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This module is a companion module to the one on the preferential attachment model
at this web site.1 Here we study in more detail networks that are generic for a given
network size and a given exponent of a power-law degree distribution. We explore predicted
structural properties of such networks both mathematically and with IONTW.

1 Generic scale-free networks

This module is a continuation of our module [4] on the preferential attachment model.
Recall that the degree distribution of a given graph obeys a power law if

qk = cγk
−γ , (1)

where qk is the probability that a randomly chosen node has degree k, and cγ and γ are
positive constants. As this formula makes sense only for k > 0, we will tacitly assume that
the graph contains no isolated nodes, that is, q0 = 0. Graphs with a power-law distribution
of degrees are often called scale-free networks.

This phrase needs to be handled with care. Since qk > 0 for all k > 1, Equation (1)
could be literally true only if there were infinitely many nodes in the graph.2 For graphs
with finitely many nodes, (1) can be satisfied only approximately. If this is the case, we will
write that the graph is approximately a scale-free network.

A number of constructions of approximately scale-free networks have been proposed in
the literature. The preferential attachment model of Barabási and Albert [2] was studied
in some detail in our module [4]. Here we focus on some properties that are common to all
types of approximately scale-free networks and on properties of generic scale-free networks
that are constructed by the procedure outlined in our module [3].
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Recall how the latter construction works: For given γ > 1 and N , we construct a
random graph GSF (N, γ) whose degree distribution approximates (1) by first randomly
drawing degrees ki according to the distribution (1), then attaching ki “stubs” to node i,
and finally connecting them randomly to form the edges. If N is sufficiently large, this
will give a random network that is approximately scale-free and otherwise generic. We will
refer to GSF (N, γ) as a generic scale-free network and drop the adverb “approximately” for
easier readability.

2 Mathematical explorations of scale-free distributions and
generic scale-free networks

2.1 Scale-free degree distributions

Let us assume that we are given a network with degree distribution (1). Since Equation (1)
cannot be literally true in any network of finite size N , all estimates that we derive in
this section need to be treated with some caution. They will at best be approximation for
actual, finite-size networks with roughly scale-free degree distributions when the network
size N is very, very large.

For such very, very large N , we can estimate cγ from (1) by observing that the proba-
bilities qk must add up to 1.

1 =
∞∑
k=1

cγk
−γ = cγζ(γ), (2)

where ζ(·) is the famous Riemann zeta function. For γ ≤ 1 the series in (2) diverges and
ζ(γ) is undefined. We will always assume that γ > 1. In this case, (2) implies that cγ ≈ 1

ζ(γ) .

For example, ζ(2) = π2

6 ≈ 1.6449, ζ(2.1852) ≈ 1.5, and ζ(3) ≈ 1.2021. It follows that
the proportions of nodes with degree 1 in power-law distributions with parameters γ should
satisfy

q1 =
1

ζ(γ)1−γ
=

1

ζ(γ)
. (3)

The mean degree of a node i can be expressed as

〈k〉 =
∞∑
k=1

cγkk
−γ =

∞∑
k=1

cγk
−γ+1. (4)

If γ ≤ 2, the sum diverges. For finite networks with approximately such degree dis-
tributions this implies that the mean degree will increase without bound as the network
size N →∞. For γ > 2, the mean degree will satisfy

〈k〉 =
ζ(γ − 1)

ζ(γ)
. (5)
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Recall from our module on the preferential attachment model that for many real-world
networks approximately scale-free degree distributions with parameter 2 < γ < 3 have been
observed. However, for γ < 3 the variance of the degree distribution increases without
bound as N →∞.

Exercise 1 Estimate the variance of degree distribution for γ > 3 and show that if γ ≤ 2,
then the variance increases without bound as N →∞ .

