in this network, that is, the number of edges in the shortest path from i to j
in GFN . If i, j are chosen randomly, then d(i, j) becomes a r.v. What can we say about its
distribution?

The American social psychologist Stanley Milgram and his collaborators conducted an
ingenious experiment to answer this question; the results were reported in [2]. The experi-
menters recruited 296 volunteers from Nebraska and the Boston area. Each volunteer i was
given a letter with some information about a Boston stock broker j and was instructed to
send it to a person with whom the volunteer was acquainted on a first-name basis (along an
edge of GFN ) and whom the volunteer thought to be at a closer distance from j in GFN .
Attached to the letter were instructions to continue forwarding it in this manner, until
it would be sent to the stock broker j. The experimenters kept track of the number of
intermediaries i1, . . . , im (excluding i and j) that forwarded the letter.

Exercise 1 Suppose the letter did eventually get sent to j. How is the number m of inter-
mediaries related to the distance d(i, j)?
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Out of the 296 letters, 64 eventually reached their target.

Exercise 2 Does the success rate of 64
296 (approximately 22%) tell us anything about the

structure of the network GFN?

For the letters that did arrive, the researchers reported a mean number of 5.2 intermedi-
aries. This result has inspired the popular claim that there are only six degrees of separation
between any two humans.

Exercise 3 Critically evaluate this claim. What do or don’t the results of Milgram tell us
about the likely maximum, mean, or median of d(i, j) in GFN?

We will return to this exercise at the end of the second part of this module, but don’t
try to look up our solution at this point. Instead, write down your thoughts.

2 Exploring distances with IONTW

Open IONTW, click Defaults, and choose the following parameter settings:

network-type → Nearest-neighbor 2
num-nodes: 100
d: 1

Create a network by pressing New and then toggle Labels to see how the nodes are num-
bered. The network that you see in your World window will be denoted by G2

NN (100, 1).
We call the graphs G2

NN (N, d) two-dimensional nearest neighbor networks.

Exercise 4 (a) Find d(13, 21) and d(21, 66) in this network.

(b) Find the diameter of this network, that is, find the maximum distance of any pair of
nodes. For which pairs of nodes is the maximum attained?

Calculating the mean or median distances for randomly chosen nodes in G2
NN (100, 1)

would be a bit tedious. Can you look it up in the Command Center after pressing
Metrics?

Well, maybe. The display gives you a line

Average path length in largest component = 6.66667

This looks like it could be the mean or median distance. But the word “Average” could
refer to a mean or a median, and the phrase “path length” could refer to distance (the
length of the shortest path) or to some kind of average taken over all paths. We could have
been more clear, but we designed IONTW so as to put you here in a situation that you
will encounter quite frequently when using commercial software: The terminology in the
interface is not what you are used to, and surprisingly often it is ambiguous. When using
software for scientific purposes, you always need to make sure what, exactly, it actually
calculates. Let us divulge that this metric is indeed a mean or median distance. But this

2



leaves you still with as many as 4 distinct interpretations, depending on whether or not
distances from nodes to themselves are included in the calculations!

Let us see which interpretation is correct. Change

num-nodes: 6

and click New to create a network G2
NN (6, 1). Then click Metrics to see which value

IONTW reports for

Average path length in largest component

Exercise 5 (a) Find the median distance for all 15 pairs {i, j} of nodes with i 6= j.

(b) Find the mean distance for all 15 pairs {i, j} of nodes with i 6= j.

(c) Find the median distance for all 21 pairs {i, j} of nodes.

(d) Find the mean distance for all 21 pairs {i, j} of nodes.

(e) Which of these results agrees with the value that is reported in the Command Center
after pressing Metrics?

Let us look at another example of how the mean distance can be related to the median
distance. Choose the following parameter settings:

network-type → Regular Tree
lambda: 2
d: 5

Create a network by clicking New, move the speed control slider to the extreme right,
press Spring, and wait a minute or so. When the graph in the World window has taken
a nice shape, press Spring again and then Scale to make it better fit the World window.
One needs to be a little careful with interpreting the resulting picture in the World window.
All nodes numbered 6 or higher are leaves of this tree and have degree 1, even though the
action of Spring may place some of them on top of another edge. Choose

plot-metric → Shortest Paths

and click Update. The height of the largest bar of the Network Metrics plot is shown
on the vertical axis; you can find the approximate height of the other bars in the histogram
by moving the cursor to the top line of each bar.

