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Small-world networks are classes of networks that have both the small-world property
and exhibit strong clustering. Two constructions of such networks are implemented in
IONTW. Here we study, both theoretically and with simulation experiments, the structure
of these networks and how it influences effectiveness of a certain vaccination strategy.

1 Small worlds

1.1 The small-world property and small-world networks

In our module Exploring distances with IONTW [2] you learned that a class of networks has
the small-world property if, for some fixed positive constants P and c, the P -th percentile of
the distance between two randomly chosen nodes will asymptotically almost surely1 (a.a.s.)
be less than c ln(N). Thus the small-world property can be conceptualized in terms of
a small median (or other percentile) distance between two randomly chosen nodes of a
network. It is defined only for classes of networks that contain instances of arbitrarily large
size N .

In our module Clustering coefficients [1] we introduced the notion of normalized network
clustering coefficients Cnorm and the property of strong clustering for a class of networks.
This property holds if, and only if, Cnorm →∞ a.a.s. as N →∞ for networks in this class.
Classes of networks that have both the small-world property and exhibit strong clustering
will be called small-world networks.

While many empirically studied contact networks appear to be small-world networks [8],
none of the classes of graphs that we have explored in our earlier modules at this website2

qualify. Erdős-Rényi random graphs GER(N,λ), random regular graphs GReg(N, k) and
many other graphs GD(N, q̄) that are generic for a given degree distribution have the small-
world property but don’t exhibit strong clustering. On the other hand, as you saw in
our modules [1, 2], the classes of nearest neighbor networks G1

NN (N, d) and G2
NN (N, d)

with d > 1 exhibit strong clustering, but do not have the small-world property.
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In the next subsection we will construct specific examples of small-world networks and
call them small-world models. Readers should be aware that there is no consensus about
the usage of the terms “small-world property,” “small-world network,” and “small-world
model.” Different sources in the literature use different mappings between these phrases
and the three concepts. One always needs to carefully read the definition in each source to
figure out the intended meaning.

1.2 Small-world models

Consider the monastic order of the Sisters of the Round Table that we introduced in [3].
The sisters spend most of their lives in their individual cells, where they devote themselves
to prayer and meditation. The only time they have contact with each other is during meals
that they take seated in a fixed order around a giant round table. Within this community,
diseases can be transmitted only during mealtime.

The probability of transmission will be largest between sisters who sit next to each
other, and then decrease with the distance at the table. When constructing a network
model, we need to decide on a cutoff. Let us assume that there is a significant probability
of transmission from sister i to sister j if at most one sister sits in between. This will
be the case if |i − j| ≤ 2. But since the table is round, this will also be the case if, for
example, i = 2 and j = N . This construction gives a contact network that is modeled by
the graph G1

NN (N, 2). More generally, if there is a significant probability of transmission
between sisters that have at most d− 1 seats between them, the resulting contact network
will be modeled by the graph G1

NN (N, d). Recall form our module [6] that these graphs
are called one-dimensional nearest-neighbor networks. In IONTW, they are implemented
by the option

network-type → Nearest-neighbor 1.

There is a problem though with our story: Even in a strictly monastic setting, con-
tact networks will rarely have such a rigid structure as G1

NN (N, d). The Sisters will not
necessarily head straight to the table from their cells. More likely, along the way they
will exchange a few kind words with their next-cell neighbors who may be seated across
the table. We can incorporate these more informal contacts into our network model by
adding a few randomly chosen edges to a graph G1

NN (N, d). This will result in a class of
networks that simultaneously exhibits strong clustering and has the small-world property.
Quite literally, the Sisters can have the best of both worlds!

We construct our small-world models by adding a few randomly chosen edges to a graph
G1

NN (N, d) or G2
NN (N, d). As you will see, for fixed parameters d > 1, these constructions

result in classes of graphs that exhibit both strong clustering and have the small-world
property, that is, in classes of small-world networks.