Let us repeat our words of caution: The above calculations of means and variances
strictly speaking apply only to infinite scale-free networks where (1) holds exactly. For
finite N the degree distribution can only be approximately scale-free. Empirically studied
networks may show such approximate distributions, but usually the fit is good only for k in
an intermediate range, not for very large k or for k that are very close to 1. In this case we
cannot estimate the mean or variance based on γ alone. For example, a study of the World
Wide Web [1] found approximately scale-free distributions for the number of links pointing
to a given web page j, with γin ≈ 2.1, and the number of links embedded in a given web
page i, with γout ≈ 2.45. If we were to treat (5) literally, we would get different means for
the number of incoming and the number of outgoing links. But a moment’s though shows
that these two means must be exactly equal. We just cannot compute them based on γ
alone for the approximately scale-free distributions.

The variances are theoretically infinite for both γin and γout, but our calculations for
the solution of Exercise 1 suggest that the variance of incoming links should be a lot larger
than for outgoing links. This makes perfect sense as there is a physical limit on how many
links one can embed in a single web page i, but the numbers of links that point to a given
page j may wildly vary according to the page’s popularity. Even for approximate power
law distributions with 2 < γ ≤ 3, a smaller value of γ is a fairly reliable indicator of greater
variance.

2.2 Hubs and maximum degree

Nodes with very large degrees in approximately scale-free networks are often called hubs.
This terminology has its origin in the study of networks of airline connections, where the
nodes represent airports, and an edge represents the existence of a direct flight between two
airports. This informal definition of “hubs” does not specify how large the degree of a node
needs to be so that it would qualify. We can give ourselves some flexibility by defining the
set of K-hubs as H(K) = {i : ki ≥ K}. The relative size of H(K) will be approximately
equal to P (ki ≥ K) as computed from (1).

Exercise 2 Let K be fixed and let i be a randomly chosen node. Use an integral to estimate
P (ki ≥ K).

It follows from Exercise 2 that the relative sizes of H(K) will decrease gradually with K,
so that there may be no obvious choice for the threshold for K above which we should
consider H(K) to represent the set of hubs.
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Exercise 3 Use your solution of Exercise 2 to estimate the median value of the maximum
degree in GSF (N, γ).

In Erdős-Rényi random graphs GER(N,λ) the largest degree is expected to grow slower
than ln(N). In contrast, your solution for Exercise 3 will show that the maximum degree
in a generic scale-free network GSF (N, γ) scales like a power of N . This property is often
colloquially referred to as “scale-free degree distributions have fat tails.”

2.3 Connected components of GSF (N, γ)

In contrast to approximately scale-free networks that are obtained from the preferential
attachment model, generic scale-free networks are disconnected and have many small com-
ponents.

Exercise 4 Show that for large N the graph GSF (N, γ) will be disconnected with probability
very close to 1 and estimate the mean number of connected components of size 2.

3 Exploring generic scale-free networks with IONTW

Open IONTW, press Defaults, move the speed control slider to the extreme right, and
change the following parameter settings:

network-type → Generic Scale-free
num-nodes: 300
lambda: 2.5

For this type of networks, the input parameter lambda controls the network param-
eter γ. After pressing New you would expect a network GSF (300, 2.5) to appear in the
World window. This may or may not happen; sometimes you will see a blank World
window and in the Command Center an error message

Degree sequence is not realizable as an undirected graph!

You will see this message quite often during your work in this module. It is due to the
fact that the underlying algorithm first randomly draws a supposed degree sequence from
the specified scale-free distribution and then checks whether there actually is a graph with
this degree sequence. If you see the error message, simply press New, repeatedly if need
be, until a network appears in the World window.

The network that eventually appears in the World window may at first not look that
much different from, say, an Erdős-Rényi random graph. But look at the Network Metrics
plot. It will show you the histogram of an approximately scale-free degree distribution:
There will be a large number of nodes with degree 1, and then the height of the bars will
rapidly decrease. Perhaps there will be an occasional uptick in the histogram; after all, the
distribution will only be approximately scale-free.

The number on the horizontal axis that shows the maximum degree + 1 should be fairly
substantial; record it for future comparison. Now press Metrics and inspect the data in
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the Command Center. You may notice some interesting things, but for now just record
the mean degree.

Let us compare the scale-free network with an Erdős-Rényi network with the same mean
degree and number of nodes. Choose

network-type → Erdos-Renyi
lambda: [the mean degree that you looked up for the scale-free network]

Press New and look at the histogram for the degree distribution in the Network Met-
rics plot. It will be dramatically different. Degree 2 should occur with the highest frequency
and the maximum degree should be much smaller than for the instance of GSF (300, 2.5).