Exercise 6 Use the histogram in the Network Metrics plot to find the median distance
for this network and compare it with the mean.

The mean distance and the diameter are properties of a given network. Let us see what
they tell us about the spread of diseases. Click Defaults and choose the following settings:

model-time: Discrete
time-step: 1
infection-prob: 1
end-infection-prob: 1
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network-type → Nearest-neighbor 2
num-nodes: 100
d: 1
set-state-by → Vector from input

This sets up a next-generation SIR-model where at each time step every host is guar-
anteed to make effective contact with all adjacent hosts.

Create a New network G2
NN (100, 1), and toggle Labels to see the numbering of the

nodes. Make node 0 the index case by using the following procedure:

Click Set
In the dialogue box that appears enter

[0]

Click OK.

Make sure that everything worked as expected so that you have an initial state where
node 0 is infectious and all other nodes are susceptible. Set the speed slider to a slow speed;
adjust for comfortable viewing as needed. Now click Go and watch the movie. If you want
to restart it, use Last.

Exercise 7 (a) What is the relationship between node 0 and the nodes that are infectious
at time step t?

(b) How is the time at the end of the outbreak, measured in ticks, related to the network
properties that we discussed earlier?

Now repeat the experiment by using Reset and then making first node 50 and then
node 55 the single index case. In the dialogue box that appears after clicking Set you will
need to enter first [50] and then [55].

While previously the duration of the outbreak was diam(G2
NN (100, 1)) + 1, now you get

shorter outbreaks. But even after subtracting 1, you will get a number that exceeds the
mean distance. Let us use the symbol D(j∗) for the number that we get after subtracting 1
from the duration of the outbreak caused by index case j∗ in an otherwise susceptible
population in a model with the disease transmission parameters listed above. This number
can be defined for every network.

Exercise 8 (a) Give a verbal description of D(j∗) and convince yourself that it cannot
exceed the diameter of the network.

(b) Convince yourself that in any network the mean 〈D(j∗)〉 cannot be smaller than the
mean distance between nodes.

(c) Can you find networks where the mean 〈D(j∗)〉 is equal to the mean distance between
nodes?

We have observed something very important: Two network parameters, the diameter
and the mean distance, give us upper and lower bounds on the mean duration of outbreaks of
certain types of diseases. Thus one could use these network parameters to make predictions
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about the duration of outbreaks. The relation between these network parameters and
the duration of outbreaks becomes less tight for disease transmission parameters that are
different from the ones we considered here, but there will still be a close connection.

Unfortunately, in simulations we are restricted to exploring rather small networks, while
real outbreaks happen in populations of thousands or millions of hosts. It is therefore of
interest to explore how the diameter and mean distance scale if we retain the general
structure of the network but increase the number of nodes.

Let us start with very simple networks. Change the following settings:

Press Clear on the Command Center bar.
network-type → Nearest-neighbor 2
num-nodes: 11
d: 1

Click New and find the diameter of the network by visual inspection. Record it, and
then click Metrics to verify your results. Repeat with

num-nodes: 23, 47

Note that for prime numbers N the graphs G2
NN (N, 1) are not really two-dimensional

grids but simple paths.
Enlarge the Command Center with the double-arrow icon and look at the data that

you have recorded. Would it be fair to say that for graphs G2
NN (N, 1) with N prime the

diameter and the mean distance roughly double when you roughly double the number of
nodes?

Such a pattern is indicative of linear scaling. We say that the value of a quantity χ(N)
that depends on N scales linearly if

lim
N→∞

χ(N)

N
= c, (1)

where c is a nonzero constant. This does not mean that χ(N) = cN , it only means that for
sufficiently large N we can take cN as a fairly good estimate of χ(N). Since c(2N) = 2cN ,
linear scaling produces the pattern that you observed.