The construction that we are describing here is a modification of the networks that
Watts and Strogatz introduced in their seminal paper [8]. The main difference is that the
small-world models of [8] were constructed by randomly rewiring a small fraction of the
edges in networks G1

NN (N, d) or G2
NN (N, d) rather than randomly adding new edges. The
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modification we are using here was proposed in [7]. It gives networks that have similar
properties to the ones studied by Watts and Strogatz in [8], but are slightly easier to define
and a lot easier to analyze mathematically.

Let us give a mathematically rigorous definition of our small-world networks. We con-
struct random graphs G = Gdim

SW (N, d, λ) for dim = 1, 2, d ≥ 1, and λ > 0 as follows:

• Let Gshort = Gdim
NN (N, d).

• Randomly choose an Erdős-Rényi graph Glong = GER(N,λ).

• Define V (G) = {1, . . . , N} and E(G) = E(Gshort) ∪ E(Glong).

We can think of Gdim
SW (N, d, λ) as having two types of edges: short edges that it inherits

from Gdim
NN (N, d) and long edges that it inherits from GER(Nλ). In the example of the

Sisters of the Round Table the short edges represent the contacts between sisters that are
seated close to each other at the table, and the long edges represent the more informal
contacts that they make in the hall with sisters from across the table. It is possible that
some edges will be simultaneously “short” and “long” in this sense; we will always treat
them as long ones.

In Section 2 we will take a close look at some of the networksGdim
SW (N, d, λ). In particular,

we will show that for d > 1, λ > 0 our small-world models really are small-world networks.
In Section 3 we will explore how diseases spread in our small-world models. More precisely,
we will investigate how well a vaccination strategy that we developed in Section 9.4.3 of [4]
for G1

NN (N, 2) will work when the contact network is a small-world model G1
SW (N, 2, λ).

Let us mention that one can easily generalize the definition given above by starting with
higher-dimensional versions of nearest-neighbor networks and/or using different types of
random networks (such as the scale-free networks of [5]) instead of Erdős-Rényi networks
GER(N,λ) for the long edges. Exploration of the resulting small-world models is of great
interest and an active area of research, but goes beyond the scope of this module.

2 Exploring small worlds with IONTW

2.1 Small world models in IONTW

Open IONTW, click Defaults, and change the following parameter settings:

network-type → Small World 2
num-nodes: 100
lambda: 0
d: 2

Click New. In the World window you will see a network G2
NN (100, 2), which is a

10-by-10 rectangular grid with diagonals. Since we have set lambda = 0, this isn’t really
a small-world model; it has no long edges whatsoever. But we want to use it as a baseline
for comparison. Click Metrics to record its properties for future reference.
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Now change

lambda: 0.2

and press New again. This will create an instance of G2
SW (100, 2, 0.2). You will see a

few long edges in addition to the short ones. Click Metrics, and repeat for

lambda: 0.4, 0.6. 0.8

Be sure to click Metrics after creation of each network.
You will have seen more and more long edges appearing as you increased lambda. Let

us see what their addition did to the network properties. Enlarge the Command Center
by clicking on the double-arrow icon and look at the data. Most likely you will observe that
as the parameter λ increases in increments of 0.2, the following changes in the characteristic
properties of G2

SW (100, 2, λ) occur:

• The mean degree 〈k〉 increases; roughly in increments of 0.2.

• The edge density slightly increases.

• The (normalized) network clustering coefficients decrease.

• The mean distance decreases.

• The diameter may decrease.

Your data may not give a clear-cut picture due to the inherent randomness, but the
general pattern should be discernible.

Let us look at a larger network. Set

num-nodes: 400

Repeat the previous experiment for

lambda: 0, 0.8

You may observe that although the mean degree increases by only about 10%, in
G2

SW (400, 2, 0.8) the mean distance and the diameter are less than half in of what they
were in G2

SW (400, 2, 0).

