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Introductory Note:

Welcome to the Unfinished Land of Model-Building!

The software with this manual is quite stable, and contains mostly errors of omission
rather than of commission.  The manual itself is another matter.  It has continued to
grow like topsy, and will ultimately evolve into a book on strategies of model-building,
criticism, and evaluation, using the software as a means of delivery, with exercises using
it keyed to all of these activities.  To our knowledge, there is as yet no text like this at
any level, much less at a level which renders it approachable to students without far
more math and/or programming experience than are the norm for non-hard-science
majors.  Although designed originally for a biology course, they have also been used to
good advantage in two philosophy of science courses, and are now being tried out as
part of the methodological part of the course in an upper division/graduate course on
computer modeling in the biological sciences. Those who can should perhaps better
write the programs to do these things themselves, my physicist friends tell me, but we
don't want to disenfranchise those who can't.  Perhaps we can motivate some of them
to become those who can.

As it is, there are many things to explore in there pages and programs, but the exercises
could be better arranged, and there is no indication of relative difficulty (or even of
relative length) of the exercises.  We have focused on getting in the relevant materials,
rather than on their optimal arrangement, or even presentation.  These two simulations
presented here evolved from two different exercises used in one form or another for
the last 16 years in Wimsatt's Biology Common Core course, BioSci 147:  “Genetics in an
Evolutionary Perspective,” and they have not yet been sufficiently integrated.  The
index needs a lot of further work--and does not at present include references to many
of the appendices. In the meantime, we welcome suggestions for what you found
difficult, what you would like to see included, any additional exercises you have added,
and the like.

The course in which these were used was a non-majors course which tended to attract a
fair number of math, physics, chemistry, and economics majors because it used
computer simulations, and a fair number of humanities majors because it had a lot of
history.  Needless to say, the distribution of interests and special talents was distinctly
bimodal!  Thus, there are exercises for students who have never had calculus (and didn’t
like what algebra they did have), and for students who have gone far beyond it.  I hope
that you have as much fun with this as we have.

We owe an enormous debt of thanks to the students over the years in Wimsatt’s BioSci
147 for acting as guinea pigs for and contributors to many of the ideas found in this
module--first implemented on HP-25 programmable calculators in 1976, and on Apple
Macintoshes since 1985.  Special thanks are due to Apple for their conception of a
people-friendly  machine which solved the problems of bimodal distribution mentioned
above, for their friendly support (including a “Paris” prototype, when nothing else was
fast enough), and to the 1990 BioSci 147 class, who used something approximating the
versions of the programs and labs you see here, but without much of the multiple
windows, text processing, and recording support of this version, and who put up with
twice-weekly version updates near the end.  The 1992 class had to live through the
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comparable uncertainty (including suggestions that they not do certain labs until the
following week so we had time to implement new things for them to try). Extra special
thanks are due to Scott Franklin, whose bifurcation/accumulation program provided
the idea testing and inspiration for the N vs r plot mode, to Michael Post, whose elegant
“TwigMaker” program deserves to make it into the next version of the Model-Building
exercises, and to Matt Ryan and other members of the BioSci 267 class, whose ß-testing
enthusiasm verged on the diabolical.

Note: the manual is written in Palatino, Times, Geneva, and sometimes Chicago
fonts.  Make sure that these screen fonts are on your computer if you wish to preserve
formatting for reading or printing the manual.  If you should decide to print out the
manual, or lots of graphics, see the note in the "how to" section on the much greater
speed of "Quickdraw" printers as compared to Postscript printers for "Quickdraw"
graphics.  (The difference in printing time can easily be a factor of 20, and some of the
graphics in this manual may take as much as 15-20 minutes to print out on a slow
Postscript printer.)

Editor's note: This document is also available in PDF format.  In most cases you will probably
find it quicker and easier to use the PDF format if you are reading the manual on a computer
screen or if you want to print it.  VGV 8/13/00

William C. Wimsatt
Jeffrey C. Schank
The University of Chicago
June 12, 1992
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What You Need To Know and General Overview

A Note on Using This Manual on the Computer:

If you are using this manual on the computer you will derive an important benefit,
and will suffer a significant loss.  The benefit is that you will see many PICTs produced
by the program reproduced as they are drawn by the simulation—thus the simulations are
re-run before your eyes—in color if they were drawn in color, and you have a color
monitor.  The significant loss is a frustratingly slow pace if you try to scroll through,
following the text, in places where diagrams are frequent.  Not only are the diagrams
drawn before your eyes, but they are often redrawn over and over again, a line at a time as
you try to scroll them into view.  To largely avoid this state of affairs, page through the
text a whole page at a time using Word 4.0's print preview feature, until you get where you
want to go.  This will draw the graphs, but without the constant redrawing.  In the single-
page mode (rather than in the default double-page mode) you will probably be able to read
most of the main text (forget the footnotes!), and you can in any case scroll through
rapidly until you find the section you want, using the PICTs as markers for where you
want to go.  (This mode of navigation obviously becomes more effective the more familiar
you are with the manual).  GOOD LUCK!

In this module and its accompanying programs (Logistic Growth and Blending
Inheritance in the Modeling Tools module) you will explore how to use, analyze, and
criticize some important and historically influential models in biology.  We will focus on
simple models in ecology and population genetics, since these disciplines have a long-
standing tradition of model-building, and have explored its powers and limitations with
the greatest sophistication.  This module will allow you to explore mathematically
simple models using a variety of modes of visualization provided by the programs
Logistic Growth and Blending Inheritance.  Mathematically, you should need no more
than a background in high school algebra to understand and to do most things.1   A
basic understanding of the concepts of differentiation and integration of the sort
presented in many high school introductions to calculus will help, though we will never
do more than the finite sum and difference analogues of these operations.  You will not
need to be able to differentiate or to integrate anything, though you should know that
dN/dt is  a time derivative and not an expression from which the d’s cancel and it
reduces to N/t.  Knowledge of computer programming is not required, but you should
be familiar with the basic operations for running a Macintosh program.  You may find it
useful to go directly to the Users Manual for the Logistic Growth and Blending
Inheritance programs (in the Modeling Tools folder) so that you can read how to use

                                    
1Most students should be able to do most or all of the suggested exercises without further mathematical
study.  Nonetheless, an excellent source for relevant  mathematical background for both of the model
units in this module (and for most other biological topics), beginning with topics from high school
algebra and running up through probability,  matrices, calculus, and differential equations is
Batschelet, 1979.  This book illustrates all topics with biological examples, and contains worked and
unworked problems from the current research literature.  It is a clear and well motivated book.  See
particularly his discussion of growth equations, and of the binomial, normal, and Poisson distributions.
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these programs and try different simulations and graphical views of the data. Doing
this should result in a variety of data patterns you will later want to better understand.

We will show you, with the help of the accompanying programs, that models are
very powerful and interesting tools in science, which not only can generate predictions
(a commonly emphasized function of modeling) but also (and more importantly) can
guide explanation, interpretation, understanding, and discovery in science.  When
models are used in combination with computers, we can use our most powerful
strategy for analyzing the behavior of models—visualization. The use and
understanding of techniques of visualization is a major focus of this module.  We will
see that data generated by a model (or biologically real system) can be visualized in
multiple ways, and that visualizing data in multiple ways allows us to detect novel
patterns in data which may be missed by applying only one or two strategies of
analysis.  We come to understand the modes of transformation better, and to recognize
characteristic “signatures,” “footprints,” or diagnostic patterns whose presence in one
mode of visualization indicates what is going on in another.  By viewing data in
multiple ways we can also detect patterns in the data which are robust, that is, by
detecting something in a variety of ways we are in a much better position to say that it
is a real feature of the model or biological system we are studying and not an artifact of
our analysis or strategy for manipulating that system.

In the next section, we provide a brief but general introduction to a philosophy or
methodology of using models in science.  The introductory section to the two main parts
of this module (see next paragraph) expands on themes raised in the Introduction.   In
the Introduction, we point out not only some of the important uses, functions, and
benefits of using models in science, but also biases, errors, and, in general, things to
keep cautiously in mind when using models.  (These biases can have a variety of
sources, from the nature of a mathematical equation, and how it responds to different
changes, to how it is applied to a system or implemented in an experimental design, to
how the equation is visualized on a computer, to how we perceive, think about, and
respond to that visualization.)  We also point out that the kinds of models used in
science extend beyond mathematical and computer models to experiments as models of
natural systems.  Thus, the points we make about the uses and abuses of models in
science are applicable more broadly to the practice of science in general.

There are two main sections to this module which when used  together with the
programs Logistic Growth and Blending Inheritance illustrate a number of important
uses and functions of models in science.  The first section, Model-Building and
Exploration with the Minimum-Density Limited Logistic Growth Equation, explores
with a variety of graphical modes the behavior of several simple and closely related
models of population growth.  Among other things, you will be introduced to the
concept of chaos and how to use the computer to visually analyze the behavior of
chaotic systems.

The second section, Understanding the Role of Mendelian Inheritance in
Evolution by Simulating Blending Inheritance, explores the consequences of a false but
very influential model of inheritance proposed by Charles Darwin and widely accepted
in the 19th century.  A central point of this section is to show that even literally false
models can be very useful for understanding and interpreting models such as those of
Mendelian genetics which we take to be correct.
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We have also included several appendices which should give further relevant
help.  Appendix A is a copy of the User’s Manual for the programs Logistic Growth and
Blending Inheritance.  Appendix B provides a list of productive things you can do
through the deliberate and knowledgeable use of false models—many of which
enormously aid theory construction in science, and many of which can be done in no
other way.  Appendix C provides a list of “reductionistic” problem-solving heuristics,
their properties, biases, and potential errors.  It is intended to make you more sensitive
to the kinds of errors frequently made when simplifying the system for analysis.
Appendix D provides a list of simplifying assumptions made in the logistic and
minimum-density logistic growth equations, and provides, in effect, a specific case for
analysis in the light of Appendices B and C.  Appendix E discusses explicitly how the
mode of visual presentation affects the information presented, and analyzes a number
of phenomena connected with pixel and computational roundoff errors—focusing on
the need to "calibrate" the computer as an instrument. And finally, Appendix F
illustrates how to use Mathematica to solve and plot the continuous versions of these
equations.  These appendices should provide material for further thought and analysis
both of the equations themselves, and of how accurately they may apply to different
real situations.  It is hoped that a close analysis of these cases will prime your
consideration of the other models you will encounter elsewhere in science.

Introduction To Using Models in Biology

There are two crucial differences between models and theories:2   (i)  People often
call things models when they are not yet very confident about them.  When their
confidence increases, they promote the “model” to a “theory” or even a “fact.”  In 1953
it was appropriate to talk about the Watson-Crick double-helix model of DNA
structure, but that seems strange talk nowadays. (ii)  More importantly, the term model
is often used for conceptual or mathematical tools which have known falsehoods,
problematic approximations, or implausible idealizations imbedded in their
structure—often to make them simpler to work with.3    Theories use falsehoods too
(called “approximations,” “limiting cases,” “idealizations,” and other such fancy
language), so perhaps what separates theories from models here is the believed
frequency and seriousness of the falsehoods, and, with models, the self-conscious and

                                    
2As the term is used here, a model is like a theory  in that it is an articulated, often formalized or
mathematical, account of a mechanism or structure which may be used in predicting, explaining, or
reasoning about its behavior.   Often (but not always) models and theories are  mathematical equations
or set of equations which are interpreted to apply to a kind of object or system in the real world.  The
main difference between a model and a theory is our attitude of acceptance.  The more we are inclined to
accept, for example a set of equations as adequately describing the behavior of a physical system, the
more we are inclined to view that set of equations and its interpretation as a theory.
3It is often claimed (particularly by philosophers or logicians) that models are neither true nor false,
but instead are kinds of instruments which work well or not in a given context.  Quite apart from the
philosophical rationales they might give for this, this way of talking seems most plausible when a
model is used as a template to look for patterns in data--in which it is often picked up and put down in
various places, where it fits better or worse and spoken of as "applying" or not.  If the focus in on a
particular application, rather than on the model, it seems more natural to speak of truth or falsity.  We
have chosen to speak of models as (true or) false to emphasize that models may be useful means to the
truth even if they fail to fit specific situations very well if their failures can be used to point us in the
right direction for their improvement.
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deliberate use of the falsehoods in reasoning strategies.  As strange as it may seem,
reasoning with falsehoods is often an effective road, and sometimes the only road, to
building better or truer theories and models.

Mathematical and computer models have a variety of uses and functions in
biology, as in other sciences, but the complexity of biological systems (and sometimes
our inability to manipulate them effectively in controlled ways) makes the use of
computer simulations an especially productive tool.  We have structured this module
not only so that you can read about the reasons for using and building models, but also
so that you will be able to use the accompanying programs to discover several facts
about their use:    

• The falseness of a model does not, by itself, make it useless—indeed, it
often makes it more useful for certain purposes.

• The full analysis and understanding of even very simple models is
often no trivial task—such that we are still learning new things about
models that have been around for a long time.

• A simple model can often be used to serve quite a variety of different
functions in different contexts, which place quite different demands on it,
and which it addresses with varying success.  One man's noise may be
another’s data.  This is particularly true with our discussion of the logistic
growth equation, since it has a number of features which make it useful
not only for scientific study of a variety of phenomena (population
growth processes, the nature of chaotic phenomena, scale effects in
discrete state systems), but also for teaching about the relation of models
to one another, and the variety of misleading and artifactual results that
can arise if you don't analyze carefully how the phenomena are produced
(e.g., the effects of pixel and computational roundoff errors).

• There are some commonly used problem-solving heuristics (“rules of
thumb”) and procedures which make it easier to analyze models
efficiently and effectively, and their study can help you to solve problems
better and faster.  (Some of the most effective are illustrated below and
include breaking problems into subproblems, looking for limiting results
or places where the behavior changes qualitatively, bracketing the case of
interest with cases on either side, interpolation and extrapolation, looking
at related families of cases, and using models as templates to better detect
disparities.)

• The behavior of even very simple and deterministic models can be
very complex and even chaotic if they are nonlinear, and, as we are
learning, nature is far more often nonlinear than anyone would have
supposed only a generation ago.

• Finally, visualization, often by multiple means, is an important tool for
the analysis of models, and especially so for the study of chaos.
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Some biologists are suspicious of the use of models and computer simulations
because they believe that models are too biologically unrealistic to be useful and
predictive.  They believe that since mathematical or computer models are much simpler
than the biological systems they are supposed to represent, they must be false and so
cannot be useful in any interesting way.  This objection has a parallel, which we will
return to below, in objections to the use of laboratory experiments to draw inferences
about the behavior of similar organisms or systems in the wild, where the conditions
are presumably very different.  Both of these objections reflect real and important
worries—simulations and laboratory results have not infrequently lead to wrong
predictions about nature.  Unfortunately, we have no choice.  There is no way around
the need to make simplifications in models and in the conditions for laboratory
experiments.   The art is to ask the right questions, to make the right simplifications for
those questions, and to recognize (since we often make mistakes, or change
simplifications or questions) when our simplifications are getting us into trouble, and
how to check up on them.  To reject models just because they are drastically simplified
representations of nature is to fundamentally misunderstand the nature and functions
of models and theory in most areas of science.

Norbert Wiener, the MIT mathematician and father of Cybernetics, once said
that the best model of a cat is another cat.  But this was intended as a joke.  A useful
model is one which abstracts away from many of the details and complexities of any
given system or organism to see how the behavior of the system depends upon the
relatively few (and hopefully most important) factors included in the model.  Leaving
out detail is the only way a model or theory can apply to more than one case.4   There
are then several functions and reasons for using models simpler than the systems they
represent:

• Including or excluding factors from a model, and then comparing a
model’s behavior with that of a natural system is one of the central ways
for figuring out which of the details of a natural system are important,
and which details are largely irrelevant for the purposes of the model.
Indeed, in general, theories should leave out irrelevant detail, and, usually,
also factors which have smaller effects, are less common, and sometimes
factors which are always present and quite important, but are only rarely
required as supplements to information more commonly available.5  

• Many times we know that there is information which is very
important for understanding a natural system, but we don’t know it
specifically or we can’t measure it.  In these cases, we have to substitute
something else and hope that this something else will do.  In such cases, it
may be possible to construct simpler models—as that something
else—and then use these simpler models to help discover new and

                                    
4Wouldn’t the cat have been an even better model if it had been an identical twin?  An identical twin
raised in the same way?  ... and so on.
5Lower level reductionistic genetic or  molecular detail often but not always has this status for
population genetic and ecological problems.  More detail is not always better.  This point is eloquently
made in Levins (1966, 1968, ch. 1)  See especially his discussion of "sufficient parameters".
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previously undetected features of a biological system (see next section for
further discussion).  

• Adding biological detail to a model will often increase the model’s
complexity.  But complexity can make a model analytically and
computationally intractable (see the next section), so simplifications and
approximations must be made if we are going to be able to use a model to
better understand biological systems.  

A good theory manages to do all of these things without losing explanatory
power, and, in so doing, remains applicable to natural systems because of the
properties of those systems it does represent.  The crucial considerations in making
simplifications, idealizations, and approximations in a model are (a) whether the major
causal factors and mechanisms are adequately represented and (b) whether we are
aware of the biases that result from making these simplifications, idealizations, and
approximations.  Note that we may be aware of the biases without knowing what the
true answer is—for example, if we know that the model presents a lower extreme case,
and is therefore a conservative underestimate.

We get benefits not only from using simulations, but also from writing them.
The computer is very literal-minded, and has no imagination at all, so the program for a
simulation has to be written out in excruciating detail—detail which often teaches us
more about exactly what our assumptions mean.  If we’re not sure exactly which way
to do it, we can try alternative ways and see what the results are, and we learn from
comparing their results.  There is not currently anything in The BioQUEST Library that
requires you to program your own models, though several applications come close to
giving you the freedom to do so.  (Of course any programming language can be used
to build your own models, if you know how.)  Extend, for example, is a model-building
program that provides a user-friendly graphical interface and allows you to write small
programs in a language that is similar in some respects to the programming language
C, but simpler to use.  Stella is a less powerful, but still simpler version of the same
thing.

Simpler than programming your own model from scratch is hooking up parts or
subsystems with already defined properties in special or customizeable ways to see
what happens. The Odums’  Environmental Decision Making  (available in the
BioQUEST Collection folder on The BioQUEST Library CD) module uses Extend, and
parts they designed, so by using their simulations you can hook up parts in your own
way without having to program them.  This, and also some modification of the
properties of the parts, can also be done in Biota (available in the BioQUEST Collection
folder on The BioQUEST Library CD,)  where you are free to define new species, how
they interact with other species, how they migrate, and how many there are, and
where, at the start.6

                                    
6Once we get something that will run (because we have told the computer all it needs to know) we are
indeed often surprized at the results, not only because qualitatively new kinds of things (like chaos)
might emerge, but also because we can quickly and painlessly investigate and compare different
conditions and assumptions, and will often see patterns and effects which we never would have had the
time to generate.
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But all this control and freedom to modify the system you are modeling is too
much freedom unless you have some idea of what to do with it.  With any complex
system, you usually can’t just set things up at random and expect something interesting
to happen.  And you probably won’t recognize it if it does, unless you already have
expectations which are honed from the study of simpler related systems.  This is one
important reason for starting with simple models (also see next section).7    In a way this
module is misnamed.  This is not a "how to" manual for programs like Stella or Extend.
It is closer to a "why to" manual for model-building, together with a "how to" manual
for the strategy of model-building and exploratory model evaluation.  All of the work
you will do here is with models we have already written.  They are very flexible
models, and you can study them in a variety of ways—including getting them to
behave like some other models.  But we are teaching something different here than
how to hook up different mechanisms to make a complex system.  We are trying to
teach how methodologically you should approach the task of doing it.

The two most important skills of the model-builders’ art are first,  to learn how,
when, and where to simplify, and second, to learn how to tell when you have
oversimplified, and how to diagnose, from the behavior of the model what is causing it.
This tends to be learned best by studying specific cases in some detail—a study which is
more useful the closer the cases are to the area you want to investigate.  An important
lesson to learn early is that there is no single best model for all purposes.  What models
are appropriate usually depend upon what questions you want to ask and how
accurately you must know the answer.  (Increased accuracy usually requires more
complex models.)  We may, in different situations, use different subsets of the relevant
causal factors so that we don’t have to deal with all of their complexities at once, or
because different factors assume different importance in different circumstances.  Good
theory as well as bad models—and everything in between—must simplify.  We can use
them all—we just need to be able to learn how to tell one from the other.

Including the major causal factors and mechanisms responsible for producing
something a biological system is observed as doing (e.g., an organism exhibiting
circadian rhythms or a colony of the cellular slime mold Dictyostelium discoideum
undergoing spiral and concentric waves of cell movement) is complicated by two
additional facts during the model-building process.  First, biological systems exhibit
multiple levels of organization (e.g., organisms are composed of cells, tissues, organs,
and organ systems; each of these components are located at different levels of
organization), and major causal factors may cross levels of organization (either from
higher to lower or from lower to higher levels of organization).8   This can present both
                                    
7How many of you did “chemical experiments” as a kid which consisted of mixing together a bunch of
chemicals and seeing what would happen?  I always got sort of an inert grayish brown looking sludge
that did nothing interesting at all—until I got some hints as to what to mix together, and in what rough
proportions.  Once you had something that did something, small variations on it sometimes did other
interesting things.  This last represents a generalizable and rather deep truth about evolution and about
problem-solving--that it is a lot easier to get something interesting by modifying a design which is at
least moderately successful than by starting from scratch.
8For further discussion of levels of organization see Wimsatt (1976).  For a detailed example of
modelling at several levels of organization simultaneously, see Schank, (1991).  Some of the most
challenging situations arise when we must consider relations between different theoretical perspectives
on the same system which are NOT related as levels of organization--a more common situation as the
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opportunities for simplification and sources of bias.  Opportunities for simplifications
can occur because there are often one or a few upper-level variables which summarize
the effects of a large number of lower-level variables.9   But this multilevel character of
biological systems is also a source of bias because redescription at one level may help to
hide the dependency of that variable on conditions at other levels.  Thus, we treat
fitness as a property of genes or of genotypes in selection models in population
genetics, easily forgetting that fitness is a property of whole organisms imbedded in
their environments.  Fitness attaches to individual genes only conditionally—in the
context of their given genetic, somatic, and ecological environments.   If any of these
changes, the fitness of a gene can change without any internal change in its structure, so
fitness is not an intrinsic property of genes.1 0

Second, what factors and mechanisms we take to be causally relevant to
something a biological system is observed as doing is relative to a theoretical perspective
of what the system is doing.1 1   To the extent that a model incorporates the major causal
factors and mechanisms of a biological system (where these factors and mechanisms
may occur at different levels of organization), as viewed from one or more theoretical
perspectives, a model will be viewed as biologically realistic.  To the extent that major
factors and mechanisms are missing from a model, it will be viewed as unrealistic
relative to one or more theoretical perspectives of the system modeled.  But, as we will
see, the biological realism of a model is only one dimension against which to judge its
usefulness.

It is also sometimes stated that a model represents only a mathematical
reformulation of what we already know, so it cannot be predictive.   In short,  on this
view, you cannot get any more out of a model than what you put into it.  But this view
mistakenly supposes that we already know all of the consequences of our axioms and
assumptions, and thus cannot be surprised by seeing them derived.  That is obviously
false, as has become more obvious now that we have computers to extend our reach in
exploring the consequences of our models—as you will see below.   The models
presented here are extremely simple, but using them you will be able to find and
analyze phenomena which have never before been seen or reported.  And this is true
with virtually any open-ended simulation environment.

                                                                                                                     
system becomes more complex.  For more on "perspectives", see Wimsatt (1974).
9This usually happens when variables are related as upper-level and lower level redescriptions of the
same thing, and upper level variables or redescriptions of the lower level can be substituted for lower
level variables in a variety of contexts, producing enormous simplifications in the model.   Thus
fitness—as an upper level variable in evolutionary models—can for some, but not for other purposes, be
treated merely as a number reflecting the contributions of viability and reproductive success—lower
level variables, without asking about anything about the adaptations which give these benefits.  Cf.
Levins, 1966.
10Paradoxically, George C. Williams (Williams, 1966) who makes this point very clearly, is also,
with Richard Dawkins, an ardent advocate of the gene selectionist view, which often suggests the most
excessive disregard of it.
11For example, an organism can be viewed from multiple theoretical perspectives such as an anatomical
structure, a biochemical network, a developing organism, a parent, a system exhibiting circadian
rhythms, a part of an evolving population, etc.  For further discussion of issues regarding multiple
perspectives and the complexities that can arise when neat orderings between levels break down,  see
Wimsatt (1974).
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You will also be made aware of phenomena which you have probably never
noticed or have noticed but taken for granted—part, as it were, of the theory of the
instrument.  Computers are instruments, no less than thermometers, gel columns, or
spectrophotometers, and until you know how they transform the data at hand, you do
not know how they can break down, and you cannot distinguish artifacts in simulation
modeling situations from the phenomena you wish to study.  

Experimental biologists, like mathematical and computer model builders, are
also constrained in the design and execution of laboratory experiments. These
constraints are in many ways similar to the constraints on the modeler.  Our limitations
in manipulating systems are most obvious on the ecological and evolutionary scales,
but it is no less true in laboratory biology.  The organisms we study often seem to be
strange choices (something often made fun of in popular presentations of science),
being—at first look—neither interesting nor important to our livelihood.  Drosophila
(the commonly misnamed fruit fly), Dictyostelium (the slime mold), and guinea pigs
would seem to have no relevance for us, but they have become model organisms and
we have developed standardized systems for manipulating them because they are
particularly good for answering particular questions which have much broader
applicability.  They may also often be used to answer other questions for which they
are less suitable because they are what we have around, and if we already know
something about them, that gives us an advantage.1 2   They may be studied in
circumstances which are very different from those found in nature.  And they may
even become significantly changed over generations—either consciously or
unconsciously genetically manipulated and selected, in effect, domesticated to the
laboratory—so that their behavior, immune reactions, and even their anatomy are no
longer representative of the wild species from which they are descended, much less of
the other species for which they stand as surrogates in the laboratory.  Thus, in various
ways, experimental biologists also build false models when they do laboratory
experiments.1 3  

The reason is that in order to discover causal factors and mechanisms,
simplifications and approximations will typically have to be made.  Experimental
biologists start by developing an experimental design.  In the simplest case the
experimental design will specify treatment and control conditions.  In developing an
experimental design, an experimenter must consider a number of things including what
factors may intervene to confound the experiment.  Thus a simulation experiment may
involve some efforts to test the random-number generator, or key data-transformation
algorithms, or make checks for the significance of round-off errors.  This is part of the
reason for setting up treatment and control conditions in an experiment—to establish
what the major causal factors and mechanisms are, and to isolate the system from other
factors which might contaminate the results.  Given that natural environments are
                                    
12Indeed, we will do just that with the models introduced here as well.  As a case in
point, see the proposals below to study the deterministic growth equation with
integral values for N as an example of a discrete state system--something which
raises other kinds of questions and which does not use its properties as a growth
equation at all.
13See Griesemer and Wade (1988) for discussion of how laboratory experiments are a type of model and
how biologists use experiments to reason about true causes in nature, and Schank, (1991) for further
elaboration of this point.
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normally much richer than laboratory environments, the more realistic the
environment of an experimental system is allowed to be, the more likely it is that
unknown factors may intervene to possibly confound an experiment.  This is why so
much of biology is conducted in the laboratory, where greater control can be achieved
over the biological system being studied.  Thus increasing the realism in biological
experiments will often require increasing the complexity of the design and analysis of
an experiment, and leads to analogous problems of tractability to those found with
mathematical and computer models.1 4   Therefore, in issues regarding the biological
realism of a mathematical or computer model on the one hand, and a laboratory
experiment on the other, the model builder and experimental biologist are in the same
boat; they will typically be forced to make simplifications and approximations—and in
various ways to assess the consequences of their use.

Therefore, the fact that a model or simulation is false, by itself, tells us nothing
about its usefulness in science.  Knowledge of the ways in which false models can be
useful is  crucial for understanding the productive use of models in biology and
throughout the sciences.1 5   In this module, we illustrate with two examples of
mathematical modeling, how false models can serve a variety of functions in science
despite (and indeed sometimes because of) the fact that they are false.   In our first
example, we will look at three simple models of population growth called the
exponential, logistic, and minimum density-limited logistic growth models.  These
models are false in the sense that they leave out a number of factors which can affect
population growth, and give at best qualitatively accurate descriptions of the action of
the factors they do include.  They are nevertheless realistic in the sense that they do
include major causal factors which influence population growth (birth and death rates
summarized in a population growth rate parameter, r; limitations on the number or
density of organisms that an environment can support, summarized as K, the
“Carrying Capacity” of the environment for a species; and a lower density or number
threshold, C, below which the population goes extinct, for a variety of possible
reasons—for sexual species, most obviously, due to the increasing difficulty of finding a
mate of the opposite sex!).  They include other causally significant factors as well (such
as the time lag, ∆t, whose significance is sometimes missed when one trusts only to
intuition, rather than submitting these intuitions to the rigors of a simulation.  These
very simple models will illustrate the important points that one can often get much
more out of a model than what is put into it, that visualization (and alternative modes
of visualization) is an important tool for getting this additional information, and
demonstrate a number of the techniques for analyzing and getting information out of
models.  Their idealizations and simplifications will also be discussed.