Nonlinear scaling can take many different forms. For example, if D is a fixed exponent,
then we say that χ(N) scales like ND if

lim
N→∞

χ(N)

ND
= c 6= 0. (2)

Of course, (1) is nothing else than the special case of (2) for D = 1. In other words, linear
scaling is a special kind of power law scaling. Now suppose χ(N) scales like N0.5 =

√
N .

Then quadrupling N should have the effect of roughly doubling χ(N) as c
√

4N =
√

4cN .
Let us see whether the class of square grids without diagonals is such an example.

Repeat the previous experiment for

num-nodes: 25, 100, 400
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Does it appear the the diameter and mean distance scale like
√
N in the class of networks

G2
NN (N, 1) with N = n2?

So far, we have considered only networks with a rigid structure. But now let us explore
some random graphs. Change the following parameter settings:

Press Clear on the Command Center bar.
network-type → Random Regular
num-nodes: 50
lambda: 4

Click New to create an instance of GReg(50, 4). Use Metrics to find the mean distance
between nodes.

Since every instance of a random graph is slightly different, we may want to look at
several instances drawn from the same distribution. Create 5 instances each of GReg(50, 4),
GReg(100, 4), GReg(200, 4) by changing num-nodes accordingly and using New. For each
new instance, click Metrics.

Enlarge the Command Center with the double-arrow icon and look at the data that
you have recorded. Would it be fair to say that the mean distance between nodes roughly
increases by a constant number when you double the number of nodes?

This pattern is indicative of logarithmic scaling rather than power law scaling. We say
that χ(N) scales logarithmically if

lim
N→∞

χ(N)

ln(N)
= c 6= 0. (3)

Since c ln(2N) = c(ln(2)+ln(N)) = c ln(N)+c ln(2), if χ(N) scales logarithmically, then
for sufficiently large N we would see a roughly constant increment of χ(N) by ≈ c ln(2)
when we double N .

Recall our discussion on Section 1 of the famous experiment that gave birth to the
phrase “small-world property.” If you have initially skipped this section, work through it
now. Why would a mean or even maximum distance of 6 between two randomly chosen
people be considered surprisingly small? There would not be anything remarkably small
about this number in a village of 100 people or even in the town of 20,000. But on the
scale of the whole human population, the number 6 seems surprisingly small. We can see
that a rigorous definition of the small-world property will make sense only in the context
of a class of networks, and it should be expressed in terms of a scaling law of an average
distance. As a first approximation, let us say that a class of networks has the small-world
property if the average distance for networks in this class scales at most logarithmically
with network size N . This means that (3) will hold if we take χ(N) to be the average
distance and allow the limit to be zero. Equivalently, we could say that for some fixed c > 0
we will have χ(N) ≤ c ln(N).

We have again been vague about the meaning of “average” in the above definition. For
classes of connected graphs we could use the mean. The classes G1

NN (N, d) and G2
NN (N, d)

of nearest neighbor networks consist of connected graphs and our explorations indicate that
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they do not have the small-world property. This can be rigorously proved. Random regular
graphs GReg(N, k) for k > 2 are a.a.s. (asymptotically almost surely2) connected, and it
can be rigorously proved that for any k > 2 this class has the small-world property. Our
explorations indicate as much. But since, for example, G1

NN (200, 2) is also an instance of
a 4-regular graph of size N , it could be drawn as an instance of GReg(200, 4), although the
probability of this event is very, very small. For classes of random graphs we will in general
not be able to say that the average distance is always ≤ c ln(N). This inequality will only
hold a.a.s., that is, with probability arbitrarily close to 1 as N →∞.

But how about disconnected graphs? Defining the small-world property in terms of the
mean distance no longer works as for a graph with several connected components. As we
explained in our brief review of probability theory at this web site, the mean distance will
always be infinite. Should we interpret the “average” as the median in this case?