How could adding a few random long edges have such a large effect? Let us look at
some examples of type G1

SW (N, d, λ). Change

network-type → Small World 1
num-nodes: 10
lambda: 0
d: 1

Click New. In the World window, you will see the networkG1
SW (10, 1, 0) = G1

NN (10, 1).
Let’s turn this nearest-neighbor network into a true small-world network by changing

lambda: 1
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After clicking New, you will see an instance of G1
SW (10, 1, 1) with a few long edges in

addition to the short ones of G1
NN (10, 1).

Now let us try something bigger. Change

num-nodes: 101
lambda: 0

Click New to create the network G1
NN (101, 1). Click Labels to see how the nodes are

numbered.
Nodes 40 and 90 are opposite each other in this network. The distance d(40, 90) = 50; it

is the diameter of this network. By looking at the picture you can see why mathematicians
call the maximum distance of any two nodes in a graph “diameter.” Click Metrics and
look up the diameter and the mean distance between any nodes in the Command Center.

Of course, if you add the edge {40, 90}, you will get a distance d(40, 90) = 1. But when
we add a few random edges as in the construction of G1

SW (101, 1, λ) it is unlikely that one
of them will be {40, 90}. Instead of having the computer add random long edges, let’s study
the effect on the network properties of adding the particular edge {50, 67}. You can create
this edge manually by choosing

spawn-kill → Spawn

clicking Link, and then first clicking on node 50 and next on node 67. Click Metrics
and look up the diameter and the mean distance between any nodes in the Command
Center.

Exercise 1 (a) Find d(40, 90) in the new network and explain how you calculated it.

(b) Explain why the addition of the new edge changed the mean distance, but only slightly.

(c) Explain why the addition of the new edge did not change the diameter.

Can you see that it doesn’t matter all that much where we put the new edge? Had we
added the edge {52, 69} instead of {50, 67}, the effect on d(40, 90) would have been exactly
the same.

Now choose

spawn-kill → Kill

and remove the new edge by first pressing Link and then clicking on its endpoints.
Return to

spawn-kill → Spawn

and add two new edges {42, 70} and {66, 93} to G1
NN (101, 1). Click Metrics and look

up the diameter and the mean distance between any nodes in the Command Center.

Exercise 2 (a) Find d(40, 90) in the new network and explain how you calculated it.

(b) Explain why the addition of the new edges changed the mean distance rather significantly.

(c) Explain why the addition of the new edges substantially decreased the diameter.
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Can you see how addition of very few random edges may shorten the distance between
nodes i, j even when none of these edges has i or j as is endpoint and how this may
dramatically decrease the mean distance and the diameter?

2.2 Mathematical derivations of some properties of Gdim
SW (N, d, λ)

We will focus on three network properties here: The mean degree 〈k〉, the normalized
network-clustering coefficient Cnorm, and the median distance between any two nodes.
Moreover, in order to sidestep some distracting technicalities, for the two-dimensional case
we will mostly focus only on networks G2

SW (N2, d, λ), although the results generalize to
small-world models based on rectangular rather than square grids, many of which are im-
plemented in IONTW as G2

SW (N, d, λ).

Exercise 3 (a) Find an approximation µ to the mean degree in G1
SW (N, d, λ) that a.a.s.

approaches the true mean degree 〈k〉 when N →∞.

(b) Repeat part (a) for G2
SW (N2, 1, λ).

(c) Find an exact formula for the expected mean degree 〈k〉 in G1
SW (10, 2, 0.2).

(d) Find an exact formula for the expected mean degree 〈k〉 in G1
SW (N, d, λ).

(e) Repeat parts (c) and (d) for G2
SW (16, 1, 0.1) and G2

SW (N2, 1, λ).

We have optimistically labeled the graphs Sdim
SW (N, d, λ) “small-world models.” But do

they live up to this name? We will need to show that our two classes of networks are
small-world networks, that is, exhibit strong clustering and have the small-world property.