The second example we will consider is a model of inheritance which is false in a
deeper way than are the simple models of population growth.  This model is a simple

                                    
14Similarities in the constraints on laboratory experiments and mathematical (and computer) models
are not the only parallels.  The experimental design of an experiment share many features in common
with a computer program, in fact, there are many similarities between the development of computer
software and the development of an experimental design (Schank 1991).
15In Appendix B we have listed a number of ways in which models can be false and how the ways that
models are false can be used to develop truer theories (see Wimsatt 1987 for more discussion on these
issues).
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binomial model of Darwin’s theory of blending inheritance which gets the basic
mechanism of inheritance fundamentally wrong, though it operates in the right context,
and thus, surprisingly, can get some things right.  This example illustrates that models
can be false not only by leaving out detail, but also by misrepresenting or
oversimplifying what is there.  It might seem harder to justify the usefulness of literally
false models in science, but it is not—even though they are seldom studied in standard
science courses.  This is a serious mistake.  As we shall see below, even literally false
models perform many useful functions (see also Wimsatt, 1987).   In particular, we will
show that this literally false model of biological inheritance illustrates the importance of
Mendelian inheritance for Darwinian evolution, helps to clarify the genotype-
phenotype distinction, and is useful for detecting errors in modern group selection
models.  Furthermore, some results are the same under blending as under Mendelian
inheritance—which illustrates that they do not depend in detail upon the mechanisms of
Mendelian inheritance.  Discovering what something does not depend upon is
sometimes as important as discovering what it does depend upon.  Thus, results of this
sort might plausibly be expected to remain true where the subject of the investigation is
cultural inheritance and cultural evolution (see Boyd and Richerson, 1985), where the
Mendelian laws of inheritance do not apply.  This is the sort of stuff of which important
discoveries are made.

This module is much more of a general methodology module than any other but
the Introduction.  How does the main point there—the importance of studying all three
of the "3P's"—play in this chapter?  What is the role of problem-posing, problem-
solving, and persuasion in model-building?  Seeing a list of assumptions may help at all
stages with the 3P's.  It may be helpful at first to recognize that, appearances to the
contrary, the 3P's do not refer unambiguously to definite stages of a scientific
investigation.  Not only is it true, as Jim Stewart and John Jungck observe in their
introduction (“Introduction to BioQUEST”, found in the BioQUEST Collection folder on
The BioQUEST Library CD,) that the three processes are often complexly interdigitated,
as they must be in any process of generating an answer through iterative refinements.
It is also true that different people have different perspectives, or different frameworks
for generating problems, so that one person's problem-solving may be someone else's
problem-posing, and a third person's persuasion.  The solution to a problem of
determining the assumptions of a model (not always a trivial problem—see Appendix
D), may be an antecedent to posing a problem about how to evaluate the applicability
of a model to a specific ecosystem, a list of relevant information for use in designing a
simulation, or part of a persuasive argument that a given conclusion was unsound.  

Consider another case, one from the design of this module, and the cause of the
latest (and still largely unplumbed) additions to the software.  This may not mean much
to you now, but you will see below! We start by noticing that the behavior of a chaotic
system is (by definition) highly sensitive to roundoff errors, which raises questions
about the validity and utility of detailed predictions with chaotic systems (thus relative to
persuasion?) which I was already familiar with (so it became an established
phenomenon which could be used for other ends, which...); provided a perfect way of
studying the effects of roundoff errors—since any difference makes a difference! (here
we have a key to the solution of a problem which had not originally been posed!); led
to the development of exercises (on pixel and computational roundoff; problem-
solutions for me which will produce problem-posings for you) and program facilities
(control over graph coordinates, and the numerical precision and round N options), the
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last of which led in turn to an entirely new set of possible investigations of finite
automata, using the logistic engine with the round N option and the setting of K to
determine the number of states accessible to the automaton, and the setting of r to
determine the number and character of cycles it produced. (This was the invention of a
new problem-space—or rather the recognition of an old one in an unexpected place!) In
the process, roundoff error became transformed from something to be avoided (by
following certain practices of numerical hygiene) to something to be studied (as a kind
of artifact to be recognized and avoided), to a means of producing a center stage
phenomenon (a class of tunable finite-state automata which produce rich complex
behavior and are worthy of study both for their own sake, and also for their relation to
the (supposedly) continuous case!)

Model-building and exploratory model analysis have this kind of open-ended
structure.  I have been working in class with the logistic and blending inheritance
simulations in these modules since their first realizations in an HP-25 programmable
calculator in the spring of 1976.  Every once in a while, I think I have discovered
everything you can do with them—that is, until I get the next year's student labs, or we
put the next new feature in the software.  Not only do I get to find out all these new
things, but I also get to write about them.  Is everything you can learn from a model
already contained in its basic assumptions?  Not a chance!

Model-Building and Exploration with the Minimum-Density Limited
Logistic Growth Equation

Why Study "Simple" Growth Equations?

When studied with the computer, the much maligned simple growth equations,
i.e., the exponential (EXP), logistic (LOGS), and minimum-density limited logistic
(MDLS), take on a new life.  They provide many opportunities for almost unlimited
exploration, and the complexity of the behavior of these simple equations makes them
natural objects for further study.  An important and often ignored feature of models is
that they come in related families, and studying how they are related and the
comparative analysis of their behavior to determine how it depends upon their
assumptions is a major activity of model builders.  The exponential, logistic, and MDLS
are closely related, and are thus interesting to study for this reason.  Another important
reason is that the logistic and minimum-density limited logistic equations are nonlinear.
Thus, as simple as they are, they are already capable of chaotic and unpredictable
behavior of the form that has lead to the much publicized "new science" of chaos.
Indeed, the analysis of the logistic and other population growth equations was a
significant early problem for chaos researchers (see the article by May and the books by
Gliesh, Stewart, and Becker and Dorfler in the References section).  The exercises on
model-building and analysis using this simulation are designed to do the following:

• Teach you the behavior of these growth equations, which have a time-
honored history as models in ecology and elsewhere (see Kingsland, 1986)
and their strengths and limitations as models of population growth.
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• Teach you how they are related to each other and to more complex
models and, using them as an example, how you can build more com-plex
models out of simpler ones by adding or changing parts of the model.

• Teach you some general and simple features of how to investigate the
behavior of dynamical systems, including elementary stability analysis
and illustrations of Monte Carlo simulation.

• By employing four distinct modes of representing the data—t vs N
plots, N(t) vs N(t+m) or "phase" plots, r vs N  or "bifurcation" plots, and r
vs Neff(t) plots—show how different ways of analyzing the data can give
you different tools for exploring its patterns, a common feature in science
which aids both in discovery and in getting a more robust understanding
of the phenomena.

• Introduce you to the study and nature of chaotic phenomena, which
are important not only in ecology, but increasingly, for the study of
nonlinear, irregular, and apparently random behavior throughout the
sciences.
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What is Chaos?1 6

Chaos or chaotic behavior was in effect first discovered by French mathematician
Henri Poincaire while working on the problem of the stability of the solar system, when h e
showed quite to his surprise that it was stable only under very special conditions—and in
general that it was unstable.   It was rediscovered and characterized by MIT meteorologist
Edward Lorenz in 1960 while doing a computer simulation of a mathematical model of the
atmosphere.  He had done a long simulation, and wanted to extend it.  As a safety precaution
(so that he could check that he had restarted it correctly) he entered the values for the
parameters corresponding to some time before the end of the last run, and re-ran the
simulation from there.  To his surprise the values, which initially started out in the same
way, began to diverge from those of his preceding run, with no apparent cause for the
difference.  The explanation he soon arrived at was that he had gotten the values to restart
the simulation off the printout from the last run, but the values in the printout had been
rounded off from more precise (and therefore, different) values used by the computer.  These
very small differences appeared to totally change the outcome a sufficient time later.  Most
deterministic systems have a very small number of points or places where small differences
can diverge to make a big difference.  (Thus, a small difference in location of a raindrop
falling  just east or west of the continental divide can lead it to end up in the Gulf of Mexico or
the Pacific Ocean, but small differences in location through most of the United States have no
ultimate effect).  But Lorenz found that for some ranges of some parameters, almost every
small difference grew with time into a big difference.  This was new, and led to its baptism as
the so-called “butterfly effect.”  You will be able to study this effect for the logistic and
MDLS equations below.  It has remained as one of the central definitions of chaotic
behavior—sensitivity “almost everywhere” to arbitrarily small changes in initial
conditions.  Chaotic systems have a large number of other properties, one of the most famous
being behavior which is apparently random.  This was one of the properties first emphasized
by Robert May in 1974, who first discovered it in the logistic growth equation—probably the
simplest system to show chaotic behavior, and the system in which we will study it.  These
properties, and many others, have been shown (by physicist Mitchell Feigenbaum, in 1976) to
be very general features of nonlinear differential equations, and therefore to be very broadly
found in the physical, biological, and social sciences.  (For more on this, see, e.g., Stewart,
1989.)

The study of chaos, in particular, has a number of other advantages for
illustrating general techniques of model-building:

• Although the study of chaos is done numerically, and requires
amounts of computation which would have been prohibitive before the
computer (or at least the programmable calculator!), many of the main
lessons of studying chaos point to the virtues of visual representation and
qualitative analysis.

                                    
16A Note on format: Special topics of broader interest whose fuller development in the text would
disturb the flow of the argument are boxed with a single line.  These may include historical remarks,
expansions on technical points, and the like.  They can normally be ignored in reading the text,
although they may help in understanding some points.  There are many exercises suggested in the text.
When several occur together, they are boxed with a double line.
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• Visualization plays a large role in the understanding of chaos, and this
simulation has been designed to make qualitative visual classifications as
easy as possible by providing lots of control over how the data are
represented.  In this, the study of chaos has much in common with many
other problems which require visualization for the presentation of
complex multidimensional data, a process which both stimulates and feeds
upon new developments in software for exploratory data analysis  (see
Wimsatt, 1991).

• Even though chaotic behavior is a case where, paradigmatically,
precise values matter, it is also somewhat paradoxically an ideal place to
learn that more precision is not always better:  sometimes precision is
essential (as when constructing a model to be programmed in the
computer, or choosing initialization values to run on the computer), but
sometimes it is not only unimportant, but actually gets in the way—as in
the analysis of some of the data produced by these precise programs.
Efforts have been made in the design of these simulations to support
qualitative inferences and visual analysis of the patterns wherever
possible, while making quantitative data available where necessary.

• The infinite sensitivity of chaotic behavior to the values of the
parameters provides a natural way to see that for all of its strengths, the
computer, like any other instrument, has its limitations and its biases.  No
finite machine can use numbers that need to be specified with infinite
accuracy, but chaos feeds on any difference, no matter how small, and
magnifies it, producing differences in supposedly identical simulation
runs.1 7   The computer also occasionally throws away differ-ences that we
had hoped to keep, making identical simulation runs that should be
different.  The infinite sensitivity of chaotic systems makes them ideal for
illustrating the possible effects of roundoff error.  We have included
special tools (like the capability to vary the numerical precision used,
either totally or selectively, in computations) and exercises to  aid in
studying these effects.

  • More generally, the fallibility and systematic biases of virtually any
means of observation, measurement, computation, experimentation, or
theorizing are essential lessons to learn about model-building.  These
biases and errors can be corrected for only if we recognize that they exist.
The program Logistic Growth and suggested exercises using it have been
designed to study some of these biases and errors.1 8

• The infinite complexity of the chaotic regime provides an open-ended
microcosm for study—at least down to the resolution afforded by the
substantial but still limited accuracy of the computer.  Like the highly

                                    
17This is the basis for the so called “butterfly effect.”  That is, if the mechanisms interact to produce
the weather on Earth are chaotic, then the fluttering of a butterfly in Africa may eventually result in a
Tornado in Kansas or a hurricane on the coast of Texas.
18See Wimsatt, 1980b, 1981a,  and appendix C-III for further relevant discussion.
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touted Mandelbrot set, the bifurcation diagram provides a map for
exploring the dynamical space of a class of equations.  Unlike most of the
now common programs for exploring the Mandelbrot set, however, this
simulation is designed so that you can go beyond the map and analyze
the dynamical processes which go to make up the map using the other
three modes of analysis.

A Basic Strategy of Model-Building and Analysis:
Start with Simple Models

The exponential, logistic, and minimum-density limited logistic growth equations
are closely related in that each one builds on the previous one by taking it and adding a
simple representation of an additional causal factor to increase the model’s realism.
This is a frequent strategy of model-building in science: start with a simple model that
captures an important causal factor, and then add additional factors or variables to the
model in a sequential fashion, in each case comparing its performance to that of the
preceding model and to that found in nature.1 9   Despite their enormous simplifications,
there are usually circumstances where most simple models work relatively well, and
the exponential, logistic, and MDLS equations are no exception.  Here, features of the
behavior of natural systems which are captured by models at a given stage are
assumed to be explained by the causal factors included in those models, and features
which are explained only after the inclusion of additional factors are held to require
those factors for their explanation.  In this way, a series of comparisons and contrasts
among models can be used to attribute responsibility for various phenomena to
various parts or complexes of parts of a complex mechanism.  This strategy is a
heuristic, and thus is not absolutely foolproof (see Wimsatt, 1985, and Taylor, 1985), but
it works very frequently, and is an effective way to generate improved models and
explanatory hypotheses.

This strategy of model-building suggests a linear ordering of models from
simpler to more complex, which is at the same time a progression from less realistic to
more realistic models.  This picture is only partially correct—a more accurate picture
would be a branching tree of models of increasing detail, specialized to give more
accurate and realistic pictures of different systems or of the operation of different
factors in a given system which is too complex for realistic representations of all of the
factors in it at the same time.  But in either case, the natural question to ask is:  Why
should we bother to build and analyze the simpler models if they are less realistic or

                                    
19This strategy is used not only in developing models, but also in understanding and teaching them, and
is found to varying degrees in all of the BioQUEST simulations.  Thus, for example, in using GCK, one
will almost certainly consider a 2 allele at 1 locus cross with Mendelian dominance before attempting
the analysis of a 2 allele at 2 locus system, and that before a 4 locus system involving sex linkage,
linkage, and multiple alleles.  This is crucial  when learning how to do the problems, but there is also a
corresponding preference for the simplest possible explanation when considering different hypotheses
to explain the behavior of a new unknown system.  For engineers, simpler systems are easier to build, for
auto mechanics, they are easier to fix, for evolution (with some qualifications) they are easier to
evolve, and for scientists, simpler hypotheses are easier to construct, to modify, and to test.  For all of
this, as Darwin once observed, "Nature is as full of contraptions as it is of contrivance."  and the correct
solution is not always the simplest one.  But simplicity  is still a good starting place and working
hypothesis.
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accurate?  Why, if we have the means, not go all of the way to begin with and build the
most realistic models we can?  There are several reasons for not doing so (and for
others, see Appendix B, on the uses of False Models or Wimsatt, 1987), all of which
cluster around the concept of complexity.

Complexity

Human Limitations on Representing Complex Systems

Miller (1956) found that there is an upper limit of seven (plus or minus two) on
the number of bits of information that we can simultaneously remember, and this
limitation appears to be independent of content.  Although we have developed
techniques for extending our short-term memory (e.g., memorizing and chunking
several bits of information into a single item, making lists, drawing diagrams), complex
systems can quickly tax these techniques.  This suggests that there are important
constraints on how we represent and think about complex systems.  One very powerful
and important way we deal with the overwhelming complexity of many systems is to
abstract away the details and focus on what we view as the major factors.   What we
abstract away from a system and what we include in an abstraction of a system are
relative to how we view a system, the level of organization at which we study it, and, in
general, the aims and uses we want to make of an abstraction of a system.   These
abstractions of systems provide the conceptual basis for such simple models as the
Logistic Growth and MDLS equations described here.

But the fact that we tend to abstract away the details of complex systems does
not mean that the way we tend to think about them is inadequate for representing their
complexity.  When it is desirable to understand more about a complex system than is
represented at a given level of abstraction, we often propose decompositions of a
system into parts (and their interactions) and into different kinds of components and
systems.  Likewise, in certain circumstances, we can construct a more adequate
representation of a complex system by combining representations of parts and kinds at
lower levels of abstraction and organization.  By recognizing different levels of
organization and levels of abstraction we are often able to keep the task of representing
and modeling complex systems manageable.  This way of representing complex
systems generates two ways of hierarchically viewing a complex system—where levels
of abstraction generate kind of hierarchies and levels of organization generate part of
hierarchies—as illustrated in Figure 2-1.2 0   In a kind of hierarchy, an element is a type,
which may have more special types which are instances of it, and may itself be an
instance of a more general type.  For example, a Chevrolet is a kind of car (Chevrolet
→ car).

                                    
20See also Simon, 1981, chapter 7.



1 8     Model Building

Kind of Hierarchy Part of Hierarchy

Figure 2-1.  Kind of and Part of hierarchies.

Figure 2-1 is an abstract representation of two types of hierarchies.  On the left is
a kind of  hierarchy.  Arrows indicate the direction of the kind of relation between kinds
or types.  Thus, a dashed circle at the tail of an arrow is a subkind or subtype of the
dashed circle at the head of the arrow.  The kind of hierarchy in Figure 2-1 could, for
example, represent a simple taxonomic hierarchy of living things—or part of one,
where the dashed circle at the top of the hierarchy is the class of living things, the two
circles below are plants and animals, and below animals are birds and mammals.  On
the right is a part of hierarchy and solid lines connecting smaller circles within a larger
circle indicate strong causal interactions between parts (Simon 1981; Wimsatt, 1974).
Dashed lines leading down from a small circle to a larger circle indicate a further
decomposition of a part at a higher level of organization into several interacting parts.
The part of hierarchy in Figure 2-1 could represent two interacting ecosystems at the
highest level; at the next level down, these interacting ecosystems decompose into
interacting populations of living things.  The dotted lines linking the kind of hierarchy to
the part of hierarchy indicate what kinds of things the parts are; for example, the dotted
lines in Figure 2-1 could indicate that the larger circle on the lower left of the part of
hierarchy represents three interacting populations, one a plant, another a bird, and the
other a mammal population.

The Evolution of Models

Another reason for starting with simple models is the evolutionary nature of
model-building in science. Models are usually not orderable in a single dimension any
more than species are:  just as evolution leads to local differentiation of populations or
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species to adapt to local conditions, and a tree-like pattern of descent, so also models are
adapted in different ways to apply to different systems, to differentially increase the
detail of different parts of the model, to study different questions, and to get answers of
different degrees of accuracy and different degrees of generality.2 1  There is no such
thing as a single best model for all contexts.  Rather, in general, different models are
best for different contexts, depending on the aims and conditions of their use.
Combinatorial Complexity prevents us from modeling all of the details of real systems
and increases in complexity along one dimension are usually bought at the cost of
simplifications elsewhere.  (See the box on Combinatorial Complexity below.)

Pedagogy

As is to be expected from the previous reasons for focusing on simple models,
simpler models are easier to teach, and provide a natural starting point which is easier
to understand, and from which one can extend one's analysis and under-standing to
more complex models.  You can't fully understand a model containing the interaction of
several factors until you see how it works in the absence of each of those factors—and
indeed, ultimately, in the absence of each combination of these factors.  It is also a
historical fact that more complex models are usually derived and modified from earlier
simpler models.  This in turn accounts for the practice that in teaching science, one often
replicates (at least approximately) the sequence in which the models were developed.

Major Factors and the Detection of Biases and Errors

Even though simple models may leave out detail at other levels of abstraction
and organization, they can still be relatively realistic at their focal level of organization
or abstraction.  This is because even very simple models can capture factors of major
importance. The modes of interaction of these factors provide the conceptual basis for
understanding what may come later and how a simple model can be improved.  That is,
the major factors represented in simpler models can be used to organize and classify
deviations from the predictions made by these models. Classifications of deviations
from these simpler models can then be used to detect biases and error in the
                                    
21 Though models can't be ordered in a single line from simple to complex, or from less to more realistic,
it is not clear that a tree structure will do either.  Indeed, the only reason why it seems plausible to
construct a tree diagram relating  models is through their descent relations, in effect constructing a
"phylogeny" of models.  But this won't work either, because, unlike the standard (and not always
correct) picture given for species, models may claim descent from multiple "parents".  The relations
among models are thus even more complex than this.  Another approach would be to recognize as a
dimension every major mode of variation among models.  Thus, for population growth models, the
number of species involved could be one dimension, the number of age-classes recognized for each species
another, etc.  Some of these dimensions could be simple binary variables--e.g., deterministic vs.
stochastic, except that for many  variable models we would have to consider all combinations of
assignments to these binary values to the variables.  Though some (e.g., Levins, (1968), chapter 1) speak
of a "space of all possible models" of a given phenomenon, there is no generally agreed upon way to
represent the relations among different models, and different ways are likely to serve for different
purposes.  Some suggestion of the variety of possible models for population growth can be gotten by
looking at appendix D, which classifies the assumptions of the simnple growth equations, and some of
the ways in which they can be modified to suggest other models.
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assumptions they make, which can then be used to correct these errors, and thus to
propose new models based on the simpler ones.

Combinatorial Complexity

More complex models are more complex to analyze in several respects:  

• With more variables, more information needs to be specified or
measured for each case, making simulating or testing them more difficult.

• Models with more variables take longer to compute, and often require
much more computer memory to store the results.  For the kinds of
models discussed here, this is not a problem with current computers,
though models seemingly just a little more complex (such as those which
introduce multiple species, age structure, and density dependence,
combine genetic and ecological parameters, or combine any of these with
models which allow for spatial heterogeneity) can produce quite a stretch
even for current equipment.  (BIOTA is, for example, quite a stretch when
more than a few species or more than a few spatial patches are included.)
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Combinatorial Explosions

The expansion of possibilities that can arise when a number of independently variable
factors must be considered is so rapid that it has a special and graphical name—combinatorial
explosion.  This rate of increase is easy to underestimate.  Cases like this are basically the flip-
side of the multiplicative rule for the probability of independent events.  Just as such
probabilities are multiplied together (and get smaller rapidly. because they are less than one),
so the number of distinct outcomes (or cases) for each independent factor is greater than one, and
when these are multiplied together, it gets very large rapidly.  The probability of any given
outcome is very small because it is just one of a very large number of outcomes generated by
combinations of  independently variable kinds of things or factors. Thus, GCK allows
construction of models with up to 6 alleles (which together can produce 21 distinct genotypes a t
each locus) at up to 5 loci.  That's a double combination of genes to make genotypes at different
loci—(21)5 to be exact.  A full analysis of this model could involve looking at relations in
inheritance patterns among any combination of these 4,084,101 possible genotypes—even
ignoring the further complications of sex-linkage, linkage, chromosomal groupings, and
recombination.  (Luckily, we can usually break the problem into parts, and solve for most of
these factors one or two at a time, so this enormous potential complexity seldom arises—see also
discussions of near decomposability and quasi-independence.  Indeed, if it did arise often,
science as we know it would probably be impossible.)  Spatial heterogeneity in ecological
models is even more problematic.  BIOTA allows any combination of up to 10 species to be placed
in each of a 12x12 array of patches.  Even ignoring (1) their initial numbers and classifying each
species as just present or absent, (2) the possible choices for how they may interact, and (3) the
different possible specifications for modes of migration between and among the 144 patches,
this gives (210)144 = 21440 which is approximately 10432 different cases.  For comparison, the
astrophysicist Sir Arthur Eddington estimated the number of elementary particles in the
universe at a paltry 1079.  That was in 1939 so he could have been a little off.  But were the
universe a million times bigger (it’s not clear that it could be without gravitational collapse!)
that would only be 1085.  There have been approximately  1019 seconds since the big bang, and
the current fastest estimate for a physical event is the amount of time it would take a photon to
traverse the diameter of a hydrogen nucleus—or 10-24 seconds.  So with 1024 of these occurring
per second, the total number of events in the universe since the big bang must be no more than
10128.  Clearly, we’re not even playing in the same ballpark, and it must take some art in
exploring our space of possibilities in studying a model.  This is where analytical classification
and representative sampling (discussed below) play their parts.  In any case, this
combinatorial explosion is not all bad—it is responsible for our genetic individuality, and
makes the world a much more varied and interesting place.

 • More variables also means many more distinct cases that must be
analyzed if the behavior of the model is to be completely described or
understood:  if each of v  variables can take on s  interesting states, the
number of possible cases to be considered is sv. This deceptively simple
relationship hides daunting complexity.  With 2 binary variables, each  
capable of being in 2 states, there are just 4 cases to study, but with 4
variables, each capable of 4 states, the number of cases jumps to 256. With
10 variables, each capable of 10 states, this number leaps to 10,000,000,000,
and even this is small compared to the range of possibilities allowed with
most BioQUEST simulations.
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• Related to this is the fact that, as the number of variables increases, the
possibilities for complex interactions among many variables increases.
There are more such possible interactions, and the manipulations required
to analyze each one, involving more variables, is more complex to
analyze.

An enormous number of different kinds of cases to study means that they can’t
all be surveyed, and a premium is placed on either being able to group the cases into a
smaller number of types (see kind of hierarchies above), such that one of each can be
studied, as either a representative case, or the “best” or “worst” case (depending what
you are looking for) of that group, or being able to sample from the large number of
cases in a statistically representative fashion.  (The latter is the strategy of Monte Carlo
simulation.)  Both techniques—analytic classification of a large number of cases into a
smaller number of types, and designing a representative sampling of cases for a Monte
Carlo simulation—are aided by studying related problems in simpler models in order
to decide what features are relevant to the analytical classification or should be taken as
representative.

Taking a Closer Look at These “Simple” Growth Equations

The simple growth equations in turn give the basis for further extensions to
more complex models as we would expect from the discussion in the last section.  The
exponential and logistic growth equations provide the basis for generalizations to cases
where organisms live to reproduce more than once, and have changing probabilities of
having young and dying as a function of age.2 2   The logistic growth equation also
provides the basis for models of multispecies interactions—the so-called Lotka-Volterra
equations for species interacting by competition, predation, and symbiosis.  They may
also be used as the basis for models involving spatially heterogeneous environments,
where different numbers of organisms of different types are found in and can migrate
between different neighboring cells. All of these represent extensions which are used in
the BIOTA simulations.2 3   Even when things get more complicated with age structure
and multispecies interactions the logistic and MDLS still often provide rough qualitative
predictions of the growth of single species, and in any case, revealing comparisons for
evaluating the magnitude of the effects of leaving the more complex details out.  Often
we can derive conditions from this comparison which tell us when the simpler model is
adequate for predictions in the more complex case, and sometimes  can tell us
something about the effects of embedding simpler systems in a larger and more
complex system.  (See, e.g., Exercise 6 below about the destabilizing effects of time lags
in multispecies systems.)

                                    
22These are so called "age-structure models", which are themselves the simplest in a series of models
necessary for reasonable predictions of population change in complicated cases like that of human
demography and many animal species.  See, e.g., Crow and Kimura, 1970, chapter 1, or Roughgarden,
1979, chapter 18.
23In this case, each species is assumed to grow in a fashion suggested by the logistic, to which are added
additional algebraic terms for the numbers of other species present, and how much they help or hurt its
growth. The community change as a whole is given by the simultaneous solution of these interspecific
growth equations for each of the species in the community.
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We won't provide a detailed analytical and biological discussion of these simple
growth equations since more extensive discussions are widely available elsewhere.2 4

See the discussion of the assumptions of these models, and their analysis in Appendix D.
Here we show how using these simple equations exemplifies model-building strategies,
and biases; how their idealizations and ways they are false do not necessarily hinder,
and may even promote, their usefulness; how the computer has revolutionized the
study of mathematical models of natural phenomena, and how these models and the
computers used to study them, like any other instruments, need calibration, thoughtful
use, and the exercise of judgment.  With this, even simple models such as these can be
sensitive exploratory probes for sampling the rich complexities of nature.

The exponential, logistic, and MDLS equations will all be presented and used in a
common form—as so-called finite difference equations.  In many cases, using this form
turns what would otherwise be a calculus problem (the solution of differential
equations) into a closely related algebra problem.2 5   Instead of integrating the
differential equation to get a solution for population size as a function of time, the
algebraic right-hand side of the differential equation is taken as specifying a growth rate
at a given time t, as a function of population size N(t), and other relevant variables,
which holds exactly for a finite time interval, ∆t. The population growth in that time
interval, ∆N, is taken to be the product of the growth rate (dN/dt) and this time interval,
∆t.  The change in N, ∆N, is added to the preceding population size to produce a new
population size, N(t+∆t), which is used in the calculation for the next time interval.  Not
only are the equations easier to present and to solve in this way, but it naturally
suggests a loop in a computer program, which is just how they are solved. (This kind of
solution is called a numerical solution.)  Indeed, barring the use of a symbolic
manipulation program (like Mathematica) which gives exact, symbolic, or analytic
solutions, it is the only way that they can be solved on a computer.