Consider the class of Erdős-Rényi random graphs GER(N,λ) for a fixed λ > 1. Ac-
cording to the results of our module Exploring Erdős-Rényi random graphs with IONTW
at this web site, the graphs in this class are a.a.s. disconnected, with one giant connected
component of size close to %(λ)N , and the size of the second largest component scaling
logarithmically in N . Thus a.a.s., the mean distance between two randomly chosen nodes
will be infinite. However, the mean distance between any two nodes in the largest com-
ponent will still be finite, and this is the value that our software reports when you press
Metrics after creating a New network. The corresponding median is not reported; we
need to estimate it ourselves. The diameter of the largest connected component will be
helpful in these estimates. One can prove that this diameter a.a.s. scales logarithmically
for graphs GER(N,λ) [1].

Exercise 9 How could you use IONTW to obtain a rough empirical confirmation of this
theoretical result by considering instances of GER(N, 4) for N = 50, 100, 200?

In other words, for fixed λ > 1, a.a.s. the diameter of the largest connected component
of GER(N,λ) will be ≤ cdiam ln(N) for some fixed constant cdiam. If the inequality holds,
then d(i, j) ≤ cdiam ln(N) for all pairs of nodes i 6= j that both belong to the giant compo-
nent. But if i and j belong to different connected components, then d(i, j) =∞. Thus the
overall median of the distances will be ≤ cdiam ln(N) if the probability that two randomly
chosen distinct nodes both belong to the giant component is at least 0.5, and will be infinite
otherwise.

Now let us return to the problem of defining the small-world property for classes of
disconnected graphs. We could perhaps say that the class of Erdős-Rényi random graphs
with mean degree λ has the small-world property if a.a.s. the overall median distance does
not exceed the diameter of the giant component. But when will this be the case?

Let us look at some examples. Change the following parameter settings:

network-type → Erdos-Renyi

2See Subsection 1.2 of our module Exploring Erdős-Rényi random graphs with IONTW at this web site
https:qubeshub.org/iontw for a definition of “a.a.s.”
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num-nodes: 200
lambda: 2

Click New to create an instance of GER(200, 2). According to the logarithmic scaling
law for the diameter, we can assume that the largest components of the graph that you see
in the World window will with high probability have diameter ≤ cdiam ln(N). Now press
Metrics and use the information it gives you about the largest component to complete the
following exercise.

Exercise 10 (a) Estimate the probability that two randomly chosen nodes belong to the
largest component of the instance of GER(200, 2) that you see in your World window.
Based on this calculation, is the overall median distance finite or infinite?

(b) Now change lambda to 1.5 while retaining all other parameters. Create a New network
and repeat the calculations of point (a) for the new network.

(c) Formulate necessary and sufficient conditions on the parameter λ for the overall median
distance Q2 to a.a.s. satisfy the inequality Q2 ≤ cdiam ln(N).

Most sources in the literature define the small-world property in terms of logarithmic
scaling of the mean distance. This works fine for connected graphs, but even a single isolated
node makes the mean distance infinite. Exercise 10 shows that the median overall distance
may or may not work well for classes of disconnected graphs. If you analyze its solution
carefully, you will notice that for each λ > 1 there is always a positive P so that in the class
of random graphs GER(N,λ) the P -th percentile of the distance between randomly chosen
nodes scales at most logarithmically: Any P with 0 < P

100 < (%(λ))2 will work.
Thus we believe that the best way of conceptualizing the small-world property of a class

of graphs is to require that for some fixed P > 0 there exists a positive constant c such
that the P -th percentile of the distance between randomly chosen nodes a.a.s. satisfies the
inequality ≤ c ln(N). The classes of random regular graphs GReg(N, k) have this property
for all choices of k > 2, but do not have it for k = 1 or k = 2. The classes of Erdős-Rényi
random graphs GER(N,λ) have this property for all choices of λ > 1, but do not have it
for λ ≤ 1. The classes of graphs G1

NN (N, d) or G2
NN (N, d) do not have this property for

any choice of d.

Exercise 11 Reread your solution of Exercise 3. How do your arguments relate to what you
have learned in this second part of the module? Would you want to modify your solution?
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