Strong clustering requires that normalized network clustering coefficients Cnorm will
grow without bounds when the network size increases without bound while the other two
parameters, d and λ, remain fixed. By Exercise 12(b) of Module [1], the graphs G1

NN (N, d)
and G2

NN (N2, d) with d > 1 have the property that tr(i) ≥ 1 for each node i, and the
same will continue to hold in the corresponding small-world networks G1

SW (N, d, λ) and
G2

SW (N2, d, λ). Moreover, by Exercise 3(a)(b) above, for each of these classes the expected
mean degree 〈k〉 will approach some finite number that depends on the particular choice
of d, λ. Thus each of the classes G1

NN (N, d, λ) and G2
NN (N2, d, λ) with fixed d > 1 and

λ satisfies the assumptions of Theorem 1 of Module [1], and we can conclude that each of
these classes exhibits strong clustering.

Exercise 4 (a) Consider Gdim
SW (N, d, λ), where the parameters dim,N, d are fixed, d > 1,

and the network size N is very large. Explain why you usually will see a decrease in the
normalized network clustering coefficient Cnorm when you increase the value of λ.

(b) What behavior of Cnorm would you expect in the setup for part (a) when you set d = 1?
How would you explain the predicted differences from part (a)?

Finally, let us consider the small-world property. As you have seen in our module [2], a
class of networks will have this property if for some constants P and c, the P -th percentile of
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the distance between two randomly chosen nodes will asymptotically almost surely (a.a.s.)
be less than c ln(N).

If λ > 1, then the graph Glong = GER(N,λ) is predicted to a.a.s. contain a giant
component of diameter < cdiam ln(N) for some constant cdiam. Thus a.a.s., if i, j are nodes
in the giant component of Glong = GER(N,λ), there will be a path of length < cdiam ln(N)
from i to j. Since each such path is also a path in Gdim

SW (N, d, λ), the small-world property
of the latter class of networks follows. If λ is sufficiently large, then the percentile P in the
definition of this property can be taken to be the median Q2 (see Exercise 10 of [2]).

However, if 0 < λ < 1, then the class of graphs GER(N,λ) does not have the small-world
property, but our small-world models do. Even if λ is very small but positive, we will still
be able to travel from any node i to any node j along a path of very small length. This
path may need to contain both short and long edges though.

The following exercise gives important insights into the structure of typical small-world
networks. Part (a) of the above exercise should be accessible to all of our students; part (b)
is intended for students with an advanced mathematical background. While we phrased
the exercise only in terms of networks G1

SW (N, d, λ), the analogous result is also true for
networks G2

SW (N, d, λ) and can be proved similarly.

Exercise 5 (a) Give an intuitive explanation why for any choice of d and of λ > 0 the
class of networks G1

SW (N, d, λ) should have the small-world property. A hint will be given
in Section 4 after the references, but first try doing the problem without a hint.
(b) Give a formal prove that for any choice of d and of λ > 0 the networks G1

SW (N, d, λ)
have the small-world property.

3 Vaccination strategies in small-world models

Consider a next-generation SIR-model on a network G1
NN (120, 2) with infection probabil-

ity b = 0.9. In such a model, R0 = 3.6 and the herd immunity threshold is

HIT = 1− 1

R0
= 1− 1

3.6
= 0.7222. (1)

The uniform mixing assumption implies in this case that if we want to prevent all major
outbreaks by vaccinating a certain fraction of randomly chosen hosts, we would need to
administer vaccine to at least 72.22% or 87 of our 120 hosts. Vaccinating a substantially
smaller fraction of randomly chosen nodes would hardly make a difference (see Project 9.1
of [4]). However, here we are looking at a network model with a very particular, highly
nonuniform mixing pattern. For the given contact network very few doses of vaccine may
go a long way if we administer them to an optimal subset of hosts.