With difference equations (also called “finite difference equations”), we can
approximate the solutions we would need with calculus if we were (like most physical
scientists), interested in the continuous case—and in fact, with the computer, the study
of difference equations is a natural way of learning differential calculus.  To physical
scientists, the difference equation serves as an approximation to the differential
equation they really want to study.  Perhaps most surprisingly, in population genetics
and ecology, the situation is often or usually reversed.  Because generations take a finite
amount of time, and there is often a lag between changes in population size and when
this change feeds back to affect the growth rate of the population, the difference
equation is often the more realistic one, and the differential equation is used, if at all, as
an approximation!  (This turns out to be a crucial issue for the production of chaotic
behavior, and one reason why it may be particularly important in ecology, because
                                    
24See, in order of increasing sophistication, Wilson and Bossert, 1971, Crow and Kimura, 1970, and
Roughgarden, 1979). Roughgarden is particularly good in providing many examples of how these and
other simpler models are used in, presupposed by, or motivate more complex ones.
25 In particular, the difference equation will often have exactly the same solution as the differential
equation.  The difference equation may not be stable if or when the differential equation is, but the
converse is always true:  if the difference equation is stable, the differential equation must be.  This can
be readily seen  using this program by choosing values of ∆t closer and closer to 0, since  in the simulation
of a difference equation, the limit of this transformation  as ∆t —> 0  yields the corresponding
differential equation.
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difference equations are less stable and generate chaos more readily than their
corresponding differential equations.)

Logos—Logistic:

Historically, the logistic equation (logistic, from the Greek word, Logos, meaning
law) for population growth was first studied as a continuous differential equation because its
first major exponent, geneticist Raymond B. Pearl, saw it as another extension of a more
general law of growth.  This law was first expressed in differential equation form for the
growth of a chemical species in a chemical reaction as the reaction went to saturation.  Pearl
extended this equation to cover the growth of individual organisms in development, and the
growth of populations.  Lotka and Volterra were also first motivated to construct their multi-
species growth equations via extension from related chemical and physical theories.  For
more on this, see Sharon, B. Kingsland, Modelling Nature:  The Origins of Theoretical
Ecology, Chicago: The University of Chicago Press, 1986.

A standard (though not the only) way of presenting a difference equation is as a
pair of equations, the first specifying a rate of change of a variable with respect to time,
dN/dt,  and the second specifying how this rate will affect the change of the variable
over a finite period of time.  This second equation basically involves a linear
extrapolation of the derivative or slope, dN/dt, for a finite time, ∆t,  and is the same in
all of the equations we will consider.

Let’s start with the difference equation version of exponential growth

dN
dt    = rN  (1a)

and

N(t+∆t) = N(t) + 
dN
dt    ∆t (1b)

where:

N = population size (number of individuals) or density (number of individuals
per unit area).

r  = intrinsic growth rate, normally evaluated under low density conditions, or
best circumstances, if these are not at low densities (as with the MDLS equation).

N(t), N (t+∆t) = size or density at time t, and at time t+∆t.

∆t = a standardized time interval, either in “physical” time (a second, a minute, a
year), or organism-relative time (a generation, or fractions or multiples thereof:
a generation for E. coli is about 20 minutes, for Drosophila, about 14 days, for man
(depending on how it is defined, and the age of reproduction in different
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populations) 14-23 years, for a century plant (and some species of bamboo),
roughly 100 years.)

The rate equation (1a) says that the rate of change (or growth) of a population is
proportional to its size, N.  The constant of proportionality, r, is called the intrinsic
growth rate.  The parameter r is the difference between birth and death rates, r = b – d.
So if b = d (a population is at equilibrium in size—as many are being born as are dying),
then r is zero and the population is neither growing nor declining.  If b > d, r is positive
and the population is growing.  If b < d, r  is negative, and the population is declining.2 6

When Darwin said that all species, by nature, increase at a geometric rate, he had
essentially this exponential growth equation (or the corresponding algebraic geometric
growth equation) in mind, and his talk of increase implies that he believed that for all
natural organisms (at least under ideal conditions) r > 0, or else they would no longer be
here.  This same exponential equation, however, also applies to other situations where r
is negative, such as the decline in the amount of a radioactive substance as it decays
with time, or to the change in water level in a cylindrical bucket with a hole in the
bottom.  There are also clearly cases in biology (such as with local or global extinctions
of a population or species) where r is negative.  This equation is not directly studied in
this simulation, but it occurs as a component of the logistic and MDLS equations, and at
very low densities (a small proportion of the Carrying Capacity), logistic growth is
approximately the same as exponential growth.

The second equation, (1b), is the equation used to get from the net growth rate
(dN/dt, given by equation 1a) to the change in population size expected some time (∆t)
later, using a method of linear extrapolation.

Let’s add a little more realism and get the Logistic Growth Equation:

dN
dt    = rN[

K-N
K   ]                                                              (2a)

(2a)

and, as before:  N(t+∆t) = N(t) + 
dN
dt   ∆t                          (1b/2b)

(1b)/(2b)

(in the future, (1b) will not be repeated but understood)

where:

N, r, etc. as before, except that r  is assumed to be positive.

                                    
26In these models, b and d do not enter directly as parameters, except through r.  In more realistic
models (including those for age-structured populations), b and d are used directly, so that the effects of
changing them in different ways can be studied.  See appendix D.
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K = Carrying Capacity (equilibrium point for low values of r∆t.)

Note that equation (2b) is exactly the same as equation (1b).  This is because it is
here treated as a general method (one of linear extrapolation) for getting a value of a
curve at a later point given its value (N) and slope (dN/dt ) at an earlier point, and we
will not change it in these models.  The model changes because of changes in the
equation for the growth rate—equation (2a).  The second equation is a general way
(and probably the simplest way) of going from a differential equation to a
corresponding difference equation.)

With the logistic growth equation, in equation (2a) the equation for exponential
growth (equation 1a) is multiplied by an additional factor, [(K-N)/K], to reflect the
density dependence of growth rates.  At higher densities, the net effective growth rate
usually decreases.  (Indeed, at a high enough density, it must decrease—this was the
insight Darwin got from Malthus.)  This may be for a variety of reasons, either
separately, or taken together—limitations of food, nest sites, increased costs of or time
spent in foraging or socializing, intraspecific competition, or other negative interactions.   
The net decrease in population growth rate may be due to increases in death rates,
decreases in birth rates, or both.  In this model as in the MDLS below, r  is kept constant
as a coefficient for the species, indicating what it can do in the best of circumstances, and
the effects of density through changes in birth or death rates are built into this new
factor.  This algebraic factor in this model represents perhaps the simplest possible case:
a linear effect of density on growth, declining from 1 at N = 0 through 0 at N = K to
become proportionately more negative as N gets increasingly larger than K.  Let us
now point out some things about the behavior of this equation—or of any species
which grows in this fashion  (items (2), (4), and (5) below may be validated via natural
extensions of exercise 1 in the box on the following page):

• (1)  At very low densities,  as N -> 0, [(K-N)/K] -> 1, so the logistic
behaves more like the exponential.  Indeed, when [(K-N)/K] = 1, this
equation reduces to the exponential, and this limiting behavior is very
revealing.  (See graph 2 below, though if you try the values in the
paragraph below the box, the effect will be even more pronounced).

• (2) With small positive r, for N between 0 and K (0<N<K), N increases.
(Try the same run, now from N = 1 for 50 generations.) It will approach N
= K, slowing down as it gets closer.   If r is small, we don’t have to try this
for larger starting populations between 0 and K because it already goes
through a fairly dense sample of population sizes between its starting
value and K, so we already have an idea of what it does for those values.
This means that we can take any trajectory starting with N between 0 and
K as representative for the others meeting that condition.  This is an
example of simplification of the number of cases considered through
analytic categorization, as described above.
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Functions of “Limiting Value” Arguments:

This kind of argument—looking for limiting values under which one equation behaves
exactly or very much like another—is an extremely important way of gaining understanding
of both equations, and is commonly practiced throughout the mathematical sciences.  It is one
of the most important problem-solving heuristics in mathematical modeling.  It sometimes
helps you to solve the more complex equation, but even where it does not, it gives
understanding because it tells you what conditions on the more complex (and presumably more
realistic) model yield behavior like the simpler one.  In doing so, it tells you when you can get
away with using the simpler one, and what you have to do to do it.  When the equations are
interpreted causally, this kind of limiting behavior allows us to tease apart the role of
different causal factors in producing the results, and to see how the new causal factors of the
more complex model interact with the existing ones of the simpler model. Limiting behavior
also plays an important justificatory or testing role:  when new, more detailed and complex
models are first advanced, it is often a condition of accepting the new model that it produce
behavior like older, simpler (but well established) models.  In effect, when you are exploring
new territory, it is better to start from a well known base camp.  (A special case of this arises
in testing a new computer model, where it is a standard technique to make sure that it works
numerically in cases where the answer is already known.  Indeed, restarting his run in the
middle (through which Lorenz discovered the sensitivity of his equations to the exact initial
conditions—see the Chaos box) was a special application of this technique:  Lorenz was using
it as a check to make sure that he had reentered the values correctly, for which the answer
was, “yes” (approximately) and “no” (exactly).)  For some further functions of this kind of
procedure, see the descriptions of the functions of “successional reduction” in Wimsatt, 1976,
and for discussion of more examples, see Wimsatt, 1987. (A list of functions of false models and
examples is found in Appendix B.)

• (3) Determinism entails that (a) if we have exactly the same conditions
again, exactly the same thing will happen.   This, which could be called the
principle of determinism, is true for all of the cases we will consider.  It
does NOT entail the stronger claim, which could be called the principle of
smooth determinism, that (b) if similar conditions obtain, similar things
will happen—though we often tend to believe it anyway.  And it usually
does happen, with very rare exceptions, e.g., the raindrop at the
continental divide.2 7    We are basically assuming the truth of (b) in
making this analytic classification, and we got away with it this time.  But
with chaotic behavior, and this is the important difference, (b) is almost
never true.

                                    
27 Many discussions by philosophers of causal determinism focus on what is above called the principle
of determinism, arguing that our notion of physical law requires committment to the idea that, in
exactly similar circumstances, exactly the same thing will happen.  Anomalously, they do not discuss
what is here called the principle of smooth determinism, which is probably even more important for
our concept of a physical law.  Roughly, in circumstances where we are ready to recognize the existence
of a law,  it must be the case that thwere are substantial ranges of conditions within which the
principle of smooth determinism holds.  One of the anomalous features of chaotic behavior is that
under conditions where it is realized, this principle breaks down almost everywhere.
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Exercise 1: The Exponential and Linear Limits

You can investigate this effect (and everything else discussed here) with the Logistic
Growth program found in the Modeling Tools  module.  Logistic growth is a special case of the
minimum-density limited logistic growth equation attained by setting C = 0, so do that first.
(see Appendix A for instructions on how to use this program.)  Now start with a very small
value of N, a pretty small value of r, and run the population for just a few generations t, such
that N(t) is a small fraction of K.  (Thus, try N = 1, K = 100, C = 0, ∆t = 1, and r = 0.1 for G = 10
generations,  with the bottom radio button set for 1 run.)  The discrete exponential would
predict a population size at the end of generation 10 to be (1.1)10 = 2.593742.  What do you
see?  How close is it?  With strictly geometric increase, if you multiply the starting value by
a constant value (say 10) the ending value should be multiplied by the same amount.  Is i t ?
Try it and see.  The fact that it isn’t  (and also the fact that you didn’t get exactly 2.593742
after 10 generations in the first run) is due to the second density dependent multiplier.  The
fact that the deviations from the exponential get proportionately larger in the second run is
due to the higher densities, and the fact that [(K-N)/K] is no longer close to 1. Consider now
what happens as r gets very small.  (This suggests a still simpler linear approximation, in
which for rG « N, ∆N is approximately constant.)  What is the difference?  Under what
conditions can a geometric rate of increase be approximated by a linear relation?

• (4) We can also see from the equation that at N = K, [(K-N)/K] = 0, so
dN/dt is also 0 and there should be no change in the population.  Thus N =
K is an equilibrium.  

• (5) For N > K, [(K-N)/K]  is < 0, so we would normally assume that the
population would decline, until N = K.

• (2) through (5) together imply that N=K is a stable equilibrium, which
means that if the system is perturbed or changed slightly from that value,
it returns.  But, N =K is not always a stable equilibrium, as we will see
below in Exercise 3.
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Exercise 2:  The Classical Vision of the Logistic

These last few ideas can be tested directly.  Set K = 100, N = 25, the increment in r a t
0.1, and the bottom radio button for 10 runs. Let generations run from 0 to 25.  (If you don’t
understand these instructions, see Appendix A.)  You will now see that N = 100 is an
equilibrium for 10 different values of r, .1 ≤ r  ≤ 1.0. Now set N = 50, and the top radio button
for 10 runs at an increment in N of 10.  This will show you that N = K is a stable equilibrium
for values of N  from 50 to 140, since from all of these values, N approaches K as time goes on.  
(If you want to, change K to verify this.) Thus, at low densities, growth rates are roughly
exponential.  As densities increase, density-dependent effects slow down growth, and the
population slowly approaches its maximum density at N = K.   If, by some chance, the
population goes to too high a value of N  (as could happen through a rapid influx of migrants
(increasing N) or rapid decreases in carrying capacity, K—as happens for many species every
winter), the population declines, approaching N=K from above. This is the basic, classic-
ally understood behavior of the logistic growth equation—before chaos, and before Robert
May’s 1974 paper in Science.

Exercise 3: Period Doubling and Chaos

With ∆t = 1, investigate different values of r (0≤r≤3) to see what values are stable.
(We speak of values of r  as being stable when N =K is a stable equilibrium for those values.)
To do this, it is useful to pick a starting value of N close to N =K, and see whether from that
distance (technically both above and below N =K, but in this case, it doesn’t matter too much)
the N-values get closer to N =K or further away.  What happens for r>2?  When you
understand these conditions, try varying ∆t to see how changes in that affect the stability of
r.  Can you find a simple condition or equation relating r  and ∆t  that determines when N =K
is a stable value?  Increment r  slowly above that value.  What happens?  Can you find 2-
point stable oscillations?  Over what range?  (A stable oscillation, like a stable equilibrium,
is a set of points such that small perturbations from it in any direction tend to return to it.  To
test for the stability of a 2-point oscillation, try oscillations which are slightly smaller and
slightly larger to see if they both converge to the oscillation in question.)  Can you find 4-
point stable oscillations?  8-point?  How long do you think this sort of thing can continue?  Can
you find out?  Where do things start to get unpredictable?  And what do we mean by
predictable and unpredictable anyway?

HINT:  the behavior of the logistic (we'll look at the MDLS later) for r > 3 is not
interesting dynamically because the population always goes too high and then crashes
immediately to 0 or below, though the program converts negative population sizes (which
don’t make too much biological sense) to zero. This dynamical behavior may not be very
interesting (in effect it stops the behavior) but biologically this is very interesting since i t
means that the population has gone extinct.  Those biologists who thought that chaotic
behavior in the model said something about real populations in nature (which was not
everybody, and very few people initially) thought this was very interesting.  Many others,
though, thought that the mathematics didn’t have too much to do with reality.  Arguments
for the importance of chaos have grown stronger since.  See Wimsatt 1980a and Shaffer 1984
for discussions of the reality of chaos in nature.
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A better view of what is happening  can be achieved by doing a different kind of
graph—resulting in what is sometimes known as a "bifurcation plot" or "fig tree," a play
on the name of one of its inventors, physicist Mitchell Feigenbaum.2 8   This graph has
come,  perhaps more than any other,  to be emblematic of chaotic behavior.  It is an
unusual sort of graph in that many y-values (rather than just one) are plotted for each
x-value.  In this graph, it is as if a separate N vs t graph were plotted for each r-value (or
more exactly, at the r-value corresponding to the location of each pixel along the x-axis).
But here the t-values are no longer plotted explicitly.  Rather, the N-value is plotted for
a series of successive values of t all at the r-value for that run.  (These graphs take a
long time to construct.  The graph below, Figure 2-2, is 400 pixels wide, and plots the
population size between generations 200 and 300 for each of these 400 runs.  Since it
also has to calculate the first 200 generations to know where it is to start plotting at
generation 200, the computer is doing 400 x 300 = 120,000 iterations of the MDLS
equation, so you should expect to wait for a while—though you can watch while it
makes the graph in the standard version of this program.)2 9

                                    
28Actually, this mode of plot was first used (in 1976) by ecologist (and ex-physicist!) Robert May, but
he did not extend his calculations systematically beyond the onset of chaos, and thus did not see the
whole "tree".
29We have now added an option so that the bifurcation plots can be done in color, which allows seeing
some interesting  additional phenomena, and which will be discussed further below.  One consequence of
this color option (activated by checking the color PICT box in the dialog box for r vs. N) is that all of
the computation must be done before the graph is drawn, so you get to watch the "beach ball" cursor for
quite a while as it does it.)
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Figure 2-2:  Bifurcation diagram showing the behavior that the system settles down to after 200
generations.  (In this program, the first 200 generations are calculated, to give the system a chance to
settle down if it is going to do so quickly, and then the next 100 generations are plotted.)

If you now want to see an overview of what is happening, with the stable and
unstable cycles, look at Figure 2-2—which is called a bifurcation diagram. To make this
kind of diagram, a population is started out from a given value of N and of r, and run
for a given number of generations (called “start Gen” in the label for Figure 2-2), after
which another determined number of points are plotted (“N plotted”), all for that same
value of r.  The value of r is then incremented by a small amount, and the process is
then repeated.  The values of r are laid out along the x-axis, and the values of N along
the y-axis, producing a special kind of N vs r plot.  In general, if the population is at
equilibrium for the value of r and the points plotted, they will all be plotted at the same
place.  if the population has achieved a stable 2-point oscillation, all of the points plotted
will map back and forth into one or the other of them for that value of r.  If the
population is in a stable n-point oscillation, and at least n points are plotted, n points will
be shown above that value of r, and so on.  If the population is not at equilibrium, the
points will move around.  See if you can discover how they move around if (a) you are
approaching equilibrium, (b) you are approaching a stable short-period cycle (say, 2, 4,
or 8), or (c) you are moving chaotically.

In the r vs N plot in the program, you can adjust the number of generations
calculated before plotting and the number of generations plotted.  Smaller values for
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the first number give you a sense of what the system is doing while it is settling down.
If you are looking at this (called transient behavior, because it goes away after a while,
unlike equilibrium behavior, which persists) it is useful also to use a fairly small value
for the second number, so you don't get confused by a large number of points.  You
can experiment with these.  What transient behavior you get, and how long it lasts, is a
function both of the starting population size, N0 , and of r and C.  (Transient behavior is
at least as interesting as the equilibrium behavior sought in the above "bifurcation plot,"
but seldom investigated—set the first number to 0 and the second to 5 for 0<r<3.  Can
you relate this behavior to the N(t) vs. N(t+m) "phase plots" discussed below?)  (Or see
the following plot for generations 1-5 for 2.5<r<3 produced in this way.)  Smaller values
for the second reduce the density of points in the chaotic region.  Smaller values for
either make the program run faster.  See further descriptions in Appendix A.

These diagrams are usually plotted for enough generations that most of the
things that are going to settle down into a stable cycle will have done so, and those that
aren’t going to make a band of points above that value of r.  If we now look from left
to right along the x-axis to compare what happens for different values of r, we see that
a single line branches into two (at around r = 2.0), that these branch again, producing 4
branches (at around r = 2.44), that these branch again, producing 8 (at around 2.54), etc.
These branchings or “bifurcations” are the onset of stable 2-, 4-, and 8-point cycles as r
is increased through those values.  In general, stable periods will be represented by a
series of roughly parallel bands or "branches" for those r-values.  If  you want to see the
curves settling down to their stable cycles, try a smaller value for “start Gen”  (for more
speed, you might try 25 for both start Gen and N plotted), and you will see the
“trunks” thicken before the branching happens.  (If they don't, try changing N0  a little,
and/or decreasing start Gen even more.)

This bifurcation plot predicts the first bifurcation to a 2-point cycle at r = 2,  the
second (to a 4 point cycle) at r = 2.44, etc.  In particular, have a look at the ballooning
thicket-like mess above about 2.57, and the bands of clarity or “windows” at various r
values above (the largest readily visible being between about 2.83 to 2.85, although
other bands appear elsewhere under greater magnification).  These bands represent
regions where there are stable cycles.  They are bridged by twigs at different
heights—one “twig” for each value in the cycle.  Feigenbaum (1980) has shown that this
diagram in fact predicts transitions in all nonlinear equations whose behavior gets more
complex and ultimately goes chaotic via period doubling bifurcations.3 0    See the
Stewart (1989) book for a clear and deep exposition, though in fact, this particular case is
so well known that virtually any book on chaos will do.3 1   With appropriate rescaling

                                    
30A period-doubling bifurcation is a process through which, for increasing values of r, a stable period
switches over to another stable period which is twice is long.  Thus 2 -> 4, 3 -> 6, and 17 -> 34 are all
period doubling bifurcations.
31Physicists do the bifurcation diagram for a closely related but different equation (a kind of normal-
ized or rescaled logistic), which they call the logistic. This equation is the general normalized quad-
ratic form (dN/dt = lx(1-x)  ) in which it was originally investigated for these purposes by Robert May.
It behaves in a basically identical manner  as ours does for the logistic (i.e., with C = 0) except that as
our r goes from 0 to 3, the parameter along the x-axis there, l, goes from 1 to 4, and that as our vertical
scale goes from 0 to 4/3(K), that vertical scale goes (proportionately) from 0 to 1. With those caveats,
you can read what is happening in most books on Chaos (e.g., Stewart, 1989) from this diagram.
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for C/N, it works for the minimum-density limited logistic too, and for a lot of other
growth equations.

You may have wondered how we got these numbers so accurately.  You can
find them using appropriate techniques by exploring the logistic, but you may also
want to explore the bifurcation diagram using the “N vs r” option at the bottom of the
Simulation menu.  The bifurcation diagram furnishes a map for where (what values of
r and N) interesting things are happening, and with this program you can blow up
portions of it to see more clearly.  To do so, select “N vs. r” from the Simulation menu.
The minimum and maximum values for N and r specified there are default values.  If
you select minimum and maximum values that are closer together, you will get a
blowup of that region.  Thus plotting r from 2.8 to 2.9 produces a magnification of that
region 30 times as great as doing a plot from 0 to 3. Use the Record coordinates option
at the bottom of the Simulation menu, and click the mouse on locations that interest
you to record their coordinates in the Run Record.  A lot of the details of what is
happening require the other views provided by our N vs t, and “N(t) vs N(t+m)” plots,
however.  These three, and another plot type, “Ne(t) vs r,” to be discussed later,
confirm and complement one another.  Some things are best studied using one view
mode, and some are best studied using another.  Like most interesting things, this
behavior is worth several different views!

As mentioned above, one can also get different views of what is going on by
taking different time slices of the r vs N plot.  The next figure, Figure 2-3, takes the first
5 generations by setting the initialization generations at 0, and the plot generations at 5,
and then the next 5 generations by resetting the initialization generations at 5.  With this
setup, you can take different windows (of whatever width you choose; determined by
the number of generations plotted) at whatever time slice you want; determined by the
number of initialization generations.   This raises a lot of questions considered in the
box below.  You might want to try some of them out. (If you are reading this on a
computer with a color monitor, you will see that Figures 2-3a and 2-3b are drawn in
color.  Color PICTs can be drawn and saved with the r vs N mode by checking the
Color PICT option in the dialog box, and then either copying the graphs to the
scrapbook or using the Save PICT option in the File menu.  These files can be quite
large (roughly 8 times larger than black and white bitmaps), and it is quite easy to make
a color PICT in this mode which is too big for you to save.  If so, decrease the number
of generations plotted, or decrease the graph width using the Graph coordinates option.
The last thing to notice about these color PICTs in the r vs N mode is that color codes
for generation number.  The same seven colors are used in a cyclical repeating order in
all graphs:  The first seven generations will be colored red, rose, yellow, green, light
blue, dark blue, and black, followed by a repeat.  Thus, generations 1, 8, 15, 22, 29, ... ,
1+7n, ... , will be colored red; 2,9, 16, ... , 2+7n, will be colored rose, etc.  Thus, red
appears in trajectory 1 (the constantly climbing shallow sloping line near the top of the
top graph), and in trajectory 8 (the undulating bottom curve starting at the leftmost
edge of the bottom graph).  You might try producing something like Figure 2-2 with
the color PICT option on.  Do you see any places where well-defined branches (in the
non-chaotic regions or bands) switch colors in the middle?  If not, try another value for
No.  Can you explain what is happening here?  Try looking at the transient behavior of
earlier generations.  Can you give a general explanation for what is happening here?
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Can you get a generalizeable explanation for the occurrence of phase shifts with
changes in N0  or r?

0

150
N r vs. N plot

0

150
N r vs. N plot

2.50000 2.60000 2.70000 2.80000 2.90000 3.00000 r

N(t=0) = 50.000000  r = 2.500000  K = 100.000000  C = 0.00
∆t = 1.0  ∆r = 0.00124688  start Gen. = 5  N plotted = 5

Figure 2-3. r vs N plot for 2.5< r <3, and 0< N <150, with start generations = 0 (top) and = 5 (bottom) and
plot generations = 5.  The starting value of N is also important in determining what the individual
curves look like.
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Exercise 4:  Tasting Time Slices of Bifurcation Plots

Look at the curves for N as a function of r in successive generations in Figures 2-3a and
3b, or experiment with making some yourself. What does it mean when a curve goes through a
local maximum or minimum in this kind of plot?  What is happening the generation before and
the generation after?  Can you explain why higher generations get curvier?3 2   What ( i f
anything) does it means when trajectories cross?  Are there any differences in the cases where
two curves cross and where multiple curves cross?  Consider the generations in which they cross.
You could  (in the program, by clicking with the cursor) find out the locations (the N and r
values) where interesting things are happening (intersections—and which generational curves
are intersecting?), maxima or minima) and see what happens at or around these values using
the N vs r or N(t) vs N(t+m)  plots.  Can you relate this to the N(t) vs N(t+m)  "phase" plots
described below?   Save a plot with well defined local maxima and minima (i.e., one with low
generation numbers).  Now change the starting population size (No).  What happens?  Why?

It is now time to introduce the third and most general of our growth equations,
the minimum-density limited logistic, or MDLS for short.

Let’s add a bit more realism and get the minimum density limited logistic:

dN
dt    = rN [ 

K-N
K   ] [

N-C
N   ]

where:  

N, r, K as before.

C = minimum density threshold (e.g., reflecting the probability of finding a mate,
or lower thresholds for density or numbers where cooperative inter-actions are
important, as for warmth, cooperative hunting, or cooperative defense against
predators.)

We’ve done the analysis relating the logistic to the exponential.  Now it’s your
turn to do the analysis relating the MDLS to the logistic.  If you’re not sure what
happens, explore it with the simulation.  The following exercises (in Box 5) should give
you a lot of points for comparison:

                                    
32Be careful here—these curves are not trajectories, but functions relating how the population size
varies through the first 5 generations as a function of changes in an underlying process.  To put it another
way, the growth equation is actually changing (because the value of r is changing) as you move along
the x-axis.  Nonetheless, the different generations are represented here—by different curves.  (The
situation is thus just the opposite of that in the N vs. t plots, where the different curves represent
different values of r or of N, and the distance along the x axis or along the curve the time).
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Exercises  5: The MDLS and Its Relation to the Logistic

1.  Set C > 0, but a relatively small fraction of K  (i.e., if K = 100, let C be 20.). For some
fairly small value of r  (say, about 0.1 to 0.3) click on the top radio button, and set N close
to but < C.  Choose an increment in N such that 5 runs will start N at values bracketing C
from below and above.  (Choosing N = 18 and ∆N = 1 will do for a start if C = 20.)  Explore
lower and higher values if you like.

 2. How does the behavior differ from the logistic? Evaluate their behavior when N  is >
C,  but close to it,  for how fast N approaches K, and for the stability of the curve near N
=K for different given r values.  Can you explain why the MDLS is stabler?

3. Can you predict when (i.e., for what r values) the MDLS will bifurcate (relative to the
logistic) for different r  values?

4. Try varying C to see what happens.  Describe qualitatively the behavior of the MDLS,
by analyzing [(N-C)/N] for different values of N, and show that when C is set = 0, the
MDLS reduces to the logistic as a special case.  Given this, under what conditions would
you expect the behavior of the two equations to be strongly similar?   What conditions
would you look for to test which of the two equations best fit the behavior of a
population?  Where would you expect their agreement to break down?  Is this the same
question?

5. Try some of these exercises using N vs t plots, and then compare the results for tha t
value of C over a range of r-values using an N vs r plot.  How are they similar and how do
they differ?  Try N vs r plots for different values of C.  What regularities do you find?  Is
there a relation between K, C, and the r-value for which the lower branch of the "fig
tree" in an N vs r plot intersects the line N = C?  For the altitude (the N-value) of the
upper branch at this r-value?

6. What does all of this mean biologically?

The Importance of Time Lags:
The time lags represented in these equations by ∆t are very important to

understanding the dynamics that they predict.  ∆t, remember, is the time lag between
when something happens (e.g., an increase in population size) and when that change
has a causal effect on further changes; it is thus a response lag or reaction time.  We do
things on a number of different time scales, and a failure to adjust or respond on the
right time scale can cause problems.  We watch our balance as we walk, and as we
spend.  We are fortunate indeed that our bank does not require us to respond to our
checking account balance in fractions of a second—and we don’t (and indeed cannot)
walk so slowly that adjustments to the local terrain will do as long as they are in by the
end of the month.  Richard Levins (1968) tells the story of a species which has two
generations per year, one each in winter and in summer, and always makes for the next
generation the phenotype that was best for this one.  This creature would always be
“out of synch”—better if it could either predict what environment its offspring would
occupy, or reproduce much faster, while this generation’s phenotype was still good.  
We began accumulating significant amounts of CO2 in the atmosphere soon after
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1800—about 7 or 8 generations ago. We first detected that rise in the late 1800s, and
have only recently come to appreciate its significance in the “greenhouse effect.”  One
thing everyone agrees upon is that we would have a much easier time adjusting now if
we could have come to an agreement on its significance much earlier.  The next group
of exercises show indeed that our sense of the importance of time lags, and responding
with appropriate speed, is reflected in the equations  modeled here:

Exercise 6: Time Lags in MDLS

1. Time lags turn out to be very important for analyzing and understanding the dynamic
behavior of these equations.  To see this, try everything you have tried before for a ∆t of 1
for different values of ∆t, say of 2, or 1/2, 5 or 1/5, etc.  (Notice the correlated constraints
given in the dialog box on ∆t and the number of generations.  The main thing to remember is
that you can’t plot more than 400 points in a trajectory.)