For approximately scale-free networks, the maximum degree would typically be on the
order of N1/(γ−1), which works out to ≈ 45 for N = 300 and γ = 2.5. Due to random
effects, the value you found for your network may be twice or only half as large, but it
should be in the double or low triple digits. This contrasts sharply with the predictions
for Erdős-Rényi random graphs GER(N,λ) whose the largest degree is expected to be less

than ln(N). Since for γ > 1 the function N
1

γ−1 grows much faster than ln(N), in power-law
distributions the probability of extremely high values is much, much larger than in Poisson
distributions with the same mean degrees. This is what the phrase “power-law distributions
have fat tails” means.

Press Metrics, enlarge the Command Center by clicking on the double-arrow icon,
and compare the other metrics for the two networks. Both graphs will have many connected
components. But you may notice that the clustering coefficients are larger and the mean
and maximum distances in the largest connected component are smaller in the scale-free
network than in the Erdős-Rényi network.

The node with the highest degree in a scale-free network will definitely be a “hub,” but
there will be more than just one hub. Let us look at a smaller example. Choose

network-type → Generic Scale-free
num-nodes: 100
lambda: 2.5

Create a New network, and look at the picture in the World window. Can you make out
the hubs? How many of the nodes would you classify as hubs? How are your observations
related to Exercise 2?

Now let us study in more detail the properties of generic scale-free networks GSF (N, γ)
with N = 200. Let us first list some numerical predictions that follow from our work in
Section 2 for parameters γ = 2.1, 2.5, 3, 5.

• γ = 2.1

– Proportion of nodes with degree 1: q1 = 0.6409

– Mean degree: 〈k〉 = 6.7840

– Maximum degree: ≈ 142

5



– Number of connected components of size 2: ≈ 6

• γ = 2.5

– Proportion of nodes with degree 1: q1 = 0.7454

– Mean degree: 〈k〉 = 1.9474

– Maximum degree: ≈ 34

– Number of connected components of size 2: ≈ 29

• γ = 3

– Proportion of nodes with degree 1: q1 = 0.8319

– Mean degree: 〈k〉 = 1.3684

– Maximum degree: ≈ 13

– Number of connected components of size 2: ≈ 51

• γ = 5

– Proportion of nodes with degree 1: q1 = 0.9644

– Mean degree: 〈k〉 = 1.0438

– Maximum degree: ≈ 3

– Number of connected components of size 2: ≈ 89

We encourage students to figure out a way to use batch processing for these explorations
but will describe here a simpler ad hoc procedure that gives some preliminary insights.

Set the speed control slider to the extreme right and press the Clear icon on the Com-
mand Center bar to delete all previously recorded data.

Now create 3 instances of GSF (200, γ) for each choice of γ = 2.1, 2.5, 3, 5. After creating
each instance, press Metrics and separately record the maximum degree and the number of
nodes with degree 1 that are shown in the Network Metrics plot. To facilitate data anal-
ysis, be sure to create exactly 3 instances for each parameter choice as the input parameters
will not be shown in the Command Center.

Exercise 5 Enlarge the Command Center with the double-arrow icon and analyze your
data. Are the results roughly consistent with the theoretical predictions after taking into
account the amount of variability between networks? For which properties did you find good
agreement with the theoretical prediction, for which properties did you find large discrepan-
cies?

In your solution of Exercise 5 you will most likely find a good fit with the theoretical
predictions in some cases and discrepancies in other cases. This is to be expected as N = 200
is not particularly big and the theoretical predictions were derived for very large N . You
will most likely also observe large differences between networks with the same parameters.
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Since your sample size is very small, these random fluctuations may have a large impact on
the averages you compute. You could address the latter problem by analyzing large batches
of networks, but our primary goal here is illustration of some patterns, not systematic
research. You should be able to observe though that the general pattern is consistent with
the theoretical predictions for networks GSF (N, γ): As γ increases, the expected mean and
maximum degrees decrease, and the proportion of nodes with degree 1 as well as the number
of connected components increase.
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