The problem finding such an optimal set of hosts was explored in Section 9.4.3 of [4]. In
a series of exercises we discovered a vaccination strategy that appears to be optimal when
only 12 doses of vaccine are available. Relative to a strategy of randomly vaccinating 12
hosts, it reduces the mean number of unvaccinated hosts that experienced infection from
near 67 to slightly less than 18. It boiled down to vaccinating the following vector of hosts:
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[ 1 2 21 22 41 42 61 62 81 82 101 102 ]

Note that this vaccination strategy works by creating barriers that the pathogens cannot
cross. Of course, the contact network in these explorations of [4] was the limiting case
G1

NN (120, 2) of G1
SW (120, 2, λ) for λ = 0. For λ > 0, some or all of these barriers might no

longer give reliable protection against the spread of the pathogens. Here we want to explore
whether and how the effectiveness of the above vaccination strategy will deteriorate when
we increase λ.

Open IONTW, click Defaults, and change the following parameter settings:

infection-prob: 0.9
end-infection-prob: 1
network-type → Small World 1
num-nodes: 120
lambda: 0
d: 2

Click New. This will set up a next-generation SIR-model on a network G1
NN (120, 2).

Click Metrics, look up the value of R0 for this model in the Command Center and
convince yourself that it is R0 = 3.6.

Create a plain text file that contains the above vector of hosts to be vaccinated as a
single line and save it under the name vaccinate.txt in the same directory in which you
are running IONTW.

To get a set of baseline data, run a batch of 100 simulations for this vaccination strategy.
Set up a New experiment with 100 repetitions. Use

Reporters:
count turtles with [removed?]

Setup commands:
new-network

ask turtles-from-file "vaccinate.txt" [become-removed]

ask n-of 1 turtles with [susceptible?] [become-infectious]

Exercise 6 Run the experiment and analyze your output file. Record the minimum, max-
imum, and mean number of removed nodes at the end. Also record the numbers of runs
where you found exactly 30, 48, 66, 84, 102, and 120 hosts who experienced infection.

Now Edit your setup for batch processing by setting

["lambda" 0.05]

and specifying a new suggestive output file name. Run the experiment.
Then Edit your setup for batch processing again by setting

["lambda" 0.1]

and specifying another suggestive output file name. Run the experiment.
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Exercise 7 (a) Analyze your output files as you did for Exercise 6.

(b) Verbally summarize your findings. How does the parameter λ appear to influence disease
transmission? Does the strategy of vaccinating evenly spaced groups of two adjacent hosts
provide as good protection when the contact network is G1

SW (120, 2, λ) as it does for contact
networks G1

NN (120, 2)? Does it provide better protection than randomly vaccinating 12
hosts?

(c) Find an explanation for the high frequencies with which you observed outcomes of 30,
48, 66, 84, 102, or 120 hosts who experienced infection. How is this pattern related to the
structure of the network and the disease transmission parameters?
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4 Hints

Hint for Exercise 5: Partition the vertex set V of the small-world model into pairwise
disjoint sets of consecutive nodes Vi of roughly equal size. The left panel of Figure 1 shows
such a partition for an instance of G1

SW (24, 1, 0.5). Here the sets Vi are color-coded. They
comprise the following nodes (recall that NetLogo always will start the numbering of
nodes with 1):

V1 = {0, 1, 2, 3}, V2 = {4, 5, 6, 7}, V3 = {8, 9, 10, 11},
V4 = {12, 13, 14, 15}, V5 = {16, 17, 18, 19}, V6 = {20, 21, 22, 23}.

(2)

Then form a new graph GI by making each of the sets Vi a vertex and drawing an edge
{Vi, Vj} if, and only if, there is at least one v∗ ∈ Vi and at least one v∗∗ ∈ Vj such that
{v∗, v∗∗} forms an edge in the original small-world network. The right panel of Figure 1
shows the resulting graph GI for the small-world model on the left.

It can be shown that (a slight modification of) this construction will give Erdős-Rényi
random graphs GI with sufficiently large mean degrees.

Figure 1: The left panel shows an instance of G1
SW (24, 1, 0.5). The right panel shows a

corresponding graph GI .
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