2. Why should changing ∆t make a difference?  Why do you think that the behavior is so
sensitive to relatively small changes in ∆t? How do these changes affect behavior?  

3. Keeping K and C constant, can you guess an equation relating r and ∆t to predict period
doublings in the logistic relative to when they occur when ∆t = 1?

4. Can you guess an equation relating r, ∆t, K, and C to predict corresponding period
doublings (or “bifurcations” as they are called) for different values of these four quantities?  

5. Does the kind of dependency on ∆t you find make biological sense?  Why should small
∆t’s be stabilizing, and big ∆t ’s be dangerous?  Suppose someone says to you,  “Chaos can’t be
important for this species because its growth rate is too small,” but you know that i t
interrelates with a variety of other species which also interact with each other in such a
way that causal effects could propagate for a long way (and a long time) in the ecological
web before coming back.  On what time scale is its growth rate small?  Is this species safe
from chaos?  (It should be possible to further study this multispecies case using BIOTA.)

A Simple Mathematical Artifact, or How Strange Effects Can Creep in!

Here is a mathematical artifact of the kind we always have to look out for in
mathematical modeling.  We said above that negative r values are meaningful for the
exponential growth function, where a negative value produces exponential decay
rather than exponential growth.  Suppose we try a negative r  value in the logistic and
MDLS.  What happens (a) when N < C, (b) when C < N < K, and (c) (especially!) when N
> K?  What happens to the stability or instability of behavior at N=K, and at N=C, i.e.,
what happens to N for small fluctuations above or below each of these points? Do all of
these make biological sense?  (Actually none of them do, but case (c) above seems most
strikingly paradoxical to most people.  We know that some people thrive under stress,
but this is too much!  So you shouldn’t trust everything you read in a mathematical
equation.)

What went wrong?  Simply that when rationalizing the use of the additional
multiplicative factors, [(K-N)/K] and [(N-C)/N], to turn the exponential into the logistic
and minimum density limited logistic, people had just assumed that the growth rate
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was positive (remembering Darwin and Malthus’ comments on geometric rates of
increase perhaps).  Given this, it would be natural to assume that the exponential that
worked just fine by itself, and the two additional factors which worked fine for positive
r’s, would work fine together under all of the conditions when the exponential did.  But
they don’t. (Figure out for yourself what goes wrong for the logistic model with
negative values for r.) This is another maxim of model-building (and computer
programming, and experimental design too):  parts that work well in isolation need to
be checked out to see how they work together under the important variations in
conditions in which they are likely to be used.

These discussions have illustrated another important strategy of problem-
solving, namely, problem decomposition, made possible by the peculiar relation of the
exponential, logistic, and MDLS equations.  Their behavior was discussed in terms of the
behavior of 3 modular terms, Nr, [(K-N)/K], and [(N-C)/N].  We first discussed the
growth equation for the first module or term, then discussed the behavior of the
second term or module, and how its addition affected the behavior of the first, and then
encouraged you to investigate the behavior of the third module, and how its addition
to the first two modules affected the net behavior of the three together.  This strategy,
which could be called “divide and conquer” is a very powerful and effective problem-
solving strategy which saves an enormous amount of time and effort.  It was first
effectively elaborated by Herbert A. Simon in a series of essays reprinted in his (1981).
Problems for which the divide and conquer strategy works (or systems which can be
analyzed in this way) are called “nearly decomposable,” and this general approach to
problem-solving characterizes “reductionistic research strategies” (see Wimsatt, 1980b).

Some Examples of the Use of Various Options in Plotting N vs t Curves:

Figures 2-4 through 2-6  illustrate the use of the MDLS program for simulating
the logistic, i.e., with C  set = 0.  These figures show:  

• The effects of increasing r (each of the next three figures illustrates the
behavior of a set of curves which differ in r).

• The dynamical effects of changing ∆t  (Figure 2-5 is produced by the
same conditions as Figure 2-4, except that ∆t is .5 rather than 1, so the
curves are sampled twice as often and, dynamically, halving ∆t has
approximately the same effect as halving ı)  
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0

129.10

N

0 5.00 1 0

Time

N vs. time plot

N = 117.18  Time = 10.00

Figure 2-4.  Starting parameters: N = 2, r = 1.2, ∆r = .2, 6 runs; ∆t = 1; C = 0; K = 100.

• Figures 2-4 and 2-5 also show a number of features (discussed in
Appendix A on the use of the programs) which allow a lot of freedom in
representing the data, and help in its analysis:

–autoscaling:  the maximum value is always scaled at 10% higher than
the maximum point plotted in the graph.  Aside from producing well-
scaled graphs, this also has the benefit that the value on the y-axis
(129.10 for Figure 2-4 vs 110.05 for Figure 2-5) always accurately
indicates the difference in these maxima.  (To get the maxima, multiply
these values by 10/11.)

–using grids (in Figures 2-5 and 2-6).  Both dimensions of the grids can
be manually set in ways to facilitate measurement, pattern detection,
and/or detection of periodicities.

–change of graph coordinates for minimizing pixel roundoff
(noticeable in the height difference in Figures 2-4 vs 2-5)

–changing point size (4 units in Figures 2-4, 2-6; 3 units in Figure 2-5)

–the use of the point grabber cursor to get the coordinates of the first
point in Figure 2-4, and the highest point in the first (displayed under
the graph titles in both cases). Note effects of pixel roundoff.

–with the Record coordinates option activated (at the bottom of the
Simulation menu)  clicking on the mouse button not only grabs the
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point coordinates to the top of the graph, but prints them in the Run
Record Window.  Thus a number of points may be recorded (with the
graph parameters, which are automatically sent to the run record each
time a new data set is created or a new kind of graph is drawn from
the data), and comments on these points may be added either
interstitially, or at the end of the list, creating an annotated lab record
of the runs done using the program.  (More details on this are found in
the text at the start of the Run Record Window.)  

0

110.05

N

0 5.00 1 0

Time

N vs. time plot

N = 2.01  Time = 0.00

       Figure 2-5.  Same parameters as before except ∆t = 1/2, and the Grids option is used.3 3

 

• Figure 2-6 illustrates the use of the "get N" utility on the first graph to
pick a starting value for N in Figure 2-6.  The N-value chosen is the stable
2-point amplitude of one of the curves with an intermediate r-value,
illustrating how curves with still lower values of r decay in amplitude
from that point while curves with larger values of r amplify.  The point
grabber is particularly useful in stability analysis, since you can get the
coordinates (in particular the N-value) of points or regions where things
appear to be converging or diverging.

Several things other than the parameters of the model have been changed in
Figure 2-5:

                                    
33 Note that the curves grow faster (like interest that is compounded more frequently).  Note also that
none of them overshoot—they are stabler than the curves of the first graph because the population
reflects the effects of its increased size after 1/2 generation rather than after a whole generation.
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• Most obviously, a grid has been added, and it has been customized:
the autoscaling default grid would have the 10th division at the highest
point plotted, and one division from there to the top, at 110.05. (From this
reading at the upper right of the graph, we can get the highest point
plotted as (10/11) x (110.05) = 100.045—a very slight overshoot or pixel-
rounding error.  You can check on this by opening the Grids menu.  The
autoscaling default menu will have a spacing in that box which is 1/10 of
the maximum value plotted to several decimal places.  In fact, the Grid
menu doubles in this way as a place to read out the maximum value
plotted in any graph.3 4   The grid here has been changed to have a
horizontal line every increment of 10 individuals in population size,
putting the value N = K at the 10th division.  (This same change has also
been made in Figure 2-6 below.)

• Similar calculations on the top coordinate of Figure 2-4 yield a highest
point plotted of 117.36.  As noted above, this point was measured by the
point grabber at 117.18.  The error here is due to “pixel roundoff.”  See the
box on the next page for a discussion of pixel roundoff and the use of the
graph coordinates settings.

                                    
34This works both for the logistic and the blending inheritance simulations, and will comes in handy in
several different contexts later.
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    Pixel roundoff and graph coordinate settings:

A “pixel” is the minimum sized data point or block of visual space under control of the
computer on the screen. Lines and other images appear a little jagged because they are not
continuous, but made up of pixels. The point grabber has to get the location of a pixel
wherever you put the cursor when you click the mouse.   That is in the center of the plotted
point—if, that is, you have centered the cursor accurately over the point!  But, placing the
cursor as accurately a possible does not eliminate the possibility of error.  Pixels have a
definite size.  So when the point is plotted by the program as it constructs the graph, it is
plotted as centered at the location of the closest pixel, but this is almost never exactly the
same as the calculated value.  So there is an error—in this case of .18/117.36 = .15%.  Most
pixel roundoff errors fall in about this range. (If you try to replicate this run, you won’t get
exactly the same results, unless you use the same monitor—a standard 640 x 480 pixel Mac I I
monitor in this case—since the default graph size is automatically scaled to the pixel
dimensions of the monitor, and the pixel errors are a function of the pixel dimensions. Pixel
errors are smaller on larger screen monitors, but the ratio in linear pixel dimensions between
the smallest and largest Macintosh screens is only about 2:1, so using a small screen is not a
severe disadvantage on that score.) Pixel roundoff can occur in the location of everything in
the graph, and in fact generates the double width of the line at N = K.  

It can be minimized by (1) making the vertical dimensions of graphs = Nk +1 where k
is the largest integer such that Nk +1 is less than or equal to the difference between the top
and bottom coordinates given when you boot the program or first open the graph coordinates
dialog box. N for these purposes should be the population size listed in the upper left hand
corner rounded off to the nearest integer. (As explained there, those coordinates are the
largest  allowable for the screen size of the computer you are using.) When you do this, the
vertical scale is k pixels per individual.  With these settings, it is usually also easier to
make K some simple round number like 100—except of course when you are investigating the
effects of changing K.  The corresponding corrections in the horizontal direction occur when
using, instead of Nk + 1, the largest integer h , such that (G∆t)h + 1 is ≤ the difference
between left and right coordinates given, where G is the number of generations.   Pixel
roundoff is probably most easily detected in the horizontal dimension when plotting several
runs for a large number of generations (100 or more) with the line option activated and where
stable cycles are occurring.  In this case, a kind of Moire effect or local imperfections in the
pattern are usually seen which can be eliminated by changing the horizontal graph
dimensions as suggested above.  (See Appendix E below for examples.)  In fact, it was our
desire to be able to eliminate this phenomenon (which renders the analysis of periodicities
more difficult) which originally motivated this option.  Pixel error is one of the two kinds of
computer-induced error you can see using this simulation—the other being computational
roundoff error.

You can calibrate pixel width in the x and y directions for given values of the graph
coordinates and ranges of graphed values by computing them, but it is actually easier to do so
using the record coordinates option.  Simply pick a point in the graph where a horizontal and
a vertical straight line intersect.  Using the cursor crossbars, click right at their intersection,
and one pixel above, below, left, and right.  This in effect gives you two measurements for
cursor width in each direction to check against each other.  (If you err by one pixel, one of the
two measurements in that direction should be twice the other.)  Since many changes in the
variables, and all changes in the graph coordinates, will change the increments in x and y
signified by a pixel, and the size of a pixel will be a good indicator of probable error in
picking points off the screen, you may wish to do this often.
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Exercise 7: Values of r, Overshoots, and Oscillations

Try to change r and ∆r to get the same stability or overshoot effects in Graph 2-5 as in
Graph 2-4.  (You won’t be able to simultaneously match the growth rates.) It is useful in
doing this to find a reference point to compare in the two simulations. A very useful one  is
to find out for what value of r in each case the oscillations have the same amplitude.  Do
this for several different amplitude pairs.
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Time

N vs. time plot

N = 117.20  Time = 10.00

Figure 2-6.  Graph illustrating that equations having different r-values have different
equilibria.  All 7 runs start at the same N-value, separating in the first generation due
to their different r’s. The curves with the four lowest r-values decay rapidly to a
single-point equilibrium; the fifth decays slowly; the sixth remains at its initial
amplitude in a stable 2-point cycle, and the seventh amplifies to a larger amplitude 4-
point cycle.  Note that the grid has been set horizontally to a period of 4 generations to
emphasize the cycle.  This can be very useful as we will see below.  
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Other Kinds of Systematic Investigations with the Logistic
Models—More Advanced Explorations of the Capabilities of the

Simulator:

Other graphs illustrate other possible kinds of systematic investigations.  The
number of possibilities given the self-similar variety of the bifurcation map is virtually
limitless.  These are but specific examples of kinds of investigations you can do in many
different places.  They have been chosen in part for their biological interest, for their
usefulness as a technique when investigating dynamical systems, or sometimes both.
This presentation is a mixture of teaching by illustration and suggested things you can
do to carry the investigations further.  There are often other and sometimes even better
ways of doing these things.  These ways have been chosen for their intuitive character,
but we encourage you to try your own.

Finding Boundaries and Widths of Attractors:

A domain of attraction or "attractor" is a range of values of a variable or set of
variables within which a system converges to an equilibrium or recurrent behavior.  It
can be thought of by analogy with a drainage basin—a geographical region within
which water drains into a more compact point, region, or trajectory.  Boundaries
between attractors are like ridges—water to one side of the boundary goes one way,
into one basin, water on the other side of the ridge goes the other way, into another
basin—like the continental divide.  So-called "adaptive topographies" or "fitness
surfaces" are constructs for describing the evolutionary dynamics of populations of
organisms which are quite like this, in that populations evolve toward the peaks in their
surfaces  (regions of greater fitness) just as water flows down.  If you know the analogs
to contours in such a surface, you can predict the direction of change for that system.
The number of attractors for a system is the number of persistent types of behavior or
behavioral outcomes it can exhibit.  (This ignores the question of the diversity and
length of transients.)  For more on domains of attraction, see W. R. Ashby's
Introduction to Cybernetics (1956).  Knowledge of the attractors of a system and the
location of their boundaries is extremely important for understanding their behavior
(see also Kauffman, 1992).

Simple attractors are one-dimensional objects—ranges of population sizes, which
may be thought of as marked off along segments of the y-axis in an N vs t plot.3 5

There are two different ways for estimating the size of attractors for this system.  The
most obvious way is to  find the location of each of the relevant boundaries and add up
the lengths of the relevant line segments.  Thus, if this is a region where the system
tends to fall into a three-point cycle, you want to know the distance around each point
within which the system is attracted to that point.  Since the system moves among the

                                    
35 In fact, one of the characteristics of chaotic or fractal systems is that their attractors are not always
so easy to characterize.  In fact, when a system is in a region of chaotic behavior, the domains of its
attractors are inextricably intertwined almost everywhere.  Compare the case of the discrete-state
logistic for K = 20 discussed below with this one here, and ask what happens to a system that behaves
like the discrete state logistic as the number of states and number of cycles increases without bound.
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three points in order, the total size of the attractor is the sum of distances of attraction
around each of the three points.

A sometimes much simpler way is to randomly pick points along the line and
ask whether they are in the domain of the attractor or not, determining that by which
direction trajectories move from there.  If we can reliably score whether or not they are
in, then the relative size of the domain of the attractor should be the number of "hits"
divided by the total number of tries.  (This procedure is a paradigmatic example of a
Monte Carlo simulation.  It is particularly interesting because it extends to cases which
involve an arbitrary number of dimensions.  Enclose the n-dimensional region of
interest in a box (an n-dimensional one, that is) of known size.  Then an estimate of the
proportion of that box occupied by that region is obtained by counting the proportion
of tries within the box that also fall in the region.  The more tries you make, the better
the estimate should get.  Of course, this assumes that your random number generator
is truly random.  You can also turn this exercise around:  if you already know the
proportion of the box occupied by the region, or can find it out by another means, you
can use that to check how good your random number generator is.  That's what we will
do below.
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Time

N vs. time plot

Time = 44.00  N = 71.57

Figure 3-1.  N  vs t plot for the logistic (C = 0), with K = 100, ∆t = 1; r = 2.83, initial N = 85, ∆N =
+.00001, for 5 trajectories for 200 generations.  Points are size 4, in pattern mode.  Vertical and
horizontal grid divisions of 20.

We will look at a series of 5 trajectories run at C = 0, r = 2.83 (near the beginning
of the period 3 window visible in the “N vs r plot” in Figures 2-2, 3-2, or 3-6), the top
radio button set to run increments in N, starting at N = 85, with a positive increment of
.00001 (so we get 85.00000, 85.00001, ... , 85.00004.)  This plot illustrates nicely the
infinite sensitivity to initial conditions characteristic of the chaotic regime, since you
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can see from the graph that there is no noticeable difference between the trajectories
for about the first 17 generations (since the white circles of the last trajectory plotted
totally cover the earlier different patterned circles), after which they diverge rapidly so
that within about 10 generations, they are essentially randomly scattered between the
bottom and top extreme values.  They then drop apparently randomly into the middle
(and largest) hole of the 3-point attractors, where they converge rapidly to a stable 3-
point cycle.  Here we see the infinite sensitivity twice over—through the initial
divergence around generation 17, and through their essentially random order of
capture by the 3-point attractor.  (Check for yourself that their order of capture is not a
simple function of their starting values.)

Indirect method—Monte Carlo Simulations and a Test of the Randomness
Assumption

The last trajectory to drop into the attractor in Figure 3-1 is the middle (medium
gray) one, at generation 93.  (If you are using the program, check that the rightmost
point not in one of the 3 lines is it by clicking in the middle of it with the point grabber
to identify its generation)  See if you can identify where the other trajectories fall in, by
finding their rightmost points not in one of the 3 lines, and adding 1.  Now if trajectories
in the chaotic regime are really random (and you will have to decide when (or if) this
condition is satisfied), then the ratio of the number of points falling in to the total
number of trials (i.e., for each trajectory, starting from when you think they are
randomly distributed, to when each trajectory drops in) should be equal to the ratio of
the total width of the attractor to the total range of points explored.  How wide do you
estimate that the 3-point attractor is at r = 2.83?  (It needn't be the same width at other
r-values, so this indicates other projects you can do of the same form.  Or the members
of a class could each do this exercise for a different r value constituting a series spanning
the window and plot the appearance, growth, and decline of the attractor.)3 6  This kind
of probabilistic estimate of a parameter is called a Monte Carlo simulation, and is very
important in the analysis of dynamical systems.  They are only as good as their
randomness assumptions however, and are limited in accuracy by sample size.

Direct Method for Estimating Boundaries Using Spanning Trajectories and the
Cheap Way out for an n-Point Attractor

We can check this estimate, since there is another way of estimating it more
directly.  I will illustrate with the top boundary of the middle (and largest) region of the
attractor.  With the point grabber get the coordinates of the start of the lowest
trajectory that diverges  (light gray, N = 71.27 in generation 44), as well as the highest
trajectory that converges (same, N = 70.36, a few generations later.)  Run a series in N

                                    
36  Some of these questions, such as where the three point attractor appears, and when (and how) it
bifurcates are probably better explored with the N vs. r plot mode and "blowing up" the r-scale.  In
general, when given a problem specified in terms of a plot mode, it is worth asking whether you can
learn anything about the phenomenon by using another plot mode to supplement or check your analysis.
And even if another plot mode is not essential, you get a much richer understanding of the phenomena
by seeing how they look in different plot modes.  This is a generalizeable lesson:  look at everything
you can get in as many different ways as you can.
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with the increments chosen to span this interval. You don't have to match it
exactly—thus 10 trajectories from 71.27 down to 70.37 will probably capture it, and
have the advantage of a nice increment of 0.1.  Trajectories at one end will fall in, and
those at the other end will fall out.  Pick the two  successive trajectories in the series
which split in this way, and use them as endpoints for the next series.  In this way, you
should be able to improve your estimate of the boundary by a factor of i  in each
generation, where i  is the number of iterations you do.  Determine top and bottom
boundaries for the middle and the 2 extreme cycles.  (There's also a "cheap way out": if
you got the top and bottom boundaries for the bottom region accurately, you should
be able to run each of these points for 2 more generations (one point and 1 generation
at a time)  to get the other boundaries accurately using the autoscale feature of the grids
option to determine the maximum value plotted, since values on an edge for one
region of the attractor should be very close to an edge for the other two. Although it
should be falling slowly in or out, the rate of divergence can be estimated in the same
way by comparing its value at the top of the first and second complete cycles.

Exercise 8:  How Good Is Chaos as a Random Number Generator?

Now calculate the ratio to the total range as before and compare with your other
results.  If there are significant differences between your estimates, can you explain why this
might be so in terms of the randomness assumption and what you have found out about the
behavior of trajectories?  This exercise is in effect a check on how good a random number
generator chaotic processes are.  Note that if you if wish to check an assumption used in
generating an answer, you have to find a way of getting that answer without using tha t
assumption, and compare results.  If they agree, the assumption is probably OK.  (Not
necessarily though; this is a good heuristic, but not foolproof—see Wimsatt, 1981).  If they
disagree, you know that something is wrong in one or the other approaches, and you have to
try other things to figure out what.  In this case, there is not much else that could be wrong, so
the randomness assumption is suspect.
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The Janus Face of Computational Roundoff Errors  Seeing Similarity Where
There Is None (The Loss of Significant Differences) and Creating Differences
Where There Are None (The Loss of Significant Similarities)

Exercise 9

One other thing to try with this plot before you leave it:  do 10 runs starting at N
= 85, with an increment of .000001.  What do you see?  Can you find the value between
.00001 and .000001 for which this change occurs? (As accurately as possible!)  Try (for
another exercise with the opposite result) comparing trajectories for which you increment
up to a value vs specify that value directly.  (For example, compare the behavior of the
5th trajectory in the series, r = 2.81, ∆r = 0.25, with the supposedly identical trajectory for
r = 2.91.)  Do you get the same result?  (Compare a point not in the attractor as far to the
right as possible using the point grabber.)  This should alert you to a second sort of
roundoff error:  Just as pixel roundoff can cause errors, so can computational roundoffs.  Are
these numbers direct estimates of the smallest difference the computer can handle?  W h y
or why not?  (You may want to look at the discussion of the last case in Appendix E.)  This
will be discussed further below.

This exercise and others like it can also be performed, and the effects of roundoff
error studied more systematically, by using the Numerical Precision and the Round N
options available under most plot modes.

If checked, the Numerical Precision option (available under the Initialize and
Plot... selection from the Simulation menu) allows setting the number of decimal places
used in ALL calculations involving any of the model or simulation variables (N, C, K, r,
∆t, ∆N, or ∆r) to 0 through 6.3 7   These variables are rounded to this number of places
after each computation through the use of special operators for +, -, *, and ÷,  which
automatically perform this rounding to the set number of decimal places whenever one
of these operations is used, in all intermediate results, as well as at each generation.
[Number of significant figures can be further varied by changing value of K, e.g., to 1,
10, 100, 1000.]   Precision without rounding is between 8 and 9 places total, or for default
values (K = 100), between 6 and 7 to the right of the decimal place.  These options can be
used for studying the effects of roundoff error and different degrees of precision in
numerical calculations.  This option is currently available for the N vs t and the N(t) vs
N(t+m) plot modes only.

The "Round N" option, if checked, rounds the population size, N, to the nearest
integer after each generation is calculated; this integer value is used in all calculations
involving N for the next generation.  (This option is accessed as above for the N vs t and
N(t) vs N(t+m) plot modes, but it can also be chosen for the r vs N plot mode.
According to some criteria, the use of this option ought to make for a more realistic

                                    
37In cases where it is inconvenient to have this rounding act on ∆N and ∆r, it may be preferable to do
only 1 run at a time with this option activated, since these act only on the 2nd and later runs.
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model, because organisms come only in whole numbers, but you should decide this for
yourself.  If you decide that this model is less realistic in its behavior (try it particularly
for small values of K), can you say how its behavior is less realistic?  Can you explain
why the model might behave less realistically even though it models the real-world
situation more realistically?  Can you think of a further change in the model—not
necessarily one you can do here—that would improve the situation?  (Look at
Appendix D on assumptions of the logistic, or to the next section below for ideas if you
don't know what to do with this one.)

Chaos in Discrete State Systems, Large and Small:  How Large Does a
System Have To Be to Behave as if It Were Continuous?  And Some
Interesting Questions about the Behavior of  Smaller  Finite-State Automata

The Round N option can be used for a whole other set of exercises—to
investigate the cyclic and chaotic behavior of finite-state automata (see, e.g., Kauffman,
1969, 1991, 1992). This is a topic that has attracted increasing attention among chaos
theorists, and we can use Round N to investigate it.  It is, curiously, a topic that appears
not to have been studied for the logistic map by physicists—probably because they use
a normalized version of the equation for dN/dt parameterized in terms of x rather than
N, [ dx/dt = lx(1-x) ] in which K does not appear explicitly, and, in the context where
they study it, it would never occur to them to suppose it would be interesting to ask
what would happen if one limited N (their x) to integral values.  In fact, since they let x
range from 0 to 1 as we let N range from 0 to 4/3, the idea of limiting this variable to
integral values would probably seem incoherent.  (This is a nice example of how
different formulations of the same model can have quite different consequences for
how it is extended!)

Viewed as an abstract model, the logistic or MDLS with the Round N option
activated can be viewed as a deterministic discrete-state automaton with allowable
states ranging over all of the integers in between 0 and what (4/3)K rounds to,
inclusive, i.e., including 0 and the largest integer less than or equal to (4/3)K +.5.  What
this means is that varying K controls the number of states the system is capable of
assuming.3 8   Thus, if K = 10, 100, 1000, ...,  then Nmax. = 13, 133, 1333, ... , and you can
construct a system capable of the desired number of states, say ∑ states, by setting K =
(3/4)∑.3 9    Secondly, with r, we have a "control parameter" through which we can
modulate the dynamical stability of the system—changing its behavior from what in

                                    
38Actually, the system can start out in states larger than 4/3 K, but for r > 0, will decrease until it is ≤
that quantity, and not venture outside of that range thereafter.
39This ignores the complications induced by roundoff error at the upper end of the range.  Sometimes the
maximum allowable of N will be greater than (4/3)K and sometimes less, depending on the exact
setting of K, but it will always be true that (4/3)K-.5 ≤ Nmax. ≤ (4/3)K+.5.
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the continuous case passes for stable equilibration up through various 

Figures 3-2 and 3-3.  Bifurcation plots of systems with different numbers of allowable states.

periodicities into the chaotic regime.  Thus we have the ability to study the effect of the
number of allowable states on the dynamical behavior of the system.4 0   In the first two
figures of this series (above), we compare a standard bifurcation plot with one in which
K = 1000, so that there are about 1333 allowable states.  There are striking differences in
these plots.  At the vertical pixel resolution of this plot (170 pixels), there are nearly 8
allowable states per pixel—much finer resolution than is visible in the picture.  Thus,
you might think that it shouldn't matter whether there are thousands or billions of
allowable states, but surprisingly, it clearly does.  Round N in effect makes every
                                    
40  Of course, there's something funny going on here, because in a digital computer, all states are
discrete, and the simulations we describe as continuous (i.e., with "Round N" and Numerical Precision"
turned off) are (in this software) actually discrete state systems with about 108 - 109 allowable states.
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integer a quantized attractor, which has manifest effects, from the lack of equilibrating
spread near r = 2.0, to the single point at N = K for about r = 2.26, to the many "bands"
and generally thinner appearance in the "bush" of the tree.  We'll return to this later.

Figures 3-4 and 3-5.  Dependence on starting value of systems with small numbers of states.

In the two pictures immediately above, K is decreased to 100.  The thinning
continues, but these graphs also show another interesting phenomenon—the obvious
dependence of many details of the pattern on N0, 15 at the top and 12 at the bottom.
This kind of dependence is actually there, but not obvious in the earlier figures.  Note
the appearance of many obvious periodic orbits which are stable across ranges of r
appearing as bands along the x-axis.  We'll return to this, after a side trip to look more
at the reduced number of points in the "bush" of the tree for K = 1000.  Figures 3-6 and
3-7 rehearse this phenomenon for slightly different settings (in part demonstrating that
it is robust), arranged so as to blow up the region from r = 2.5 to 3.0.  Again, we
compare the appearance with round N turned off and turned on:
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Figures 3-6 and 3-7.  Like figures 3-2 and 3-3 but for somewhat different values.

As an aside, all of these paired comparisons are perhaps most effectively made
by making them small enough so as to be totally visible in the .i.scrapbook;, pasting
them in as neighboring pictures and then flipping back and forth between them.  This
serves very effectively to heighten and localize the differences.  This makes maximally
effective heuristic use of the template matching capabilities of our visual system.
Suppose now that we wanted to "blow up" a region in the 2 preceding plots to count
and compare the number of "dots" as a way of quantifying the effects that Round N had
in reducing the number of trajectories.  (This would be doing it via a kind of sampling,
rather than analytically.)  Consider the region, 280 ≤ N ≤ 560, and 2.700 ≤ r ≤ 2.725, a
small square in the original plots.  Should we just blow them up to the original size and
then count, as in the 2 plots below?
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Figures 3-8 and 3-9.  Blowups of corresponding regions in Figures 3-6 and 3-7.

There is something clearly wrong in these "blowups," as is indicated by the fact
that there are clearly many more points here than in the original regions.  Can you
explain why?  (Compare the size of ∆r in the two sets of plots, and recall how the r vs N
plots are constructed, or see the discussion of r vs N or r vs Neff plots in Appendix E.)
The right way to preserve the point count would be as below—keeping the horizontal
scale the same, and cutting out a strip of the right width and location.  (This can be reset
with the Graph Coordinates option, by making the graph 1/20th as wide—just 16 pixels
to be exact.  It messes up the legends, but that's not important in this context.)  The
vertical blowup (of 5x) doesn't affect the point count (if it covers the same range of N-
values), and separates the points better to simplify counting.  (Its only observable effect
is the steeper lower boundary of the region.)
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Figures 3-10 and 3-11.  The "correct" blowups of Figures 3-6 and 3-7.

The counts in these two cases (Continuous at left, Round N at right) are 80 and
135 points, respectively.  This was facilitated by printing out the two plots (separately,
before they were inserted side-by-side (in a "table") in this text) blown up to 300% on a
LaserWriter, which makes them each full page height, and makes the counting a
breeze.  (This can be done from within the program, using the Print setup... command in
the File menu.)

Before we throw away the "wrong solution" graphs preceding these two "count
strips," notice another significant difference between the Continuous and Round N
graphs with the 20-fold blowup in r-scale.  Whereas the points in the Continuous graph
almost all remain points in the blowup, the points in the Round N graph are almost all
bands of varying lengths stretched out along the r-axis.  That is, they represent stable
"pivot points"—and usually stable stacks of bands or strata signifying stable orbits,
sequences of relatively short period which remain invariant over a range of r-values.
Why do you think that is? You might look some more at this, and also see how stable
these bands are over different initial values (recalling the sensitivity to N0 reflected in
the two K = 100 graphs.)

This can be done qualitatively for these kinds of graphs by making sequences of
shots in the scrapbook for successive integral values of N0  and switching back and
forth between them or playing them in sequence as movies.  With systems which don't
have so many states (i.e., for smaller values of K), the analysis can be done exhaustively
and analytically using the N vs t or N(t) vs N(t+m) plot modes and the methods given
below.  Further methods for finding and investigating periodic behavior with these two
representational modes are discussed later in the chapter.

In the graphs immediately below, K is set still smaller, to 20.  The maximum N-
value attained is 26, and for N = 27 and higher, all populations crash to 0, and stay there.
Thus we have a finite state automaton capable of 28 states, and whose behavior is
exhaustively captured in the next three graphs, as it is started at all integers from 1 to
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27.  (The behavior for state 0 is captured by trajectory 27.)  In these graphs, the Lines
option is used to aid in the visualization of the state transitions over time.  Working
from the simulation, rather than the static pictures, you have several other options
available to help you disentangle the various networks of state transitions.  Thus you
can specify a longer time lag between plotted points with the Redraw option, so you
can slow down the plots to see more clearly how they are drawn.  (Try 3 as a starter.)
Or you can plot fewer trajectories at a time—indeed, only 1 if you prefer.  You can also
delete or add starting or ending trajectories to a series, to better understand patterns or
transitions in behavior from neighboring starting points.  (You could also, of course do
a complementary series of graphs varying r from the same starting point.)  
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Figures 3-12 through 3-14.  All starting values for the K=20 finite state logistic.

In interpreting these patterns, note that:

    (1) the behavior of the system is completely deterministic, so that if different
trajectories ever enter the same state, they must behave identically thereafter.

    (2) Because of the finite number of states allowed, all trajectories must sooner or later
enter a cycle, with the maximum length of the trajectory (including transient states +
cyclic states) or longest cycle equal to the number of allowable states in the system.  The
last graph (above) in fact shows all of the possible modes of behavior of this system for
this set of parameters, though not all of the ways of getting there.  It shows stable
equilibria (or cycles of length 1) at N = 0 and at N = 20.  (This shouldn't surprise you,
from what you already know about the logistic.)  It also shows a cycle of length 2,
oscillating between N = 10 and N = 24.  And finally, it shows a period 3 cycle among
states 4, 13, and 26.  If you look at the two preceding graphs, you will see the stable
equilibrium at K (i.e., at 20), and the period 2 and 3 cycles in each.  

Some other things to look for:

    (3) A reduction in the number of dots visible from one time period to the next
indicates a merging of trajectories—look for lines converging at that point.

    (4) There are a variety of special patterns that are quite revealing.  The compound
graph of 10 trajectories on the page below (Figure 3-15) was made under the same
conditions as Figure 3-12 in the preceding series, but for 25 rather than 8 generations,
and without the lines.  Both of these changes were made to ease the perception of
repetitive patterns.  After things settle down, we see two lines of alternating gray and
white, and three lines each having a period 3 repeat of black, light gray, light gray,
phase shifted 1 generation to the right for each step from bottom to top.  These last are
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obviously composites of multiple phase-shifted trajectories—trajectories which are at
different points in the same cycle.

    (5) Other clues for tracking trajectories come from intuitions about the logistic (using
the r-value, how far N is below or above K, and the values of K, C, and ∆t) to estimate
the next location.

The repeat patterns and the deterministic assumption are clearly jointly useful in
decoding the graph.  Note that there are two dark gray (or blue and red, if viewed in
color) spots at N = 7 in generations 0 and 1—and the first dark gray (blue) appears at N
= K in generation 1.  So the other dark gray (red) must be captured in generation 2.
And, similarly, the white (green) and medium gray (gray) at N = 7 in generations 4 and
5 must be captured there in generations 5 and 6.  This convergence of 4 trajectories to 1
explains 3 out of 4 of the "lost" trajectories.  The merging of a black (from 4) and a light
gray (or red) (from 23) in generation 1 to the same trajectory (at 13 in generation
2)—also visible in Figure 3-12—explains the last "lost" trajectory.4 1
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N(t=0) = 11  r = 2.83  K = 20
C = 0  ∆t = 1  Plots = 10  ∆N = 1
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Figure 3-15.  Like Figure 3-12, except without lines and for 25 generations to see repeat patterns.

                                    
41 It is important in decoding these graphs  not to confuse the order in which the trajectories are drawn
by the program (indicated in the legend at the right of the graph) with the order (or generation
number) in which the trajectories reach their equilibrium state or cycle.   Thus the dark gray (blue) spot
starting at 7 in generation 0 goes directly to 20, and is visible there until covered by the medium gray
(gray) spot in generation 5, even though it is followed only 1 generation behind by the dark gray
(strawberry red) spot, which goes to 7 in generation 1 and 20 in generation 2.  This spot is never visible
after it gets to 20 however, because the blue spot (trajectory 7) is drawn after the red one (trajectory 2)
and thus covers it in every case where they have the same value in the same generation, and thus
occupy the same location in the graph.
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On the next page, we have listed all of the state transitions you can read off these
graphs for this system, for these parameter values of r, K, C,  and ∆t.  This list is
accompanied by flow charts or directed graphs organizing these state transitions into
the 4 attractors and their domains, specifying under all conditions how this system goes
to equilibrium, and what (and what kind of) equilibrium it goes to.  Note that the
attractor domains are "all mixed up":  the first 4 states, 0, 1, 2, 3, end up in 4 different
attractors, and this continues.  The attractors for the states in order, from 0 through 27,
are:  4, 1, 2, 3, 1, 2, 1, 2, 2, 1, 3, 2, 1, 1, 1, 1, 2, 3, 1, 2, 2, 1, 2, 1, 3, 2, 1, 4.   There is no simple
rule for the order of these attractors, but there is a growing theory of how different
classes of random or chaotic finite-state systems should behave.
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72 2 0

5 1 6 2 5 1 1

8 2 2 1 9

3 1 0 2 4 1 7

1 6 1 8 2 1

4 1 3 2 3 9

2 6 1 2

1 5 1 4

2 7 0

Flow chart between states: 
(R) = already included

0->0
1->4->13->26->4
2->7->20->20
3->10->24->10
4(R)
5->16->25->7
6->18->23->13
7(R)
8->22->16
9->23
10(R)
11->25
12->26
13(R)
14->26
15->26
16(R)
17->24
18(R)
19->22
20(R)
21->18
22(R)
23(R)
24(R)
25(R)
26(R)
27->0

Attractor 1:
stable period-3 cycle

Attractor  2: 
stable equililibrium

Attractor 3:  stable period-2 cycle

Attractor 4:
stable equilibrium (and sink)

State Transition Diagrams for
the Discrete-State
Logistic Growth Equation:

K = 20, r = 2.83
Only integral values of population 
size allowed.  Attractors indicated 
by heavy arrows.

Figure 3-16. Sample state-transition diagrams, attractors, and their domains for a "logistic
automaton."  The notation "R" in the list indicates that the value in question already appears in the
list, and so the transitions from that point on are already given.  Which things are assigned R thus
depend upon the order of entries in the list, and say nothing about the dynamics of the system.  When
cycles or equilibria first appear, they are followed until a state is repeated.
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Several things are interesting about this class of automata, which we
might call "logistic automata":

(1) they are quite different in structure from other simple discrete state automata, most
of which are composed of a number of elements which individually have states and
which interact with one another in various ways to change one another’s states.
(Examples of such automata of widespread current interest include connectionist
networks used to model neural and cognitive activity (see Bechtel, 1991), and
Kauffman's (1969, 1985, 1991, 1992) models  of gene control networks as networks of
Boolean automata.)  Logistic automata have no parts, at least not under this description.  

(2)  Chaotic behavior has been defined for and claimed for all of these other discrete-
state systems, which are "tunable" to produce or to avoid chaos—two features which
logistic automata also possess.

(3)  Many of the relevant properties of such systems are related to their behavior near
the transition to chaos—something which can also be studied for "logistic automata."

(4)  A number of claims have been made about whole classes of these other kinds of
networks which appear to be quite general for things in that class, but possibly quite
special for that class, though no one knows how special.  In particular, some of these
claims also have natural interpretations for logistic automata, but no one has
investigated to see whether they are true for logistic automata.  These automata thus
provide an interesting class of systems for comparative investigation of some of these
behaviors to see whether any, some, or all of them are more general than supposed,
and what we can learn about chaos and about these classes of systems from this.

We won't go into them here, but Kauffman in particular (1969, 1985, 1991, 1992)
has made claims about:  (1) how mean number of cycles and cycle lengths depend upon
the number of states, (2) how the identity and domain of attractors vary with small
changes in the system or in its starting state, (3)  how many other attractors on the
average are reachable via small modifications in the system or in its starting state from
given attractors, and (4) how the behavior of the system is to be characterized as it
nears the transition to chaos.  All of these and more can be investigated for logistic
automata, and some of them will require some interesting conceptual work in addition
to decide how to define what to change to test which conjectures, and how to measure
and evaluate the effects of such changes.  This too is a frequent need in state-of-the-art
model-building.  There are enough original research projects in these topics for a raft of
classes, and quite probably some interesting and eminently publishable results.  Have
fun!

A final thought question:  Given what you have seen here, can chaos be defined
in the same way for discrete-state systems as for continuous systems?  Why not?  How
would you do it?  (See Kauffman, 1991, for his answer.)

A Second Monte Carlo Simulation—Estimating the Dependence of
Extinction Rates upon r :

One of the earliest things noted for chaotic behavior in ecological systems (see,
e.g., May, 1974), is that the wild swings in population sizes produced by chaotic
dynamics might lead to extinction (either directly, through "population crashes" all the
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way to zero, or indirectly, through major decreases in populations that were then
knocked out by other effects. Our emphasis here is on modeling extinction of local
populations rather than whole species,4 2  and supposes the simplest model of extinction
easily studied with this model.  We suppose that a population goes extinct as soon as (or
very soon after) its chaotic fluctuations in size bring it to less than its critical density, C.
Figure 3-17 depicts a simulation in which the r value is just high enough to cause
populations occasionally to bounce down to a population size slightly below C.

0

139.35

N

0 150.00 300

Time

N vs. time plot

Time = 231.00  N = 20.05

Figure 3-17.  Simulation of extinction rates for the MDLS with K = 100 and C = 20.  

Figure 3-17 is set for 8 trajectories with N’s of 25, 30, … , 60, and for an r value
just high enough (3.751) that occasionally populations bounce just below C = 20, after
which they rapidly go extinct.  If you are viewing this on a color monitor, or do the run
using patterns, you can identify which population is going out where. The coordinates
above the graph are the location at which the last population first goes below C—in
generation 231, and at a N value of 20.05.  (There is obviously a pixel roundoff error
here, since 20.05 is > C, not less!4 3

                                    
42 For more on statistical modelling of local extinctions, see MacArthur and Wilson, 1967.  See Raup,
1991 for an up to date discussion of the causes of extinction at the species level, which discusses direct
vs. indirect causes of extinction.  Raup's fascinating discussion however focusses on large-scale extinction
events, and the hypothesis that these are caused by collisions with asteroids or comets.  This is an area
which has seen significant mathematical modelling, though the models are quite different in focus
(and in levels of analysis) from those discussed here.
43 The choice of C > 0 is not arbitrary here.  In principle, the same thing could be done in a program by
testing for when N ≤ 0, rather than for when N ≤ C, but if C = 0, then the program default (which plots
N = 0 from the time that it first is ≤ 0) causes successive trajectories to overwrite each other (like they
do in this case at the bottom) and it is not easy to tell when a population first goes extinct.  By setting
C>0, and making r only slightly greater than necessary to make N<C, each population goes out by first
hitting just below C somewhere and then decaying.  This gives a characteristic “tail” for each
population (distinguishable with the patterns or in color) which can be evaluated with the point
grabber.  This in effect is a matter of “tuning” the simulation, so that the necessary information is
readily observable—exactly the same kind of process necessary in the laboratory to get the most (and
least ambiguously) from the instrumentation and the experimental design.
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You can do several different things with this kind of simulation:   You could do a
large number of runs (no more than 10 at a time please!) from different starting
points—e.g., 100 runs, from 25 to 74.5 by increments of .5, score each for when it goes
extinct (using the point grabber) and plot a distribution of how many populations
survive for different periods of time.  These could be graphed.  You could also test to
see whether extinction is an exponential decay process by seeing whether the time it
takes for half of the populations to go extinct (the “half-life”) is roughly constant for
different numbers of surviving populations for a given value of r.  (This would also be
indicated by a linear graph of the logarithm of the number of populations remaining vs
time.) You can also see how this distribution changes for slightly larger r values (3.752,
3.753, etc.), and estimate how the half-life depends upon r.  Or you could change to a
different C-value, find the point at which populations first begin to drop through it and
go extinct, and do comparable studies for that value.  (This should actually be a more
sensitive method than that given above in exercise box 6 (comparison of bifurcation
points) for determining the dependence of behavior on C or C/K.)  Can you explain
why?  Why don’t you test this conjecture?

You can also use an independent estimate to see how flat the distribution of
points between Nmin and Nmax  is in this region.  You may want to try to estimate the
slope of Nmin  at  r = 3.75 by looking at its value at some earlier point (say, 3.70), relative
to that at 3.75 using the r vs N plot and looking at a narrow band of N-values (say 19 ≥
N ≥ 24).  (To do this, you may have to plot a larger than normal number of points to get
a reasonable density.  Try setting initialization = 0, and plotted points = 200.)  With this
estimate, you can try to extrapolate the value of Nmin  out for the values of r  you did
for your extinction runs, in order to see how far it should go below C for the range of r-
values you are investigating.   Now try calculating (C - Nmin )/ (Nmax - Nmin), which is
the proportion this overshoot is of the whole range.  If the distribution of points is flat
over this whole range (meeting one criterion of randomness), then this should give the
expected proportion of trials producing an N-value in the interval [Nmin, C] , where any
value of N>C constitutes a trial.  (If you’re curious, Roughgarden (1979, p. 339, Figure
18.9) gives an illustration of the expected distribution for the case r = 3, and C = 0.)

Exercise 10

Try this one in phase plot format (explained below after the next section), for
different r values (3.751, 3.752, 3,753,...), and for different phase lags, m: (t+5, t+10, ...)
What is the relation between the information given in corresponding t  vs N and N(t) vs
N(t+m) plots?

Phase Plots:  Learning Why  Bifurcations and Chaos Happens, and Detecting
and Analyzing Periodicities

Now we are going to try a different way of presenting the data—a so-called
"phase plot" which plots the value of a variable at one time (as the x-coordinate) vs its
value some specified time later (as the y-coordinate), for all different times for which the
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program has data.4 4    (The phase plot, N(t) vs N(t+m),  is done here with data generated
using the same format as the N vs t plots—and if you have already generated an N vs t
plot, you can use that data—or conversely.)  The phase plot is an interesting and
revealing way of plotting data, has a large number of different uses, and is becoming
far more common for good reason.  We will demonstrate a variety of uses here, but
there are many more.  Several of its uses or features are as follows:

• The 45° or "stability line"4 5  (where x = y) has a special significance: points on this line
have the same value at t and at t+m.  Thus, if m = 1, the point is not changing over
time—it is at equilibrium.  If m > 1, a point on the line indicates a periodicity, either of
length m, or of an integral divisor of m.   Any other points on this line (for the same
trajectory) will also be part of that periodic orbit or cycle, and conversely.  The number
of such points should be m, or an integral divisor of it, if m happens to be some multiple
of the period.  A cycle of period j should have all of its points falling on the 45° line when m is
set equal to j, or to any integral multiple of j.   (Points on a cycle won't fall on the line unless
m matches its period in this way.)

                                    
44Thus, if the time lag, m, is 10 time units (or generations), and the simulation is a run for 100
generations, the first pair plotted is N(1), vs. N(11), and the last is N(90) vs. N(100).  This also
explains why, with a longer lag, fewer points will be plotted from the same data.
45 Actually, to get the line y = x (or N(t+m) = N(t)) to be at 45°, the horizontal and vertical dimensions
of the graph must be adjusted using  graph coordinates in the menu so that they are the same, as they
were for all graphs here.
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Lags of 1 thru 8 
generations measured 
from here, starting in 
generation 108.

Coordinates for eight lag-2 points (2-1, ... , 
2-8), and seven lag-4 points (4-1, ... , 4-7) 
indicated, starting in generation 115.

N vs. t (top) and Lag-4 Phase Plots for the same data, showing how pairs of N-values with different 
are taken as the x and y coordinates for the phase plot.  Compare the appearance of 2, 4, and 8-point
in the N vs. t and  the Lag-4 phase plots.

Note that all points in the 2 and
4-point oscillations both map to
the stability line--into 2 and 4
points on that line, respective
indicating that their variation i
totally captured by the Lag-4 
phase plot.  The 8 points of the
8-point oscillation do not fall o
this line, and the magnitudes o
their deviation from it indicate
how far they are from being 
captured by a 4-point cycle.  In
Lag-8 phase plot, these points 
would also fall on the stability 
line.
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Thus phase plots may be used (by systematically varying m) to look for exact or
approximate periodicities in the trajectories of the points.4 6   Since phase plots are
probably unfamiliar to you, let's look at some data which are graphed both in a
traditional N vs t format (Figure 3-18a), and again, as a phase plot with a lag of 4 (N(t)
vs N(t+4) (Figure 3-18b).  The values used were picked to give a range of trajectories
with different periods—all powers of 2—with cycle times ranging from 2 to 8.  To
simplify matters, we plotted the population sizes in generations 100 through 125,
starting late enough so that all of the trajectories had time to settle into stable periods,
so all you see is periodic behavior throughout the whole of both graphs.

Notice that with the phase plot, you lose information on which generation you
are in, but gain information on how closely the various trajectories fit a regular
periodicity specified by the lag, m.  In  this case, with a lag of 4, we see how well the
various trajectories fit a period 4 cycle.  As you can see, all of the period 2 and period 4
curves do so perfectly.  The period 2 plot (represented by two white circles on the line),
does so degenerately—it runs through its period 2 recurrence twice every period 4
cycle.  Two points from each of the three period 4 plots spread outward along the
stability line (as r increases) from each of the period 2 points. Each of these makes its
period 4 cycle exactly once.  The period 8 cycle also spreads outward, in this case
orthogonal to the line, indicating that its 8 points no longer fit the 4-point periodicity,
but the deviation of these 8 points from the stability line shows how large the deviation
is from a 4-point cycle at various points of the cycle.  There are two period 8 points
associated with each point of the 4 point cycle, because the period 8 trajectory deviates
from the period 4 cycle differently in its first half than it does the second time around in
its second half.  (Each "line" of the 4-point branch in an N vs r plot has bifurcated into
two branches in the 8-point cycle, and one of each of these pairs of branches is visited
every 4 generations—alternate ones of the pair in alternate period 4 passes, just as the
period 4 cycle arose by binary bifurcation of the period 2 cycle earlier.)  If you redo this
run with a lag of 8, you will see the 8 black dots all located on the stability line,
spreading outward in pairs on both sides of each of the last period 4 spots.  We'll return
to this below (see Figures 3-23 through 3-27).

Phase plots are extremely popular because they are very instructive about the
dynamics of a system.  Because we are dealing with a system whose next value is totally
determined by its current value (according to the settings of the various parameters), it
is particularly revealing to look at the phase plot for a lag of 1.4 7   Figure 3-19 illustrates,
for further discussion, a number of relations expected for phase plots, for the logistic
equation, for the special case of a lag  of one generation:

                                    
46Time series analysis in the time domain basically involves looking at a sequence of points using
phase plots of all different time lags, and finding that value of m such that the deviation of the points
from the line x = y is a minimum according to some measure (least mean squares, etc.).  In some
circumstances (e.g. periodic exponential growth or decay), the x- or y- coordinates may be transformed
before fitting the line, or one may look for fits to a line of different slope.  If there are several values of
m having the same deviation, the smallest is taken as the period, and the larger should be integral
multiples of it.
47Setting  ∆t to less than 1 (or more than 1) does not give you a lag of less than (or more than) 1.  In
effect, a lag of 1 means a lag of 1 unit of ∆t.  Except in special cases, however, it is normally supposed
that ∆t = 1 generation.
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FORBIDDEN 
  FOR  r > 0
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Phase plot relations for the logistic growth equa
with a time lag of one generation
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0
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45° line is point of 
maximum rate of  
increase in N.

m a x

Slope at crossing 
indicates stability of 

equilibrium;  unstable 
if  steeper than - 45°

as in this case.

N (t+1)

Figure 3-19.  Qualitative relationships and interesting loci of points for the lag 1 phase plot.

• Since dN/dt (or ∆N/∆t, for finite differences) is positive for the logistic if r>0, and
N<K, then N(t+1) will be greater than N(t), and points cannot under these conditions
occur in certain regions of this graph.  Think first about what it means for a point to be
above or below the diagonal line, and in each of the four quadrants of the graph.  Why
are points forbidden above the line in the upper right-hand corner?  Why are they
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forbidden below the line in that corner (in the densely shaded region), if r > 1?  Can you
explain why they are and are not permitted (and under what conditions) in each of the
regions of the graph?

• The slope of the curve plotted at the point(s) where it crosses the 45° line
(where x = y) determines the stability of points falling on the curve for points of the
"cycle" (if there is one) m units apart. These plots are also central to explaining why
bifurcations and chaotic behavior occur.   In particular, if the slope is negative and
steeper than -45° (indicating a slope whose magnitude is greater than -1), this indicates
that small deviations from the stability line will be followed in the next generation by
larger deviations on the other side of it, indicating an unstable or growing oscillation.
(Convince yourself that if a point falls right on the -45° line, given the meanings of the
coordinates, it will go an equal distance on the opposite side of the equilibrium value in
the next generation.)  For the same reason, negative slopes shallower than -45° (i.e.,
with values between -1 and 0) indicate decaying oscillations.  (To test your
understanding, consider what positive slopes of greater or less than 45° mean.)  You
can check these conclusions by generating a curve that has the desired properties (of
increasing or decaying oscillations and the like) in the N vs t plot mode, and then
selecting the phase plot option, to see how it looks here.  A book on chaos (such as
Stewart, 1989) explains this material in greater detail, and Boyce and DiPrima (1991, pp.
104-107) give a clear exposition of a graphical means using the stability line and the
parabola (a so-called "stairstep diagram") to show the stability or instability of a
trajectory.

• For values of r > 1 (and if ∆t = 1 and C = 0), the points for a given curve will fall
on a parabola which has a maximum value in the upper left-hand quadrant, which gives
the value of N(t) for which the value of N(t+1) will be at its highest value—indicated in
Figure 3-19 by max.  You can determine these values (in an active simulation plot) by
clicking that point (or any other points of interest) with the mouse.  (Parallel
interpretations work here for phase plots with longer time lags, in which case there are
also multiple maxima and interesting intermediate minima.)  What is the significance in
Figure 3-19 of the curve intersecting the x-axis?  What would you expect to happen in
the next generation for N-values greater than that point of intersection?

• For points above the stability line, there is an increase in population size from
generations t to t+1.  If a line is projected vertically from any point down to the x-axis,
the distance that falls below the stability line is subtracted from the total height, and
these new y-values are plotted, we are now plotting N(t+1) - N(t) on the y-axis vs N(t)
on the x-axis, which is ∆N as a function of N.  The stability line now becomes mapped to
the x-axis, and the curve falls above or below the x-axis depending upon whether for
that value of N, population size will increase or decrease in the next generation.  This
latter kind of plot (or the related dN/dt as a function of N) is commonly used in
population genetics for analyzing the stability of an equilibrium.

• Consider lines parallel to and above the stability line.  What would it mean if a
point fell on a line parallel to and Y units above it (distance above being measured in a
vertical direction, parallel to the y-axis)?  Consider now the line parallel to the stability
line, and tangent to the parabola giving the locus of points for that r-value of the
logistic.  What is the significance of its x-value?  Its y-value? How big is its ∆N compared
to the values of ∆N for other values of N?  If Y stood for yield, how would you find the
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maximum yield? If you were the owner of a fishery, having a pond with a carrying
capacity of 1000, and an r of 2.7 per year, and you wanted to remove as many fish as
possible each year, indefinitely, how many could you take out?  How many should you
leave in?  How many would you lose (we suppose to starvation, though this is not
thoroughly realistic here) if you, through   
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N(t) vs. N(t+1) plot, for Gens from 1 to 400

N(t) = 0.00  N(t+1) = 0.00
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Figure 3-20.  Lag-1 phase plot for 5 r-values; all other variables the same.

oversight, didn't take your "catch" out 1 year?  How many would you lose in 3 years
(defined as the difference between what you would get with optimal removal, vs with
the optimal policy for long range recovery from your mistake.)  Assume you don't
have to eat in the meantime.  How would this change if you have to eat, say, 100 fish
per year (removable once a year, at harvest)?  How many years will it take you to
recover?  How would having to eat the fish affect your loss due to the mistake? How
do your answers differ if r is 2.6?  2.8?  2.9?  (All of these problems can be solved with
this program, running N vs t or lag-1 phase plots, and recording points from the graphs
using the "record coordinates" option.)
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The next two plots illustrate the effects of changing two kinds of crucial variables
on the appearance of phase plots.  In the first (Figure 3-20, above), we are dealing with
a lag-1 plot which shows the effects of increasing values of r on the shape of curves in
the chaotic regime.  (It shows 5 trajectories for r values of 2.6, 2.7, ... , 3.0, printed with
dots ranging from black (2.6) to white (3.0).)  What does it mean that the parabolas
bend increasingly sharply as r increases?  What does it mean that the parabola for r =
2.6 does not reach to the "ground," while that for 3.0 does?  Using the program,
determine how the maximum value of N attained changes as a function of increasing r.
Determine what value of N in the preceding generation produces this value.  Where
would you look to see which value was produced in the next generation by the
maximum N values for each curve?

In the next figure, Figure 3-21, more trajectories are plotted (10 this time), and
the lag is set at 2, rather than 1.  This time, C = 20, rather than 0. Finally, the trajectories
are run in reverse order, from larger r-values (at r = 3.75) down to smaller ones (r =
2.68) by increments of ∆r = -0.12.  (A negative increment for ∆r was chosen so that the
lower values would be the last ones plotted, and would thus appear "on top," so that
they are not hidden as in the preceding graph.)  Why might we have chosen to use
higher r values in this plot?  (If you're not sure, try this plot with the r-values from
Figure 3-20, see what it looks like, and try to explain why.  Or go back to the discussion
of the MDLS in the preceding chapter.)  What are the similarities and differences
between this graph and the preceding (Figure 3-20)?  What are the extra lines doing in
this plot?  What do the local minima in the middle of the x-axis imply for the different r-
value curves?  Why are these more spread out than were the maxima in the middle of
the preceding graph? Why are the curves steeper near the left and the right side of the
graph?  Why are there two maxima for some of the curves?  What does it mean that
some of the trajectories are represented by spots rather than by curves?  What does it
mean to be represented by a curve rather than a spot or series of spots?  What effect or
effects has changing the value of C from 0 to 20 had?  What changes would occur for a
phase plot of this data set if the lag were set to 3?  Or 4?  Or 5?  Or 20?  How many
maxima would there be?  What would the curves look like?  Try to guess, and then try
it out with the program.
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Figure 3-21.  Lag-2 phase plot for 10 trajectories from r = 3.75 down to 2.67 with C = 20.

Exercise 11

  Try phase plots for this and other trajectories for different values of m.  What happens
to the points in a curve as m increases?  Can you see how a filled rectangle is produced for
trajectories in the chaotic regime for large values of m?  What does the scattering of
points in the rectangle mean for the ease of predicting its behavior with that time lag?
What does it mean for a point to be in each of the four quadrants for a given value of m?
Can you explain what it means for some quadrants to be empty? Try a phase plot of N(t)
vs N(t+1) for 10 trajectories in the chaotic regime starting from the same N-value with
gradually increasing r -values, like those of Figure 3-20.  Look at the same points for
longer time lags. What happens?  
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The  Analysis of Periodicities Using Grids and  Template Matching in N vs t
Plots and, Alternatively, Using Phase Plots

It is possible to use the graphic capabilities of the program to analyze periodicities
generated using different values of r.  The grid coordinates at the top of Figure 3-22
(measured from generation 0 at the left end of the graph) locate a set of points (right
after the osculating pair four balls from the left, and just below the N = 75 crossbar)
which fail to match a corresponding set 64 generations earlier, thus demonstrating a
period of at least 128.  (They are more spread out in the vertical dimension, and in color,
show a black annulus that the earlier set lacks.)  To see this for yourself, try three
different starting N values  at  C = 0 and r = 2.56995.  But this isn’t the only, or even the
easiest, way of seeing that it is periodic.

0

136.37

N

200 264.00 328

Time

N vs. time plot

Time = 119.98  N = 70.59

Figure 3-22. Three trajectories: N0 = 30, 40, 50; r = 2.56995; start Gen = 200, stop Gen = 328; grid spacing:
vertical = 25, horizontal = 64.

Another way to detect periodicities is to use the N(t) vs N(t+m) menu option in Logistic
Growth.  The following is a series of N(t) vs N(t+m) plots for m = 1, 2, 4, 8, and 64 for the
same data which produced the time plot in Figure 3-22.4 8    Notice the successively
better curve fits for higher order periods in this series, indicating the hierarchical
organization of periodicities in the 2n series, with higher frequencies of lower
amplitudes (in the ratio lambda,  λ ≈ 2.504, in successive periods—recognizable as the
ratio of spreads of successive bifurcations4 9  in the N vs r plots.).

                                    
48You don’t need to recalculate them.  Just click on the N(t) vs. N(t+m) option, and the data will be
regraphed in the new mode.  It makes better sense for such graphs to make them square so that N at 2
different times is graphed at the same scale.  You can do this with the graph coordinates option.
49 λ and δ are two universal scaling numbers for binary bifurcations discovered by Feigenbaum.  See
Hofstadter (1981) or Stewart (1989) for further discussion.



7 2     Model Building

0

136.37

N(t+1)

0 68.19 136.37

N(t)

N(t) vs. N(t+1) plot

N(t) = 123.35  N(t+1) = 47.29

Figure 3-23. In successive numbers in this series, clusters wholly to one side of the x = y line straddle it
in the next higher phase portrait.
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0 68.19 136.37

N(t)

N(t) vs. N(t+2) plot

N(t) = 47.29  N(t+2) = 78.12

Figure 3-24. r = 2.56995, 128 generations,  3 trajectories for different N values at start, 200 x 200 graph.
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N(t) vs. N(t+4) plot

N(t) = 77.44  N(t+4) = 66.47

Figure 3-25.  The same data in a lag-4 phase plot.
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N(t)

N(t) vs. N(t+8) plot

N(t) = 76.75  N(t+8) = 76.75

Figure 3-26.  The same data, now in a lag-8 phase plot.  Note how in each of these moves to a lag twice
as great, the clusters  normal to the stability line rotate parallel to it, producing a closer fit.  This is
characteristic of the hierarchical period 2n bifurcations.
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N(t)

N(t) vs. N(t+64) plot

N(t) = 68.53  N(t+64) = 68.53

Figure 3-27.  With lag 64, there is now an almost perfect fit with the stability line, though doubling
the size of the graph, one can still see slight improvement between periods of 64 and 128 (if you plot the
graphs long enough (i.e., for at least 256 points) to detect a mismatch.

  Try periods 16 and 32 if you like.  With the program, try periods one more and
one less than the above periods (e.g., 65, 63; 33, 31; 17, 15; 9, 7; 5, 3) on these data.  How
about two more and two less?  Can you explain the transformations of the patterns
that you get when you do so?  (Do you know why wheels appear to rotate backwards
slowly when they are in fact going forward quite quickly in a motion picture or
repeating strobe flash?  Can you relate that to this behavior?)

Compare the behavior for r values in the chaotic domain (i.e., 2.57 > r ≥ 3.00)?
The graph depicted in Figure 3-28 is intended to illustrate that the convergence we have
seen in Figures 3-23 through 3-27 is not just an artifact of plotting N(t) vs N(t+m) for
large m, i.e., for long lag times.  This picture is taken in the chaotic regime,  and indicates
the kind of random scatter most such pictures show—unless they have a strong
periodicity for the m in question.  The pictures illustrated in Figures 3-28 and 3-29 have
other uses too—they aren’t always just random, but often show interesting patterns.
Here’s one (Figure 3-29) from just about where the two main spreading branches of the
bifurcation diagram intersect—look at r-values around 2.67 or 2.68.  What do you make
of it?   You might experiment a little (with different m’s and different r’s) to decide what
to make of it.  Check the same runs out in an N vs t plot.  If you think you’ve got the
explanation for why the points from one curve are found in all four quadrants, but the
points of the other two curves are found (with one exception) in only two  (they are all
for the same r-value), try to generate curves that show this difference in an N vs t plot,
and then convert it to this form to see if you are right.
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N(t)

N(t) vs. N(t+64) plot

N(t) = 0.00  N(t+64) = 0.00

Figure 3-28. Phase plot for 3 different values of N0, where r = 2.75.
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N(t)

N(t) vs. N(t+64) plot

N(t) = 0.00  N(t+64) = 0.00

Figure 3-29. Can you explain why the darker points (black and red, in color) are found only in quadrants
2 and 4, whereas the lightest points (pink, in color) are found in all four quadrants?
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Figure 3-30.  Blowup of  a bifurcation plot or Feigenbaum tree, indicating loci of trajectories in between
generations 100 and 400.  (A large number of points were plotted so as to show a reasonable density of
points in the blowup.)  The blowup is of the middle branch in the period 3 window between r-values of
2.82 and 2.86, (compare, e.g., Figures 2-2, 3-2, or 3-6 above for full-scale bifurcation plots).  This blowup
shows the self-similarity of the middle branch with the whole tree, and also shows the locus of
attention for the next two figures, 3-31 and 3-32, at r = 2.856820. Note also that some r-values are still
showing transient behavior at generation 100, as indicated by the scattering of points in the space of
the window and the transient convergences to the bifurcating twig indicated by the vertical projections
to it from inside and outside at different r-values.

The next three plots (Figures 3-30 through 3-32) are sort of a graduation present for
the interpretation of phase plots, and also indicate the usefulness—indeed, sometimes
the absolute necessity—of having multiple ways of representing the same data to see
what is going on.  The first plot, Figure 3-30, is a blowup of a bifurcation plot to a
horizontal or r-scale 25x greater than that of earlier bifurcation plots and a vertical scale
about 6x as great, as indicated by the range of N and r values.  It is centered on the
middle branch of the period 3 window, but it also shows, in some more detail, what the
"back" side of that window (where points start escaping from the more confined
regions and again move chaotically throughout the whole range) looks like.  It is that
latter transition point, for a value of r = 2.856820,  which is the subject of Figures 3-31
and 3-32; your charge is to figure out, from working back and forth between these
three pictures (and particularly Figures 3-31 and 3-32), as much as possible about what
is going on.
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Figure 3-31.  Population size vs time (N vs t) plot for 5 trajectories all with the same r-value which
start very close together (∆N = .00001) and then diverge, showing the infinite sensitivity to initial
conditions characteristic of chaotic dynamical systems.  Note that in this case, the trajectories spend
most of their time circulating regularly among three regions, with occasional excursions.  Your job is to
find out as much as possible about how they circulate among these regions.

Although it is easy enough—after the fact—to see what is happening from these
pictures, there is no substitute in complex cases like this for running your own
simulations, because then you can see how making your own changes in the
parameters affects things (usually small changes, in a case like this) and you can run the
graphs in slow motion, using the Redraw option, both of which are very useful to help
you see what is going on.  Although Figure 3-32 is perhaps most informative of all,
there are ways in which each of Figures 3-31 and 3-32 are misleading without the other,
so you will want to work back and forth between them to see what features in one
correspond to observed features in the other.  In a way, this interpretation job is an
analog to the two parts of Figure 3-18 above; whereas that illustrated regular periodic
behavior, these illustrate the interpretation of interesting statistical patterns in chaotic
dynamics.
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Figure 3-32.  Phase plot of the same trajectories with a time lag of 21 generations.  The regular patterns
of this phase plot are very revealing of the statistical dynamics of the system.  See the text.

In interpreting this phase plot, see if you can answer as many as possible of the
following questions:

(1)  Why are so many spots so tightly concentrated in the three rectangular areas
symmetrically located on the stability line?  Can you say anything qualitative about the
relative numbers of points you would expect to find in each compared to the numbers
in the others?  Can you think how you would estimate what proportion of the total
dots are in these areas?  Why do the areas differ in size?  (There's a quicker answer to
this, and a deeper one.)  What happens to the location of these areas when you increase
(or decrease) the lag by 1?  By 2?  By 3?  For what lags would you expect to find areas
concentrated along the stability line?  Go through these lags in order from smaller to
larger:  do you see any useful patterns in the changes in the distribution of the dots
within the three regions?

(2)  The overall pattern of Figure 3-32 looks much like a "scotch plaid" made up of dots.
Given this characterization, can you explain vertical bars, horizontal bars, off-diagonal
intersections, nearly white squares?  How would you expect these to change for
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different lags?  Can you tell what would likely increase (or decrease) the whiteness of
the squares?

(3)  Why do most of the dots in the vertical bars appear to be along the right edge for
the two leftmost bars, but along the left edge for the rightmost one?  What can you
learn from this?  What can you learn from the fact that there don't appear to be any
similar "edge effects" for the horizontal bars?

(4)  Do you think that the phenomena of (3) constitutes a good statistical sample of the
dynamics of the system?  Give reasons for your answer which relate to how the
patterns appear in both Figures 3-31 and 3-32.

Temporal Effective Population Size, Neff(t), the Logistic and Chaos

So far, there is one facility of the program that we have not yet talked about.
This is the ability to calculate the temporal effective population size, Neff(t).   We owe to
Sewall Wright the development of the theory of evolution for finite population sizes,
sizes small enough that things don’t always average out  (Wright, 1931, 1968-83,
Provine, 1987).  You can study some of the effects of population size on the evolution of
populations using Frank Price’s EVOLVE program.  In this you can see that with a
sufficiently small population, an allele may be lost simply due to random drift—or even,
with a smaller chance, if it is selected for.  This same process comes up when studying
Mendelian inheritance, using John Jungck and John Calley’s GCK—where you learn
that an expected 3:1 ratio of phenotypes is consistent with substantial deviation from
that, and that deviations tend to get more severe with smaller population sizes.

Unlike those programs, which have genetics built right in, this program makes
no reference to or use of genetics whatsoever.  Nonetheless, Wright derived a variety
of formulas for how various processes involving fluctuations in population size affected
the “average” population size for purposes of calculating the average rate of loss of
alleles.5 0   If a population fluctuated wildly in numbers, for example, the points when it
had far lower numbers indicated a bottleneck.  If there were N diploid organisms, then
they together had between them 2N genes at each locus, so they could not pass on
more than 2N distinct alleles, and would generally pass on far fewer than that.5 1

                                    
50Actually, the concept of effective population size (or number, as it is sometimes called) is better
defined in terms of the flip-side of loss of alleles, namely the degree of inbreeding in the population.
The recent molecular discoveries about “Eve”, the African hominid of 1.5 million years ago whose
mitochondrial genes we all share shows that genes may become extinct even when populations do not.
The human population shows 100% inbreeding—we are completely monophyletic—with respect to
those genes that we all share from Eve. In this light, consider James Crow’s (1986, pp. 43-4) definition
of “effective population number” as “the size of an idealized population that has the same probability
of identity [of alleles by descent from a common ancestor] as the population being studied.”  In this
idealized population, there is no selection, both sexes are equally frequent, it is of the same size in
successive generations, any member of the population has an equal probability of mating with any
other member, and the number of offspring of mating pairs is binomially distributed.  Any deviations
from these assumptions will cause the effective population number to be different from the actual
population size.
51Rather more generally if you have a large urn filled with multiple copies of a large number of
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There are other complications.  For sexual species, if one sex is far less frequent
than the other, members of that sex would nonetheless contribute half of the genes to
the next generation, and the genetic variability that could (or would) be passed on will
be less than that possible (or probable) if both sexes were equally frequent.  Ignoring
the effect of sex ratio on effective population size in our calculations of temporal
effective population size thus commits us to one of two assumptions:  (a) that the
species is asexual (monoecious) rather than sexual (diecious), or (b) that if it is sexual,
the sexes are present in equal frequency, and all members of the population are mated.

Small effective population size is very important in evolution for several reasons,
a few of which are:

• Small effective population size in a single population can result in the
loss of genetic variability and thus the loss of an ability to adapt over
evolutionary time. A number of species near extinction face exactly this
danger.  Recent publicity has focused on the cheetah, the panda, and other
well known animals, but the danger is just as great with the widespread
practice of monoculture using inbred and highly selected strains of
domestic crops like corn, wheat, and rice.

• This may be due to natural factors or to biotic ones. New virulent plant
diseases (fungi and other pests) can rip through uninterrupted
monocultures like a forest fire, and without variability in the strain, it
could become as extinct as the American chestnut has become, and more
recently, the Dutch elm.  Virulent strains may arise and spread because of
the high frequency of a uniformly infectable host that would never do so
in the face of a highly variable host population.  (The study of these kinds
of interactions is called epidemiology, and the breakout of epidemics is
one area where chaotic dynamics are extremely likely—see Schaeffer,
1984).  Therefore, it is important to notice that wild fluctuations in
population numbers, by reducing genetic variability, may kill off a species
as surely (though not as immediately) as outright immediate extinction.

• A species may subdivide itself into small populations with occasional
migration between them as an adaptive strategy for a variety of reasons,
or may do so for no selected reason at all.  In such species, different
populations go to fixation for different alleles, actually producing new
genotypes which would never arise in a large population but do so in the
smaller populations because of the concentration  of the relevant genes
there.

Studying effective population size is particularly interesting in the present
context for at least three reasons:5 2

                                                                                                                     
different types of marbles, a smaller sample from this urn will tend to contain fewer types of marbles
than a larger sample—and you will have lost variety, even if you are later allowed to enlarge your
collection considerably by taking additional copies of any marbles that you have already.
52 There is actually a fourth.  This work represents new and heretofore unpublished research resulting
from the thoughtful questioning and superlative programming skills of Robert N. Farber, leading to
joint research we did together in 1981 (when he was a sophmore in my biology class at the University of
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• Neff(t)  is a function of N, and because of this we can study chaos not
directly as we have done in the first three modes (N vs t, r vs N, and N(t)
vs N(t+m), but through its effect on another variable, which can
sometimes be measured by other means.  (See, e.g., Kimura, 1983.)  This
represents a common situation in science, where we often use variation in
one variable as a way of assessing variation in another which is less
convenient (or sometimes impossible) to measure.  Indeed, discovering
new ways of indirectly measuring things in this way often heralds major
new scientific discoveries, and is a significant form of scientific invention.

• Comparison of r vs N, r vs Ne(t)  , and both of these with t vs N in the
light of the formula(s) for temporal effective population size provide a
striking demonstration of the advantages of visualization in discovery.

• We give (and calculate)   by two different means, one that can be found
relatively widely in textbooks (e.g., Crow and Kimura, 1970;
Roughgarden; 1979, Hartl, 1988) and described as an approximate
formula, and another (given by Ewens, 1969, pp. 35-36) which is described
as an exact formula.5 3    Since much of the work in theoretical areas is
constructing and then evaluating useful ways of approximating things
that are difficult to calculate in other ways, it is useful to compare these
two formulas to see under what conditions they produce divergent
results.

The inexact formula for  effective population size for a temporally (and cyclically)
fluctuating population from generation 1 to k is given by equation (4):

1
Neff(t)

  =  1
k
   [ 1

N1
   + 1

N2
   + 1

N3
   + ... + 1

Nk
   ].  (4)

The so-called "exact" formula for the same conditions is given by equation (5):

{1- 1
2
  Neff(t) )}

k= {1 - 1
2

  N1)} x {1 - 1
2

  N2)} x {1 - 1
2

  N3)} x ... x {1 -  1
2
  Nk)}.  (5)

These formulae, rearranged so as to give explicit solutions for Neff(t)  are used in
the “r vs Ne(t)” plot mode as follows:  A starting value of N, a range of r values, and a
range of N values to be plotted are specified.  By analogy with the “r vs N” plot mode,
the first set of values are calculated, but ignored, up until “start Gen.” (These values are
not irrelevant, of course, since they determine what the value of N will be at start Gen.)

                                                                                                                     
Chicago).  It was Farber’s idea to do effective population size calculations  for the logistic, and our joint
idea that it would be interesting to study its behavior in the chaotic realm, which we did on his North
Star “home brew” Z-80 machine.  With this we discovered for ourselves many of the basic phenomena
you can find out for yourselves with the Ne(t) vs. r plot mode, though we hadn't yet seen a bifurcation
plot through its whole range, and thus didn't realize that the  period 3 window was the cause of the
trench or "crash" in effective population size.  Since then, undergraduate research in my classes has
never been quite the same!
53Interestingly, only in Ewens, is this formula described as applying in a cyclical
environment—presumably to damp out transients from prior stages.
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Then the next “Gens plotted” generations are used in the calculation for effective
population size, as N1  through Nk.  Both formulas are plotted, the exact equation with
black solid lines, and the inexact equation with dotted lines (which are red with a color
monitor).  The exact equation is plotted last, so that it overlays the inexact equation.
They are thus distinguishable only when their results are different by at least a pixel
width.

Mathematical Artifacts Revisited—Case 2:   When Is an Exact Formula Less
Exact Than an Inexact One?  When You Least Expect It!

Exercise 12:  Mathematical Artifacts

As you can see from these formulas, with either one, small values of N have a
disproportionately larger effect on  Neff(t)  than large values.  The exact formula is supposed

to be more accurate than the inexact one for smaller values of N, but how small?  Try r = 0 to 3,
start Gen = 0, and Gens plotted = 10 for various starting values of population size, N.  (Try
starting N at 50, 25, 10, 5, 2, and 1.)  Try a value of N between 0 and 1/2.  What happens?   
Which formula is acting strange?  Why is this happening?  (Look at the formula and you can
see why!) Is this biologically realistic?  (This has two parts:  (a) Is it realistic tha t
population sizes should be this small?  (b) Is it realistic that N eff(t) should behave l ike

this?)  Now look at the behavior of the two formulas close to r = 3 (for C = 0).  (You will have
to get very close.)  Can you explain what is going on?  Which formula would you trust, and
why?  Do you think that the exact formula is exact?  (In other places in Wright’s theory
where terms like {1-(1/2N)} appear, there is often a qualifier that N should be ≥ 5.)  When
you are doing model-building, you will sometimes have to check for yourself some things tha t
others tell you on faith.  On the other hand, with the power of a computer, that isn’t always
such a hard thing to do.

Relationships Between r vs N Plots and r vs Ne(t) Plots

These two kinds of plots  show interesting parallels in their behavior.  Some
connections are to be expected, as they are both graphs relating the behavior of N to r.
Formally, only the second (r vs Ne(t)) is a (single-valued) function, since the r vs N
plots can generate many values for a given r value.  But in fact, for a given value of r,
and for the same settings of start Gen and Gens plotted, Ne(t) is a function of exactly
those points that would be plotted in the “N vs r plot.”  Thus comparison of these plots
can be particularly informative.

Here are some of the comparisons you can make:

• In the chaotic regime, the exact trajectory depends sensitively on the
initial value of N, the exact value of r, and the ratio (1-C/K).  You will be
plotting curves for a range of r-values, but the starting values of N, and
the ratio (1-C/K), which acts to modulate r can generate different results.
Run comparable N vs r and Ne(t) vs r plots for different values.
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• One systematic way of changing N is to set the starting value of N,
and, for a given value of Gens plotted,  vary start Gen to pick out different
temporal windows of behavior for comparison using the different graph
types.  In fact, as you will see in the series below, a series of these
temporal windows shows, in either plot type, systematic changes that
exemplify the temporal unfolding of chaotic divergence.

• Applying these two points together, these patterns of unfolding can be
expected to change for different starting values of N.

We will start by exhibiting parallels between the two plot types over the whole
range of r:

Note that in the first plot (Figure 3-33), the exact (lower) curve and the inexact
(higher) curve are distinguishable.  This is because of the very low starting value of N
chosen.  (Verify this for yourself.)  This picture was taken using color (and solid)
patterns, so the different patterns for the two curves do not show up.  The second plot
(Figure 3-34) is the now familiar bifurcation plot for the corresponding broad range
from r = 0 to r = 3.

Note in these two plots which broad features correspond to which.  As you
might expect,  Neff(t)   gets the jaggies as r gets up into the chaotic regime.  But why do
you think that  climbs so slowly with increasing r while N in the N vs r plot goes rapidly
up to 100?  You might experiment with different viewing windows for this—say start
Gen of 0, 20, 40, 100 for Gens plotted of 10.  An understanding why this happens is very
important for understanding how the Ne(t) vs r plots relate to the N vs r plots.

There follows a gallery of corresponding N vs r and Neff(t)   vs r plots for your
inspection.  (See Figures 3-33 through 3-48 below.)  Compare these or generate your
own, and see what you can find.
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Figure 3-33.  Ne(t) vs r plot, for 0 ≤ r ≤ 3, with a starting N of 2, start Gen = 200, Gens plotted = 100.

Figure 3-34.  The corresponding N vs r plot.  Try these for a larger starting value of N.
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Figure 3-35. Ne(t) vs r plot for 2.5 ≤ r ≤ 3.0,  a starting N of 2, start Gen = 0, and Gens plotted = 100.  Note
that the approximate and exact curves are distinguishable, particularly to the left of the graph.

Figure 3-36. N vs r plot for the same values.  Compare bands in the N vs r plot with minima in the
Ne(t) plot.  Do you see any other features you can explain?
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Figure 3-37. Ne(t) vs r plot for 2.5 ≤ r ≤ 3.0,  a starting N of 2, start Gen = 200, and Gens plotted = 100.
Notice the differences with Figure 3-35.  Can you explain them in the light of the differences between
Figures 3-36 and 3-38?

Figure 3-38. N vs r plot for the same values.  Compare bands in the N vs r plot with minima in the
Ne(t) vs r plot again.  Do you see anything else interesting to compare?
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The next series of graphs is a series of N vs r plots for very narrow windows at different
starting points.

Figure 3-39. N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 0; Gens plotted = 10.  I haven’t said what the starting
value of N is because I lost it.  This program now automatically saves all relevant parameters with the
graph.  Figure 2-3 above is a plot of the first 5 generations.  A comparison of this with Figure 2-3 will
show you which trajectories are the first 5.
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Figure 3-40. N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 10; Gens plotted = 10.  Note that later generation
trajectories get curlier for lower r values.  Can you explain this?  You may also want to look at what
happens in the chaotic regime for n(t) vs N(t+m) plots for increasing values of m.

Figure 3-41. N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 20; Gens plotted = 10. The expanding and
crossing chaotic envelopes are now clearly visible.

Figure 3-42.  N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 30; Gens plotted = 10. Bands are beginning to
emerge.  Look for self similar features on different scales for different values of r in these
successive time slices.
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Figure 3-43.  .N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 40; Gens plotted = 10.  Bands and envelopes are
becoming more well defined.

Figure 3-44.  N vs r plot; 2.5 ≤ r ≤ 3.0; start Gen = 200; Gens plotted = 10.   This is the last in the
series, and skips 150 generations until most of the transients have disappeared.  Bands are as
well defined as they can be with only 10 points plotted per r-value.  Try experimenting with
plotting fewer points than there are twigs in a band.  What happens?  Add generations to start
Gen, 1 at a time.  What happens? Can you explain it?  What does the fact that a twig is either
present or absent (and not, e.g., dotted) tell you?
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The following series of graphs are Neff(t) vs r “strip charts” (note the
versatility of the graph resizing capability) for most of the same values as the
preceding N vs r plots.  Compare them with one another and with the
corresponding N vs r plots.

Figure 3-45. Ne(t) vs r : 2.5 ≤ r ≤ 3.0, Nstart = 2, start Gen = 0, and Gens plot = 10

Note the “false valley” from about 2.87 to 2.93, which will disappear in later
generations.

Figure 3-46. Ne(t) vs r : 2.5 ≤ r ≤ 3.0, Nstart = 2, start Gen = 10, and Gens plot = 10

Note how rapidly the curve gets jagged with increasing generations.  Can you
explain why?  There are some big minima (but also big maxima) covering a
broader region including the period 3 valley.
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Figure 3-47. Ne(t) vs r : 2.5 ≤ r ≤ 3.0, Nstart = 2, start Gen = 20, and Gens plot = 100.

The period 3 valley is beginning to acquire some character, and the curve is
losing some of its jaggies.

Figure 3-48. Ne(t) vs r : 2.5 ≤ r ≤ 3.0, Nstart = 2, start Gen = 200, and Gens plot = 10.

This is the last in the series.  Various valleys corresponding to various
bands are quite well defined, and this curve has lost still more jaggies, suggesting
some form of filtering of extremes, which I do not yet understand.  Can any of
you explain it?

Here is something else to try—compare corresponding strip charts for
other starting values of N.  They aren’t all the same.

With this, we leave you to explore the logistic family of equations.  There
is a lot more to do, not all of which we have talked about.  (Indeed, every time I
think I've exhausted the topic, something else comes up, as often as not from my
students, to prove that I'm wrong.)
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Thought Questions on Visual Representation

1.  In what ways do these aspects of visual analysis of the logistic model generalize to the
analysis of other models?

2. Can the visual analysis of the logistic model suggest ways in which we can make truer
models of population growth—or model other things not considered here?

3. Are there other visual modes of presentation which we have not yet explored?  (Yes
there are, and more of them may well show up in the release version of this software and
manual.  But if you can think of any you'd particularly like to see, let us know.)

4. In what ways can the visual analysis of the logistic model help us to interpret empirical
data?

5. In what ways can we distinguish computer effects from mathematical consequences of the
model?

6. In what ways is visual analysis useful in detecting artifacts?

0

140

0 70.50 141

Logistic Growth

Figure 3-49. Mystery figure (relatively easy).

Where (i.e., for what conditions) do you think this is happening?  What
kinds of clues do you have (in general)  for identifying graphs?  A good starting
point might be the bifurcation chart.  You also have some other clues.  What can
you learn from the y-scale?

Other Food for Thought:

I. Simplifications of the Logistic and MDLS Equations



Model Building    9 3

Appendix D contains as exhaustive a list of the simplifications of the logistic and MDLS
equations as I am aware of.  Think about these assumptions and try for each of them to
determine:
1. Why someone would make such an assumption.  Is it intrinsically plausible in
general?  Does it simplify computation?  Are there ideal systems or limiting conditions
for which it applies?  Does it tie in with standard assumptions in other models?  Are
there real systems for which it is plausible?
2.  If the assumptions are unrealistic, what biasing effects would you expect them to
have?  What changes would increase the realism of the assumptions?  What questions
do these changes raise?  Do they in turn suggest further directions of elaboration?
3.  Can you learn anything more about the use of these models or variants on them
which we have not discussed?  What motivated their use, and what shortcomings, if
any, did they have?

II. Behavior of Dynamical Systems

These are behaviors of dynamical systems in general which are exemplified in the
equations of the MDLS model.  How many can you find?  Specify how you would tell
or test for them.
1. Continuous growth/decay
2. Damped oscillations

3. Stable 2n point oscillations
4. Chaos (according to which criterion?)
5. Finding 3, 5, 6, 9, etc. cycles

6. Finding 2n point cycles.
7. Finding cycles that are longer than 400 generations.
8. Infinite sensitivity to ∆N
9. Infinite sensitivity to ∆r  
10. Dependence on ∆t; reff∆teff  as a sufficient parameter for chaos.

11. δ and estimation of bifurcation points; λ and estimates of spread of branches.
12. Universality, effective r, and comparison of logistic and MDLS bifurcations.  
13. Some other values to look at:
a. 2.8537-9
b. 2.56995
c. 2.83-2.85
d. 2.72

e. How would you test the conjecture:  all stable equilibria in the 2n range remain as
unstable equilibria as they bifurcate with increasing r.  Aside from testing it, how would
you argue for it?
f.  How many different periodicities can you find?

III. Other Thought Questions
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1. Suppose someone claimed that the system you are investigating is not totally
deterministic, but had a small amount of normally distributed random variation added
at unknown (periodic or random) intervals, which was what was responsible for the
apparent sensitivity to initial conditions.  (a) Does this claim make sense?  (b)  How
could you tell whether there was a small random noise input to your deterministic
system?  What test or tests would you make?  (c)  Can you totally refute this claim?  (d)
Can you show that (or under what conditions) it is implausible? (e) Can you constrain it
(e.g., by showing that the variation added has to be less than a certain amount, and/or
with less than a certain frequency)?  Justify or explain your answers.

2.  How can you tell where roundoff error is acting in the simulation?  (Think of
yourself as an auto mechanic, listening and looking for the characteristic signs and
sounds of different kinds of breakdowns.  Can you tell anything about the source of the
roundoff errors by the conditions under which they appear, and the form of mistakes
they involve or produce?  What do you know about the computer or the program
(from what we have told you about it) that indicates possible sources of breakdown)?

3.  From your study of chaotic dynamical systems, do you think that chaos is important
in nature, or do you think it's just a mathematician's pipe dream?   If you think it is
important, say where (under what real-world conditions) you would expect to find it.  If
you think it isn't, say why not.  How would you tell chaos from randomness in nature?
(Se Wimsatt, 1980, for discussion of this question.)

Understanding the Role of Mendelian Inheritance in Evolution by
Simulating Blending Inheritance

In this simulation, unlike Logistic Growth and most other simulations you will
find in BioQUEST Modules, you will be dealing with organisms which are imaginary in
two senses:

(1)  Many simulations or models in science assume “ideal organisms” which have
some features—those feature selected for modeling—which are like those of organisms
found in nature, but may in detail, and in most other respects, be quite unlike the
organisms being modeled.  The Logistic and Minimum Density Limited Logistic Growth
models discussed in the last two chapters are of this sort.   In the other BioQUEST
modules, every attempt has been made to make and base simulations on ideal
organisms which are governed by laws and mechanisms which are, in relevant ways,
like the laws and mechanisms governing the behavior of organisms in nature—at least
as far as the theoretical perspective being modeled is concerned.  (Given that nature is
more complex than we are able to handle easily, we'll usually simplify extensively in all
other details, and usually also make any simplifications that we think we can get away
with even for the phenomena under study.) Thus, the theoretical focus of GCK is on
Mendelian genetics, so its ideal organisms exemplify these laws and mechanisms with
substantial accuracy and detail but don’t, for example, say anything about the
biochemistry, the physiology of digestion, or mechanisms for thermoregulation of the
ideal organisms it simulates. Less happily, GCK at present also does not model
pleiotropy or epistasis, though both are clearly relevant to classical genetics.  µGCK
uses biochemical information in the specification of plate media, and Sequence it! and
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Purify it! use much more biochemical information because this knowledge and these
mechanisms are more relevant to what is being studied in those simulations.  (Of
course, they may leave out or simplify other details, for computational or other
reasons.)  All of the other BioQUEST simulations are of this form:  such simulations model
“ideal organisms” as realistically as possible relative to the theoretical perspective of concern.

(2)  A second kind of simulation involves supposing as correct certain laws,
mechanisms, or features of the world that we believe to be false in order to draw out
the different consequences of making or not making the assumptions that we typically
do about the world.  The blending inheritance simulation discussed here is of this often-
ignored but very important type.5 4   It explores the consequences of a mode of
inheritance which was championed by Darwin and virtually all of his contemporaries,
and later by others (the so called "Biometricians") who opposed the Mendelian point of
view when it first emerged.5 5   The kinds of patterns of inheritance that made the
"blending" models plausible were, in a triumph of the new Mendelism, reconceptualized
as Mendelian multilocus additive traits, and are today the subject matter of  quantitative
genetics.  This kind of simulation (i.e., a simulation based on what we now accept as a
false model of inheritance) is not directly relevant for deriving and understanding the
consequences of theories of inheritance that we hold to be true, but it may be indirectly
relevant, in that it can be crucial for understanding why we accept certain theories as
opposed to their competitors.  It may also be crucial for understanding the similarities
and differences between these theories—usually a necessary requirement for designing
an adequate experimental test of the theories—a matter that is often more difficult than
our ex post facto histories suggest.5 6   For a collection of essays which explicitly
recognizes this kind of use of models, see Nitecki and Hoffmann, 1987.

But this is not just a matter of historical interest.   Such fundamentally false
models shed light on current and future investigations in science as well.  What happens
if we don't know the laws of nature or the mechanisms involved?  What if we are
trying to develop, test, or elaborate, a theory of what these laws and mechanisms are?
What if one of the theories we have been taking for granted turns out to be false, as has
happened many times in the history of science, and certainly will continue to happen in

                                    
54Other examples of this counterfactual type of “false model” in physics include the  various types of
perpetual motion machines, each one of which violated one of the basic laws of physics, and which
lead to enthusiastic puzzle solving to figure out why they were impossible in the 18th and 19th
centuries, and Newton’s “demonstration” that the solar system was stable for the inverse square law of
gravitational attraction, but not if force varied as the inverse 1st or 3rd power.  (This “demonstration”
was later shown to break down for the many-body problem even for the inverse square law by Poincaire-
-whose results presaged the discovery of Chaos.  See Stewart, (1989).)
55 See, e.g., Provine, 1971, on the causes and consequences of the controversy between Mendelians and
Biometricians, which had a significant influence on the form and some of the key assumptions of the
modern theory of evolution.
56The latter (i.e. false and rejected theories) are rarely if ever discussed in science textbooks, so many of
the reasons for accepting the theories that we have, as well as the logic of their confrontation, are
often lost to students.  The need to take this broader perspective—discussing past theories that we now
regard as false—is why it is often argued that science students should study history of science as well as
the current state of the art. For further discussions of this broader perspective of science and the
relevance of teaching history of science to scientific practice, and for an explanation of the usually
inaccurate "reconstructed" history of science taught by and for scientists, see Kuhn, 1970.
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the future?  Science is more than doing experiments and gathering data—it also
involves the structured exploration of new phenomena, the choice and designing of
experiments, the construction, testing, rejection, and modification of theories,
hypotheses, and models, and the re-evaluation and sometimes rejection of data as
irrelevant or as collected under conditions which render it useless.

The truth of almost anything in science has been up for grabs at one time or
another, and false models are often effective means for getting to truer
theories—particularly if we know something about the ways in which they are false.
Indeed, we must every day work with models that we know are false in some (often in
many) details.  Model builders know and use this fact effectively, but it is seldom
presented in science textbooks or popular presentations of science, for very interesting
reasons.3  (See the appendix on “Functions of False Models as Means to Truer Theories"
or Wimsatt, 1987).  False theories may be (but usually aren't) the result of bad science,
and in any case we have to learn to live with them—in many cases, they are all that we
have.  We need to learn more about how to reason productively with models which are
true in some ways,  false in some others, and unknown (we do not know, and would
like to find out!) in still others.

In a small way, of course, this hidden aspect of science is required for effect to
cause reasoning, as exemplified in the BioQUEST program GCK, where we take the
laws of Mendelian genetics as given, but we are uncertain what the mechanisms are
that produce the particular phenotypic patterns we are trying to analyze.  (This pattern
of reasoning is also present in the LOGISTIC simulation when we are trying to explain
what is producing a given pattern, or change of pattern.)  Mechanisms produce
systematic patterns of behavior, so in some ways, they are kind of like local special
laws.  Or maybe it is more correct to say that once we understand the mechanisms
behind a set of phenomena, we understand the conditions under which regular
behavior is to be expected, and the factors that can cause deviations from expected
regularities.  In trying to analyze a mating pattern, we guess hypothetically what the
underlying mechanisms are which produce it.  Do the phenotypic patterns we see
involve 2 alleles or more?  Variant alleles at 1 locus, or 2, or more? Are the patterns a
product of sex-linkage?  Linkage?  Dominance or codominance, etc.?  Data can be
thrown away as well as hypotheses.  Some of the data we produce in trying to discover
the mechanisms are crucial, but a fair amount of it we later decide are irrelevant,
artifactual, biased, or worthless. But there can be deeper uncertainties, as when the very
mechanisms of inheritance are unknown (as before the rediscovery of Mendel's work
in 1900), or only partially known (as with the period between then and 1920, when the
basic mechanisms of classical genetics were still being worked out and the subject of
heated debates).  In dealing with such questions we are dealing with the problem
situation found at the cutting edge of science; the establishment of today's givens were
the cutting edges of past investigations and debates.

The basic rationale behind constructing and evaluating hypotheses is, in most
respects, the same in both cases—that small modifications engender and add up to
larger ones, and that scientific revolutions differ in size, but not in kind, from the kind
of piecemeal daily manipulations, discoveries, and reconceptualizations of lab, field, and
problem set.  But it is important to look at these larger changes, lest we think that
science is always a matter of proceeding from basic, unchanging, given assumptions
which are not themselves ever challenged.  In looking at large, or fundamental,
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scientific changes—such as the change from a theory of blending inheritance like that
Darwin held to the particulate non-blending account that Mendel held, we will see
several things:

• Fundamental changes tend to affect a broader range of problems
and perspectives than less fundamental ones.  Thus one needs to consider
the effects of a fundamental change on a large variety of other issues and
the explanation of many different kinds of phenomena.  (This is why good
science fiction does not freely suppose deep modifications in the basic laws
of nature—such deep modifications are likely to have multiple far-
reaching consequences which are not easily anticipated by either the
author or the reader.)

• It is usually the case that older theories that we now hold to be
incorrect had a lot going for them—we should expect that they will
provide plausible (if incorrect) explanations for many phenomena, and
basically correct explanations for some others.  Thus, in his excellent
discussion, John Moore5 7  lays out 10 classes of phenomena that Darwin
thought he had to explain, and how his theory does so.  Indeed, Darwin's
theory does quite well, in its own terms, at explaining these phenomena--
many of which are legitimate and still interesting regularities involving
complex multilocus interactions in inheritance.  We will see in this lab that
some of the qualitative effects of blending inheritance look surprisingly
like what we observe, and can be distinguished from the effects of
Mendelian inheritance only with careful and well-specified controls that
don't become obvious unless and until one has already accepted
Mendelism.  It is often not a trivial matter to ferret out just how these
older theories are wrong—and in doing so to figure out just what
questions to ask (the important questions usually change with the
theories) and how to answer them as unambiguously as possible.  

• One of the main features of fundamental changes of this sort is that
fairly direct observational facts which are widely taken for granted come
to be rejected.  Unfortunately for Darwin, some of the "facts" he thought
he had to explain (like the inheritance of acquired characters), though
widely believed, were not facts at all, so didn't need any explanation.
Some other “non-facts” (like his belief that the heredity of large variations
or "sports" was fundamentally different from that of small (or "individual"
variations) prevented him and his advocates (as well as the initial
rediscoverers and exponents of Mendelism) from seeing the applicability
of Mendelian ideas to his theory.  As a result, it took some 20 to 30 years
after the rediscovery of Mendelism to give a unified (and basically
modern) account of Mendelian genetics and evolution.

• Questions concerning how factors not included in the model can
interact with features of the model, and with other unincluded factors, are

                                    
57Heredity and Development, Oxford, 1972, pp. 7-17.  The example of blending inheritance and the
reasons for its plausibility  are also discussed in Jim Stewart and John Jungck’s introductory module for
BioQUEST.
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often posed and answered much more simply (and basically correctly) by
using an incorrect or oversimplified model.  Thus, for example, near the
end of the exercises (below), we will consider how selection, finite
population size, assortative mating, migration, and overlapping
generations would act in a model of evolution with blending inheritance.
The effects they have are all in the same direction as the effects they
would have in a Mendelian population, but it is easier to see these effects
in a blending inheritance model without the combinatorial complexities
introduced by Mendelian inheritance and segregation.

• Modern scientists often do not have a correct understanding of the
rejected older theory, or of why it was rejected--largely because they
never had to deal with it as a serious competitor, and the scanty history
they got of the past controversy was a biased story told by the winners.
This has at least two bad consequences:  (1)  In not understanding the
problems that led to the rejection of the prior theory and the acceptance
of the newer one as they appeared at the time, they fail to appreciate
some of the strongest possible evidence for the current theory.  (2) If they
never had to deal with the older theory as a serious competitor, and the
reasons why it seemed plausible, they may as a result fall into very similar
traps in their current research—committing errors similar to those that
fueled the last controversy.  Thus, it is generally recognized (as part of the
folk wisdom of evolutionary genetics) that blending inheritance makes
evolution virtually impossible.5 8   It is, however, also generally (and
incorrectly) believed that particulate Mendelian inheritance rules out
blending inheritance.  This is not so.  It is not just the particulate or
continuous nature of the hereditary material which makes a theory a
blending theory.  Rather, blending is a joint product of (1) mechanisms
through which an uncontrolled and statistically irreversible mixing of the
hereditary material occurs, and (2) the size of the hereditary contribution
of each unit.5 9   Discussions of blending inheritance tend to focus on the
second, although the first is in many contexts even more important, and
not at all affected by the transition between blending and Mendelian
theories.   An appreciation of this fact yields a new understanding of why
the total variance of previously isolated subpopulations decreases under
random mating (Wahlund's principle), of why the Hardy-Weinberg
equilibrium is an equilibrium, of the evolutionary significance of
population structure, and of other things as well.6 0

                                    
58That is, since R. A. Fisher, The Genetical Theory of Natural Selection, Cambridge, 1930, chapter 1.
59The smaller the per unit contribution, and the larger the number of hereditary units affecting the
given trait of the individual, the smaller is the equilibrium variance with uncontrolled mixing, and
the more the conditions of the blending inheritance model are approximately met.  As the last exercise
shows, even the paradigm case of blending, mixing beakers of colored water, is technically a case of
particulate inheritance.
60It is a maximally mixed state, with a minimum of variance for hereditary units of that "size"—in
Darwin's model, there was no minimum size, and thus the equilibrium variance is 0.  This same insight
also explains  why Mendelian polygenic traits respond more slowly to selection than single factor traits
when both are "additive".  A failure to appreciate the deep analogies between random mating or
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The Genotype-Phenotype Distinction

Before developing a model of blending inheritance, in order to better understand
why we accept Mendelian inheritance today, it is necessary to make a detour and
comment on the relation between genotype and phenotype, both for standard
Mendelian inheritance and for our imaginary “blending inheritance” model.  For
Mendelian inheritance, there is a natural distinction between genotype (the partial or
complete genetic specification of the organism) and phenotype (the partial or complete
specification of the characters or traits of the organism).  But, as we will see below, there
is no such natural distinction between genotype and phenotype for blending
inheritance.

Genotype and Phenotype

Although technically, genotype and phenotype refer to complete specifications of the
genetic (combinatorial) and phenotypic (potentially selective) properties of the organism,
they are commonly used to refer also to partial specifications. Thus, e.g., geneticists speak of
the AA, Aa , and aa   genotypes, referring to the genetic complement, the 2 alleles, at the A
locus, even though it is taken for granted that the genotype includes many other loci.  Simi-
larly,  they talk about the white eye vs red eye phenotypes in the fruit fly, Drosophila ,
although the flies' phenotypes have many other biochemical, morphological, physiological,
and behavioral properties.  This has the advantage that while two complete genotypes or
phenotypes are rarely identical, with less demanding partial specifications of one to a few
traits or loci, a number of individual organisms may fall under each of the relevant types.
This is an essential feature for statistical studies and for the reproducibility of results, though
problems can sometimes arise when the phenomena under study depend upon variations in the
unstudied traits or loci.

In what follows, where symbols are used to refer to genotypic or phenotypic
states, genotypes or their partial specifications will be given in italics (e.g., AA), whereas
the phenotypic characters they produce will be written in bold when referred to as a
character (e.g., A, for the dominant character and a for the recessive character produced
by this genotype). With Mendelian dominance, both the AA and Aa  genotypes will
correspond to the same phenotype, A. This forces a recognition of the distinction
between the two concepts, since phenotypically identical crosses (e.g., AA X AA vs Aa X
Aa or Aa X Aa), all appearing as A X A,  will produce different results in the offspring
phenotypes because of the different composition of the genotypes.  If the same
phenotypes yield different outcomes, there must be differences elsewhere, by the

                                                                                                                     
"panmixia" at the group level and blending inheritance at the individual level lead a whole
generation of our best population geneticists to build modeling assumptions equivalent to assuming an
unusually strong (even stronger than Darwin's!) form of blending inheritance at the group level in their
models of group selection.  They erroneously concluded that group selection was virtually impossible--
not too surprising given that their simplifying assumptions essentially simplified the groups out of
existence!  (For extensive discussion of this "migrant pool" assumption, as well as others and their
significance, see Michael. J. Wade, 1978, and W. C. Wimsatt, 1980b).
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principle "same cause, same effect"—or, more exactly, its modus tollens form, different
outcomes require different causes.6 1

To illustrate the point that there is no natural distinction between genotype and
phenotype in this blending inheritance experiment, consider the following model as an
interpretation of the process:  Start with an imaginary indefinitely large population of
beakers, each filled with the same volume of water.  In some of the beakers (a
proportion, p, of the total beaker population) a red dye is added producing a "red"
phenotype and the others (in proportion q = 1–p) are left clear, or "white."  We can
imagine that “mating” two beakers consists of mixing the liquid from the two parent
beakers and then redistributing the mixed liquid equally among the two beakers, which
are now called "offspring."  The parents in effect "die" when the offspring are born—a
useful simplification to avoid the complexities introduced by overlapping generations,
and which also guarantees both that there is no selection (no differential reproduction
or viability) and that the population stays the same size.  In this experiment, there is no
dominance, since the genotype-phenotype distinction of a mating between red and
white beakers (or, more generally of any mating) is a shade intermediate between the
parental shades—in this case an intermediate pink.  To put it in another way, this would
(in at least one respect) be a kind of special case of what quantitative geneticists call an
"additive trait," since the phenotypic trait (beaker color) is  a linear or additive function
of the number of genetic units (dye particles) contained in the beaker.  Thus in this
imaginary blending inheritance experiment, the mixtures of dye particles constitute
both the genotype and the phenotypes of the beakers in this population.

In Mendelian genetics, dominance and intermediacy (or additivity) represent
only two special kinds of cases of the relation between genotype and phenotype.  The
same genotype can also make different phenotypes in different environments.  This
effect is known by a variety of different names in different kinds of cases, including:

(1) (when the response is adaptive), (a) “environmental plasticity” or (b)
“phenotypic switching” (the latter when quite different phenotypic responses are keyed
by different environmental inputs early in development), and

(2) (when the response is not adaptive) (a) “teratogenesis” (when an
environmental input, commonly a chemical stimulus, leads a “normal”—this term is
misleading!—genotype to produce a phenotype commonly produced by a specific
mutant genotype) or (b) “deprivation effect” (when the absence of a factor normally
present in the environment leads to the loss of a normally present phenotypic capacity).

                                    
61In Darwin's time, no distinction was made between genotype and phenotype, so the way of
formulating genetic problems discussed in this section could not arise.  Indeed, the development of a
genotype-phenotype distinction was an important part of the conceptual development of classical
Mendelian genetics.  (Historically, this distinction required first the denial of the inheritance of
acquired characters, which Darwin and most of his contemporaries accepted, and second, the
distinction between germ-line and somatic cells and its consequences which came to be known, after its
promulgator, as Weismannism.)   Indeed, the name for the modern theory of evolution ("neo-
Darwinism") which has come to mean the fusion of Darwin's theory with the populational
consequences of Mendelian genetics, was first coined by G. J. Romanes as a term to describe Weismann's
theory of evolution in the 1890's—before the rediscovery of Mendelism.
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There is no general exhaustive classification for kinds of environmental effects,
since they are as varied and as complex as the variety of environments and the variety
of phenotypes.

Furthermore, the same phenotype can be produced by different genotypes in
the same environment (“genetic canalization”), or by the same genotype across
different environments (“environmental canalization”).  These effects are much more
common than were supposed by geneticists.  (They must be, since particularly in
sexually reproducing species, recombination is constantly producing new genotypes
(offspring) which are raised in new environments  but which nonetheless resemble
their parents in varied but readily recognizable ways.)  They are often ignored in
introductory genetics courses, being put off for more advanced developmental genetics
courses on grounds that they involve a variety of often unknown interactions among a
multiplicity of genes.  This is unfortunate, because they are very important.  These
kinds of stability of phenotypic traits are in fact required by evolution, which demands
significant heritability of fitness for systematic evolutionary change.  Thus, in Mendelian
inheritance, there are many different possible relationships between genotype and
phenotype, whereas in blending inheritance there is only the relationship of
intermediacy.

Suppose we (temporarily) ignore the effects of the environment (which plays a
crucial role in producing the phenotype), or control for its effects, by raising each of our
test organisms in the same environment or developmental sequence of environments,
then each genotype should correspond to a phenotype, but as illustrated in Figure 4-5
there can be mappings of arbitrary complexity between genotypic and phenotypic
states.6 2   In Figure 4-1, we have depicted three mappings between genotype and
phenotype for the simplest case of  just one-locus with two alternative alleles:

Figure 4-1. Genotype-phenotype mapping for 2 alleles at 1 locus.

The first two mappings we have already described: dominance and
intermediacy.  The third mapping labeled “arbitrary mapping” is but one of many
possible alternative mappings.  In this case it is called “overdominance,” because the
heterozygote has a more extreme value of the phenotypic property than the dominant
heterozygote. There are, however, no general names for the types of arbitrary
                                    
62The terms "map" and "mapping" as used here have nothing directly to do with the common genetic
use of that term to denote the location of  an allele or locus in a linkage map of a chromosome.  It is here
used to denote the  transformation through which a genotype (in the appropriate environment)
produces a phenotype.  This use is similar to that of Lewontin, (1974), chapter 1.
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mapping possible in multilocus cases, except that if the genotypic value at one locus has
an effect on the phenotypic mappings for another locus (because of interactions
between gene products) this is called epistasis.

We can also graphically represent the possible mapping relationships between
genotype and phenotype for the case where there are two alternative alleles at each of
two loci.  For the 2-locus case, we will consider 4 out of a very large number of the
possible mappings:  dominance at each of 2 loci, 2 kinds of intermediacy (one of which
is analogous to what we find in the blending case), and an arbitrary mapping.

Consider first the classical Mendelian case of 2 factors, A or a  and B or b, with the
capital letter denoting the dominant gene.  The results of selfing a double heterozygote
(or "dihybrid") genotype (AaBb) with independent assortment for the two factors and
Mendelian dominance for A and B are diagrammed in Figure 4-2 in a format we will use
for the next 4 cases.6 3   In Figure 4-2, we have represented a phenotypic space (the top
plane) and a genotypic space (the bottom plane).  The lines going from circles in
phenotype space to circles in genotype space represent a particular mapping from
genotype space to phenotype space and vice versa.  These correlations are the product
of the interactions of genetic and environmental factors in development, but we will not
talk about these causal interactions here.  For example, the circle labeled “4” in
genotype space is the genotype AaBb which is mapped into the circle in phenotypes
space labeled AB.  The mapping in Figure 4-2 indicates that phenotypically, A is
dominant to a and B is dominant to b.

                                    
63This form of diagram is suggested by figure 1, chapter 1 of Lewontin (1974), where the life cycle as
modeled in evolutionary genetics is represented as a series of mappings back and forth between
genotype space and phenotype space, represented as a pair of planes.  The diagram here differs from
Lewontin by including qualitative and quantitative information implied by Mendelian genetics.
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Figure 4-2. Mappings in genotype-phenotype space for 2 Mendelian traits.

We can also extract quantitative information from this kind of mapping about
both the ratio of genotypes and phenotypes of a large randomly mating population of
organisms.  First, there are four possible results of allowing a population of AA and aa
individuals to mate at random:  AA, Aa, aA, and aa.  But since Aa and aA are genetically
the same type, we have a 1:2:1 ratio of the genotypes AA, Aa, and aa  in a monohybrid
cross  (similarly for B).  These ratios are shown above the A genotypes and to the left of
the B  genotypes in the lower or "genotype" space of Figure 4-2.  Phenotypically,
however, since A is dominant over a, AA and Aa are both phenotypically observed as
A.  This is represented graphically in Figure 4-2 by lines connecting genotypes AA and
Aa with phenotype A.  This indicates that the phenotypic traits A and a occur in a ratio
of 3 : 1 for the dominant and recessive phenotypes.  This holds for the B locus as well.  

We can use Figure 4-2 and the 1-locus ratios to generate the genotypic and
phenotypic ratios for 2-alleles at 2-loci.  The genotype corresponding to a circle in the
genotype plane is obtained by combining the relevant A-locus genotype (in columns)
and B-locus genotype (in rows) for that circle.  Thus, the last circle to the right in the
bottom middle row is in the aa column and the Bb row, giving a genotype of aaBb.  The
ratio of each different genotype is simply the product of the row and column ratios for
that genotype's circle.  Doing this calculation for each genotype yields, in normal
reading order (left to right and top to bottom in the lower plane), the ratios:   1: 2:1;  
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2:4:2;   1:2:1 as illustrated by the number in each circle of genotype space.   The
phenotypic ratios of AB, AB, aB, and ab are easily obtained by summing the number of
lines leading from genotypic space to a type in phenotypic space in Figure 4-2.  For
example, there are four lines leading from different genotypes (i.e., AABB, AABb, AaBB,
and AaBb)  space into the phenotype AB.   The sum of these lines is 1 + 2 + 2 + 4 = 9.  If
we do this for each phenotype in phenotype space we get 9: 3:3:1 as the ratio of the
phenotypes AB, AB, aB, and ab.  In short, an account of the production of a ratio of
phenotypes produced by a mating requires two things: first, an account of the ratios of
the genotypes produced by a given cross, and second, a mapping from genotype space
to phenotype space, describing for each genotype which phenotype it produces.  From
these, we can derive the expected phenotypic ratios.  This figure is designed to visually
separate these two parts of the problem.

Keeping  Track of Genotypes and Phenotypes

We need to keep track separately of both genotypes and phenotypes in a problem such
as this, so the diagram represents the 9 possible genotypes in the lower plane.  The maximum
number of phenotypes these can produce is 9, and is represented by the circles in the upper
plane.  This is ignoring interactions with the external environment, the somatic environment,
and the environment composed of the rest of the genotype (Williams, 1966) or keeping these
constant.  Variations in any of these can increase the number of distinct phenotypes produced
by 9 genotypes.  The number 9 also assumes that each 2-locus genotype has 2 allelic variants,
and each different 2-locus genotype produces a distinct phenotype.

The phenotypic ratio 9:3:3:1 is often described as the ratio for 2 Mendelian factors
with independent assortment, but there are in fact two separate independence
assumptions required to produce this ratio of phenotypes.  One is statistical
independence of the factors in the production of gametes, such as would be the case if
the factors are found on different chromosomes; this is why this is described as
independent assortment.  Not usually noticed is another assumption—that there is no
epistasis, or interaction between  the genotypes at different loci in determining which
phenotypes are produced. This is a condition not on assortment, but on the nature of
developmental interactions which affect the structure of genotype-phenotype
mappings.  Neither independent assortment (the first independence assumption) nor
the absence of genetic interaction in the production of phenotypic characters (the
second independence assumption) has any necessary connection with the other.  Either
can be met or not independently of the other.  The second kind of independence is not
entailed by Mendelian dominance, though it is by the stronger condition that the
dominance relation is independent of the genetic (and environmental) contexts in which
the locus finds itself.  We will see a case below where this assumption is violated.  (Some
of these interactions with the genetic, somatic, and environmental contexts, particularly
the somatic and environmental ones, are termed penetrance, rather than epistasis,
though the distinction is somewhat arbitrary.)
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The next case we will consider violates Mendelian dominance, though Mendel
himself noted a case like this in the inheritance of flower color in peas.6 4

Historical Note on Dominance and Mendel's Experimental Design

Mendel himself never spoke of dominance as a law or law-like relation.  The
perception that he did was promulgated by William Bateson.  (Perhaps he should be called
"Mendel's bulldog"—he surely played a similar role in the propagation of Mendel's ideas, as
Huxley--"Darwin's bulldog"--did for Darwin).  Bateson was an ardent advocate of Mendelism
after Mendel's results were rediscovered and made public in 1900.  He spoke of dominance as
Mendel's "third law" (with segregation in the F2 and independent assortment being the first
and second).   The evidence is very strong (both from a close reading of his original paper, and
from other sources—see Robert Olby's excellent book, The Origins of Mendelism ) that Mendel
picked character pairs that showed a dominance-recessive relation in their inheritance
rather than intermediacy (or any other pattern) so that the phenotypes he observed would be
more readily and unambiguously classified without error.  (With two readily distinguishable
phenotypes, rather than three, with the third intermediate between the first two, there
would have been much less chance for misclassification due to environmentally or
genotypically induced overlapping phenotypic distributions.)  Mendel is obviously worried
about this possibility, as he explicitly talks about the importance of selecting characters
whose expression is relatively insensitive to variations in environmental conditions.  The role
of dominance for Mendel thus seems to have been as an essential part of his experimental
design, rather than as a claim that inheritance patterns were generally like that in nature,
and he never claimed that all or even most characters showed the dominance-recessive
pattern of the characters he studied.  Mendel says that he chose 7 out of 22 traits of his peas as
suitable for his experiments.  We don't know what patterns of inheritance these other traits
would have shown, but it seems likely that many of them would have been polygenic,
epistatic in their effects, shown substantial genotype-environment effects, closely linked, or
had other characteristics which would have made them much harder to analyze.  Many of
the more complex interactions (e.g., epistatic ones) were likely eliminated in Mendel's search
for characters which were relatively insensitive to environmental effects--a remarkable
unanticipated benefit of his experimental design.  Darwin argued (only partly incorrectly)
that the characters important for evolution did not show a dominant/recessive pattern, but
showed blending or intermediacy, and would have been happier with one of the following two
kinds of intermediacy described below.  Ironically, Bateson's formulation of the "law of
dominance" was taken as essential to Mendelism, and its easy and early refutation in the first
decade of the 20th century was  given as a reason to reject or to modify the theory—something
which would not have been necessary for Mendel's original formulation.

                                    
64Mendel, (1866) in the Harvard reprint of Mendel's paper.
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Figure 4-3. Intermediacy mapped in genotype-phenotype space.

In the first kind of intermediacy to be described here, each heterozygote (Aa and
Bb) has a phenotypic character state exactly halfway in between the character states
found for the two homozygotes at that locus (AA and aa, and BB and bb, respectively),
but the two loci code for different phenotypic characters—e.g. (no longer following
Mendel), plant height, and flower color.  (Suppose that in this case, AA  → 6 ft., Aa → 4
ft., and aa  → 2 ft.; and BB  → red, Bb → pink, and bb → white.) In this kind of case, the 3
genotypes at each locus are distinguishable, and there are 9 different phenotypic states
produced by the 9 different possible genotypes.  This is a special case, in that each
genotype codes for or maps to a unique phenotype, as is suggested by the different
cross-hatchings for the 9 circles in the phenotypic plane of Figure 4-3.

At times in the past history of genetics, this kind of 1-1 mapping between
genotype and phenotype has been supposed to be a common situation.   (See
Lewontin, 1974, chapter 2.)   Following the development of gel electrophoresis as a
technique for discovering (enzyme polymorphism) variability in apparently
(macroscopically) phenotypically homogeneous natural populations  (see Hubby and
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Lewontin, 1966, and literally hundreds of studies since), this view can no longer be
accepted—at least for macroscopically characterized phenotypes. Whether such enzyme
polymorphisms have subtle fitness effects in the same or in different environments and
thus need to be counted as different phenotypes, or whether they are actually or
approximately adaptively neutral is currently unknown in all but a very few cases.6 5

In the second kind of intermediacy we will consider, the alleles at both loci
contribute to the formation of the same character, producing a mapping like that
illustrated in Figure 4-4.  This is a particularly important case for us, because with many
factors or genes contributing equally to the same character it is possible to explain the
Mendelian inheritance of a quantitative trait.6 6   This is a common situation where the
rate of production of an enzyme, affected by the number of genes coding for that
enzyme, affects the magnitude or intensity of the phenotypic character.  In the case
diagrammed below, there are 5 character states, where, in effect, the number of capital
letter genes in the genotype determines the phenotype produced.  (With 2 alleles at 2
loci there can be from 0 (in the case of aabb) to 4 (for AABB) capital letters.) This case is
also interesting for its consequences for the ratios or distribution of phenotypes
produced.  In this case the ratio is 1:4:6:4:1; these are also the binomial coefficients for
the binomial expansion (p + q)4, which means, as explained below, that this is the
expected proportion of types found in the second generation under blending
inheritance where the two parental types (red and white) start out in equal proportions
in the population.  In Figure 4-4, the resulting phenotypic state is indicated by the shade
in the phenotypic circles.

                                    
65See Hartl (1988) chapter 1 for a summary review of findings.
66See Hartl, 1988, chapter 4.
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Figure 4-4.  Mapping in genotype-phenotype space where 2 loci contribute equally to a single trait.
Shade indicates magnitude or intensity of the trait.

Corn and Melanin Production in Humans

The situation depicted in Figure 4-4 is like that found for the inheritance of coat color
in grains of wheat (where 2 loci are involved); in corn (a historically important case first
studied by E. M. East, where it is now known that 3 loci are involved); and for melanin
production in humans, where it affects both skin color and (the biologically relevant factor)
resistance to skin damage from ultraviolet radiation in sunlight (where it is estimated that 5
loci are involved—see Jacquard, 1976).  East's work was crucial to the ultimate reconciliation
of Mendelian and Darwinian views by demonstrating that Mendelian inheritance was capable
of explaining the behavior of so-called quantitative traits which blending inheritance had
been invoked to explain.  See Provine, 1971.
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Figure 4-5. Arbitrary mapping in genotype-phenotype space.

The last case we will discuss is perhaps (in theory, or on a priori grounds) the
most general kind of case, where the mappings from genotype space to phenotype
space are quite arbitrary.  In Figure 4-5 (which does not correspond to any known
case), 5 qualitatively distinguishable phenotypes (indicated by the different fill patterns
in the phenotypic circles) are produced in the ratio  8: 3:3:1:1.  This kind of mapping is
the most general in the mathematical sense in that there are no assumed constraints on
the kinds of mappings between genotype and phenotype.  This case shows a great deal
of epistasis, or gene interaction, where the phenotype produced by the genetic
specification at one locus  depends upon or varies according to the genetic specification
at the other locus.  (It is qualitatively the most common kind of mapping  one would
get by randomly drawing arrows from genotypic to phenotypic circles.)

This does not mean that this is the most biologically general or common kind of
mapping, since there may be biological constraints, of a biochemical, developmental, or
evolutionary character (and these are not exhaustive) which makes certain kinds of
mappings more likely or plausible in certain circumstances.  Thus, for example,
standard biochemical accounts of the action of enzymes which suppose that a
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phenotypic trait results if more than a threshold amount of an enzyme is produced will
generate a dominant-recessive pattern of inheritance (with A dominant over a) if the
ratio of enzyme produced for the three genotypes AA, Aa, and aa is 2:1:0.6 7

Similarly, Fisher argued that dominance will evolve and be selected for as a
means of protecting against the expression of deleterious mutations (so that most new
mutations will be recessive, and will not be expressed when rare).  Wright and Fisher
argued over the reasons for the evolution of dominance. The point here is not to decide
who was right, but to point out that there may be evolutionary constraints or
tendencies favoring different modes of gene expression.  Lewontin's (1979)
requirement of quasi-independence, together with the arguments  of Charlesworth
(1989) on the evolution of mimicry, could similarly be seen as an argument that long-
range selection on the architecture of gene-expression favors some local but not too
much global epistatic interaction, i.e., epistatic interactions among relatively small
clusters of genes (particularly those contributing to the construction and fine tuning of
particular adaptations) but not general epistasis involving interactions among a large
proportion of genes in the genome.6 8

Finally, various developmental constraints on evolution suggest that genes
expressed earlier in development will tend to have larger effects, and mutations in them
will be more likely to be deleterious, resulting in greater evolutionary conservatism for
such traits.  This is supported by a variety of experimental, observational, and
theoretical considerations, and has a variety of consequences for the characteristics of
evolutionary change and selective constraints on the architecture of genetic
developmental programs (Arthur, 1984, 1987, 1988; Wimsatt 1986; Schank and Wimsatt,
1988; Wimsatt and Schank, 1988).  It is too early, however, to say how or whether these
considerations will translate in detail into the character of genotype-phenotype
mappings of the sort discussed here.

                                    
67For example, if A produces a functional enzyme and a does not) and the critical threshold amount of
the enzyme is between 0 and 1.  If the threshold is between 1 and 2, there will also be dominance, with a
dominant over A, and if the phenotype is proportional to the amount of enzyme, there will be intermed-
iacy.  Thus various supposed modes of biochemical interaction can produce various inheritance patterns,
including also various types of epistasis, which will not be discussed here.
68See  Kauffman (1991) for a general theoretical argument, and simulations to support this conclusion.
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Fleeming Jenkin’s Review of Darwin’s Origin of Species

In 1867, a Scottish engineer, Fleeming Jenkin, published in the North British Review
an extended discussion of the 5th edition of Darwin's Origin.  Jenkin's review was, by Darwin's
own admission, perhaps the most  searching critical review his work received—and was most
penetrating on two points:  First,  arguments from the best physics of the day applied to the
rates of cooling of the sun and earth suggested that there were not billions, but only a few
(estimates ran from 3 to 100) million years for the evolution of life on earth, before which  the
earth would have been too hot.  These arguments were due to Jenkin's friend, Lord Kelvin (Sir
William Thompson, with Maxwell, one of the two greatest English physicists of the 19th
century), and seemed very compelling to Darwin's contemporaries.  Only the subsequent
discovery of radioactivity (in the 1890s) and nuclear fission and fusion gave time estimates
consistent with what we know today.  Secondly, Jenkin’s pointed out that if one assumed, as
Darwin did, that the offspring traits were the average of the parental traits, there would be
no way for a superior mutant to pass on its superior trait undiluted.  Furthermore, he argued
that if a mutant were rare, even if it was much fitter, intense (viability) selection would sti l l
leave it more likely to perish without descendants—anticipating modern conceptions (due to
Sewall Wright) on the role of random genetic drift in the loss of rare favored alleles in
evolution.  Third, he argued that with the superior mutant's advantages rapidly diluted out
in its descendants, the outcome would be that the whole population would move but an
infinitesimal amount in the favored direction.  As he put it, the major fitness advantages of
even a highly superior mutant, if rare, would be overwhelmed by the far greater numbers of
average organisms.  Each bit of supposed added superiority could be readily outweighed by
adding just a few more average organisms, so the magnitude of a mutation had little moment
for its ultimate effect on evolution.   

 This was (and still is) a telling criticism;  63 years later in 1930, Sir Ronald Fisher,
one of the 3 founders (with Wright and Haldane) of the modern mathematically based
population genetic theory of evolution, began his major work, The Genetical Theory o f
Natural Selection, with a consideration of blending inheritance. He argued that with it, a
randomly mating bisexual population would lose half of its variation (literally: half of its
variance) in each generation.  But Fisher had just proved his "Fundamental Theorem of
Natural Selection"—that the rate of evolution was proportional to the (additive) variance in
fitness. This meant, in the absence of any source of new variation, that evolution would go as
far in one generation as it would in all successive generations, in accordance with the series 1,
1/2, 1/4, 1/8, … .  Similarly, even if variation were being produced anew in each generation a t
a rate V, blending inheritance alone would prevent accumulation of more than twice tha t
amount--limiting evolution to a relative snail's pace. (See Wimsatt, 1980b for further
details.)  Jenkin's critiques— basically that Darwin had far less time than he thought, and
his favorite horse was lame to boot, lead Darwin to depend more and more on the inheritance
of acquired characters to speed up the acquisition of new variation, so that evolution could
proceed more rapidly--an erroneous move.  It was not appreciated until after 1908 (and the
formulation of the Hardy-Weinberg equilibrium principle) that Mendelism provided a way
out—that at least for a 1 locus trait, under certain assumptions (see, e.g., Hartl, 1988, Ch. 1,
pp. 23-28) the population went in one generation to an equilibrium level of variance, and did
not lose any more thereafter due to a balance between Mendelian segregation and the
formation of heterozygotes. Jenkin's mathematical sophistication in reasoning about heredity
and evolution were unparalleled, except perhaps by Galton, in the 19th century.  But perhaps
this is not too much to expect from an engineer who played a significant role in laying the first
transatlantic cable, helped to promulgate the acceptance of reforms which for the first time
placed the teaching of basic science in the engineering curriculum, and first developed
graphical methods for the solution of supply and demand curves in economics.  Jenkin's review
is reprinted in D. L. Hull, ed., Darwin and His Critics, Chicago: University of Chicago Press,
1987.  For more on the age of the earth controversy, see J. Burchfield, Kelvin and the Age of t h e
Earth, Chicago: University of Chicago Press, 1988.
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Investigating the Consequences of Blending Inheritance

In this section, we will use the binomial distribution to construct a model of
blending inheritance.   The mode of presentation in this module is much more
structured than with your investigations of the logistic and other growth equations, or
the standard investigations characteristic of other BioQUEST modules, or supported by
the "3P's" philosophy.   Investigating a fundamentally false model like this one involves
perhaps a 4th P—exploring Possibilities—which is ultimately usually in service either of
the 1st P (problem-posing and formulation, because it helps to suggest useful questions
to ask), or the 3rd P—persuasion.   (Persuasion in science almost always involves a
comparative judgment of the merits of alternative competing accounts, all but one of
which have to be at least partially wrong--and not too infrequently, all of the posited
alternatives are wrong.)  We must explore possibilities part because we are
investigating a false theory—and as a result there are no given standard models, and no
data in the literature to use as a check on our speculations.  Since we cannot depend on
the structure of the real world to guide our investigations, and we want to convince
you of the value of investigating the behavior of a fundamentally incorrect model, you
will have to indulge our conceptions of what we can get out of it.

There are no texts on model building which have exercises like this one, so
follow our lead, and then perhaps this investigation can act as a paradigm for parallel
investigations of your own.  This investigation has the added benefit that it both aids in
the understanding  of a historically important—indeed centrally important
dispute—and has important implications for current models of inher-itance used in
models of group selection, cultural evolution, and problem-solving in artificial
intelligence.  

This simulation experiment of blending inheritance and its writeup consists of
three parts.  In the first, you are asked to do some things which familiarize you with the
ideas behind the experiment and with the binomial distribution.  It is useful to do these
before you do the simulations on the computer.  In the second, you will do the
simulations on the computer and record the results.  This involves copying plots
generated for different simulation experiments.  In he third part you will be asked to
analyze the data,  comment on their significance for Darwin's theory, and discuss ways
in which Darwin could have avoided or minimized the effects of the conclusions
pointed to in Fleeming Jenkin’s review.

Basic Description of the Model

To see what blending inheritance does to the amount and nature of variation in a
population, imagine a physical analogue for a model population with "blending"
inheritance:  this is a population of indefinitely large size (so there will be no "sampling
error" effects) which consists equally of beakers of clear (W) and red-colored (R) water.
A mating is a thorough mixing of the contents of two beakers, which is then
redistributed equally between them.  Thus there is no mor-tality,  differential
reproduction, or change in population size--hence no selection.  Since two beakers are
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involved, mating is biparental, but since any two beakers can mate, we have to assume
either that the sex of the mating individuals doesn't matter, or that there always happen
to be enough beakers of both sexes that no beaker has trouble finding a beaker of the
opposite sex.  This implies that there are no excess males or females, so that everyone
can mate.  (It also implies that there is an even number of individuals in the population.)
Matings are assumed to occur through random choice of beakers (thus, no assortative
mating, i.e., "panmixia" is assumed) so that the frequency of any type of mating is
simply the product of the frequencies of the two mating types involved.6 9

Building a Binomial Distribution Model of Blending Inheritance

Consider the binomial expansion for (p + q)m.  When this formula is expanded
and multiplied out we get:

(p + q)m  =  pm  +

mpm-1q1 +

[m(m-1)/(1•2)]pm-2q2 +

[m(m–1)(m-2)/(1•2•3)]  pm-3q3 +

 …+

[m(m–1) … (m – (m – 2))/(1 • 2 • 3)•…•(m-1)] p(m-(m-1)q(m-1) +

qm.

Note that, because of cancellations in the exponents (e.g., m-(m-2) = 2), and in the
numerators and denominators, the next to last term is just = to mp1qm-1, and is
symmetric with the first term.  Similarly, the next to last term is symmetric with the
second term, and so on.

This expansion has three important characteristics.  

• First, it has m + 1 terms.  

• Second, the coefficients of p and q in these terms (called binomial
coefficients or combination numbers) are denoted by  C(m, 0), C(m, 1), ... ,
C(m, k), ..., C(m, m –1), C(m, m). C(m, k) is the number of different
collections of k objects one can get from a collection of m objects (if one
draws them k at a time and replaces them before the next draw).7 0

                                    
69If the population size were finite instead of indefinitely large, the product of the frequencies would
give the expected frequency of that mating combination, rather than the actual frequency.
70Note that for each draw of k objects, one is also leaving behind m-k objects, so the only difference
between draws of k objects and m-k objects is in which are picked up and which are left behind.  Thus
there should be the same number of combinations for draws of k objects as for draws of m-k objects, or in
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• Third, and this is especially important for modeling blending
inheritance, if we suppose that p + q = 1, then (p + q)m = 1m = 1.  

In this special case of the binomial expression let us make the following
assumptions:  (a) Let p be the proportion of red beakers in the original population. (b)
Let q be the proportion of white beakers in the population.  (c) Since any beaker is
either red or white—no beaker can be both (exclusivity) or neither (exhaustiveness)
—then p + q = 1.  (d) Claim:  If we start with pure red and pure white beakers in any
given proportions, the behavior of this population in a blending inheritance model is
given by the binomial expression for (p + q)m where m = 2G, where G is the generation
number (G = 0 at the start).  Then  the following correspondences hold between the
binomial distribution and the imaginary case of blending inheritance:

• There are 2G + 1 types in the Gth generation.

• The powers of p and q in the terms give the relative proportions of R
and W   in that term.  Thus the 4th term in the third generation contains
the expression p5q3, and corresponds to the type R5W3.

• Evaluation of a term in the binomial expression gives the frequency of
the corresponding type.  Thus, for p = q = 0.5, the 4th term in the
expansion for G = 3 has the form C(8, 3)p5q3, and gives the frequency of
type R5W3 (having proportions  .625R and .375W), which is 0.2187.

• The types in the G-th generation are spaced at intervals of 1/ 2G of the
total or are 100/ 2G% apart in composition.

• The sum of all of the proportions of all of the types for any generation
is 1.

The binomial distribution for any given generation thus contains all the
necessary information on the number, composition, and relative frequencies of types
produced in that generation from a blending inheritance process with initial
proportions p and q of R and W beakers.  In successive generations, you are in effect
squaring the distribution of types produced in the last generation.  So starting with a
distribution (p+q) of types in the 0th generation, we get (p +q)2 types in the 1st
generation, ((p +q)2)2 = (p + q)4 types in the 2nd generation, (((p + q)2)2)2 = (p + q)8 types
in the 3rd generation, and so on. This is why m in the G-th generation = 2G.

As noted above, with this blending inheritance model, there is no natural
distinction between genotype and phenotype, since both genotype and phenotype
correspond to the amount of red-making material (or proportion of dye particles) in
the beakers.  In effect, we are choosing as our phenotypic property the visible

                                                                                                                     
general, C(m, k) = C(m, m-k). You can see this for the first and last terms, where the coefficients are 1
(since there is only one way of drawing no objects or all of the objects).  You can also see this for the
second and next to last terms if you cancel out like terms in the numerator and denominator of the
coefficient for the next to last term.
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genotype—the shade of the water in the beaker, which is a direct product of the density
of genetic units (dye particles) in the mixture.  In this experiment, there is no
dominance, since the genotype-phenotype of a mating between red and white beakers
(or, more generally of any mating) is a shade intermediate between the parental
shades—an intermediate pink.  To put it in another way, this would be a kind of special
case of what quantitative geneticists call an "additive trait," since the phenotypic trait
(beaker color) is a linear or additive function of the number of genetic units (dye
particles) contained in the beaker.

Simulating Blending Inheritance with the Binomial Model

Doing the Blending Inheritance Simulation

In your writeups of exercises 1–4 below you should include all the graphs you
generated using Blending Inheritance.  Be sure to do these four exercises before
proceeding on to the final section, since the exercises in the next section presuppose that
you have done these exercises and read the material in the boxed texts.

The program you will use calculates the relevant values for the binomial
distribution (p +q)m.  Open the program call Blending Inheritance as described in
Appendix A.   Double click the blending inheritance icon, go to the Simulation menu
and select “Initialize & Plot.”  You will then see a dialog box that look like Figure 4-6.
Character x is a variable in this simulation.  In all simulation experiments the
distribution of phenotypes resulting from the crosses of beakers is determined by
setting character x to the red beaker type.  Thus the frequency p of character x in the
population is the frequency of red beaker types.  And so the frequency of white beaker
types is 1 – p  = q.

Figure 4-6. Parameter settings upon opening Blending Inheritance.
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Change the last generation to 2 (i.e., in Figure 4-6 start should be set to 1 and
stop to 2 when you are finished) as shown in Figure 4-7 and click on the OK button or
hit the <Return> key.

Figure 4-7.  Parameter settings for two generations of blending inheritance with the
starting frequency of character X (e.g., Red) set at 0.5.
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Investigating Blending Inheritance with the Binomial Model:
Exercises

Exercise 1: Type Distributions under blending inheritance
for Different Initial Frequencies in Successive Generations

Do runs for p =  0.5,  0.75, 0.9, and 0.95 for generations 2 through 7.  We assume that by now
you know what will happen in the first generation; you may go further if you wish.7 1     You
can resize the resulting graph, apply grid lines, include or remove lines connecting points, and
change point size as described in Appendix A--the "How To" manual.  Use Copy from the
Edit menu to copy the graph so that it can be pasted into another program, or save it as a
PICT directly if that better meets your needs, or you can print it out directly.  See the "How
To" manual for more details.7 2   Next, go again to the Simulation menu and select the menu
option Variance. This will plot a distribution of the contribution of variance of each character
type in the population relative to its frequency.  Copy this graph as you did with the
binomial graph.  There are two other plotting options under the Simulation menu:
SumOfVar and SumOfBinomial Choose both of these options and save or copy and paste the
resulting graphs to the scrapbook.   

Variance and the Binomial Distribution

Recall that the variance of a population is a statistical measure of variation and is
defined as the sum of the squared deviations from the mean of a character times its frequency.
We have assumed that White from Pink  to Red can be measure on a scale from 0 to 1, where 0
is White, Red is 1, and x, the degree of Pink, is some number between 0 and 1, depending on how
much red is in it.  f(x) is the frequency of type x.  Thus the variance plot shows the contribution
to variance f(x) x (µ – x)2, where µ is the mean, for each of the 2G + 1 values of x, from x = 0 to x
= 1 in the binomial distribution for generation G.  The SumOfVar option under the  Simulation
menu provides a cumulative total, starting at the leftmost class (which is all "red") of the
variance contribution of different phenotypes in the population.  The last plot point in the
distribution is therefore the total variance in the population for generation G.

                                    
71Note that by looking at the grid after you do this run, the setting of the y-scale will be normalized
such that the highest point plotted will be at the 10th division.  Thus the spacing between y-scale
intervals is 1/10th of the high point.  This allows you to get out a more accurate reading of the value of
that point (important for your work with the sum of variances).  You may also want to set the x-
increment to some decimal value for convenience.
72For example, it can be copied and pasted into the scrapbook, into word processing programs such as
MacWrite or Word, or graphics programs such as Super Paint.  If you have a scrapbook in the apple ( )
menu, then it will be convenient to paste your figures into the scrapbook for later use when you are
writing up the results of these simulation experiments.
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Exercise 2:  Changes in Variance under Blending Inheritance

From these runs, can you give (or guess) the equation for the sum of variance as a function
of  frequencies p and q (which = 1-p) and generation number, G?  Try out your guess for at least
2 other values in that interval.  (If you do the values .4, .6, .7, .8, you should have with the
preceding values more than enough for a guess.)  Is your function symmetric?  Should it be?   
Under what condition(s) is it equal to zero?  Tabulate and graph your values (a) for 0 ≤  p ≤ 1
in a given generation, and (b) for generations 1-10 for p = .5.  (You can use the autoscale feature
and the vertical grid readout to get accurate readings for sum of variance if you manipulate
plotting options so that value is the maximum value plotted.)  Show by substitution in your
equation how you can get two of the values you got in the simulation from your equation.  I f
you have a book on population genetics (e.g., Hartl, 1988, or Crow, 1986) look up the formula
for the change in gene frequency (∆p or ∆q) per generation with two alleles at one locus.
What does that formula and the formula you derived for variance above have in common?
What do you make of the similarity you find?  Look up the formulas for the variance of the
binomial and the normal distributions in a statistics textbook.  How do you explain the
similarities (and the differences)  between the formula here and those formulas?

Exercise 3:  Comparing Blending and Mendelian Inheritance
in the First Generation

Demonstrate that the first mating (at random, with a pool of 50% R and 50%W beakers)
will produce the offspring proportions:  25%RR:50%RW:25% WW .  Hint:  do a "Punnett
Square" (see the box below) with the different possible parental mating types and their
frequencies arranged along the top (for columns) and side (for rows).  The offspring proportions
can then be obtained by calculating the frequencies in each cell as the product of the
appropriate row and column frequencies, and summing the frequencies of like types.  Assume,
in this and in subsequent generations, that a "type" is a given proportion of R and W water, so
that RW, RRWW, RWRW, RRRRWWWW, . . . are all of the same  type (R1W1), RRRW,
RWRR, RRRWRRRW, RRRRRRWW, are all of the same type (R3W1), and so on.

Do these offspring proportions differ in the first generation from what Mendel would
have obtained with his "particulate inheritance" theory for a 1 factor cross if R were a
dominant (and W a recessive) allele at the same locus?

What if he were looking at a case which showed perfect intermediacy of the
heterozygote rather than dominance, i.e., if RR = red, RW = pink, and WW = clear or white?  

What would have resulted on Mendel's account in the 1st generation from a two-factor
model, starting with mating types RRRR and WWWW, and with perfect intermediacy so
that RRWW = RW = pink?  Assume in this case and below that both factors code for flower
color, and that his law of independent assortment holds.  

Optional:  What would he have obtained in the 2nd generation:  (a) with a random
mating population composed of all of the 1st generation offspring, and (b) with 2 parents who
were both double heterozygotes (RWRW). Do you know enough to answer this question?  See
the following 2 pages.
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Note on Using Punnet Squares:
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Figure 4-8.  Two examples of Punnett Squares in Mendelian genetics.

In Figure 4-8, two examples of Punnett Squares are provided for 2 alleles at 1 locus and 2 alleles at 2
loci.   In the 2 alleles at 1 locus case, we have two alleles, A and a, occurring with frequencies p and
q, respectively.  Columns represents the gametic contribution by males and rows represent gametic
contribution by females.  The genotypes of offspring in the next generation are determined by
combining the possible gametic contributions of males and females which result in three genotypes:
AA, Aa, and aa.   The frequency of these genotypes is determined by multiplying the row frequency
by the column frequency for each of the four cells and summing across identical genotypes.  This
results in genotype frequencies of p2, 2pq, and q2, the Hardy-Weinberg equilibrium proportions for
the AA, Aa, and aa  genotypes.  The ratio of these three genotypes when all gametes are equally
frequent reduces to the familiar Mendelian 1:2:1 pattern as can be seen from the Punnett Square.
Similar points can be made for the 2 alleles at 2 loci case in Figure 4-8.  (One must be careful,
however, for the 2 allele at 2 locus case:  One can use Punnett Squares to determine genotypes from
gametic types under random mating, but one cannot determine gametic frequencies from genotype
frequencies without knowing  the linkage relations of the alleles.  Even the case of unlinked loci
contains a provocative surprise, in that one does not go immediately to Hardy-Weinberg
equilibrium for 2 loci in 1 generation, because of the constraints implied by haploid gametic and
diploid genotypic packaging.  See the discussions in Hartl (1988) or Crow (1988), and the
"recombination worksheet" on the next page.)  Also notice that the “Punnett Square” as a strategy
for calculating the genotypes of offspring in the next generation and their frequency applies equally
well to the case of blending inheritance, since a Punnett Square uses only gamete types and their
frequencies.  In its most general formulation, it is basically a computational tool for determining and
calculating the frequencies of a large number of distinct possible compound events, each of which is
composed of two simpler events.  Taking the probability of the compound event to be the product of
the probabilities of the simpler events amounts to assuming that their probabilities of occurrence
are independent, and using the multiplicative rule for compound probabilities.
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Recombination Worksheet:  2 alleles at 2 loci

gametic   types:

The 4 boxes along the reverse diagonal are the only cases in which new 
gametic combinations can be produced through recombination.  For all 
other boxes, the recombination products are the same as the inputs to 
recombination.  The signs in the boxes indicate the direction of change 
towards Hardy-Weinberg equilibrium produced by recombination events in 
these boxes, assuming that the population starts out composed completely 
of AABB and aabb genotypes.  Where x and y are the frequency of the two 
gametes in the genotype, the frequency of recombinants from that genotype 
is xyr, where r is the recombination frequency. If p =f(AB), q = f(ab), r = f(Ab), 
and s = f(aB), then H-W equilibrium occurs when pq = rs.
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Exercise 4:  Comparing Blending and Mendelian Theories
in the Second Generation

2. What will the 2nd generation produce with the blending inheritance model?  Do a
Punnett Square again, remembering that you now have to consider all possible matings
among 3 types.

a. List the types produced.  How many are there?

b. What are the frequencies of these types?

c. What are the ratios of the types if p = q?  (Let the rarest type be 1, with other types
scaled proportionately.)

d. Do these offspring types and proportions differ from what Mendel would have
obtained with his "particulate inheritance" theory in the 2nd generation starting with 1
segregating factor?  What are the differences?

e. Optional:  Could Mendel have captured the 2nd generation results if he had been
allowed to construct a 2-factor model?  What proportions of the mating types would h e
have to assume in the 1st generation to do so?  Could this 2-factor model simultaneously
explain both the 1st and the 2nd generation results for the same mating conditions
assumed in the blending inheritance model?  Why?  (It will help you to think about this
question if you do Punnett squares for the 2nd generation for both blending inheritance and
for the 2 factor Mendelian cross and compare the results.)

Further Exercises and Analysis

After you have written up you answers to exercises 1–4 you should be well-
prepared to discuss more general issues about the implications of blending inheritance
for evolution and the role of idealized assumptions in biology. Therefore, you should
be ready to discuss and analyze the following questions:

5. Describe what happens in successive generations. How is it the same and how does it
differ for the two frequencies that you chose?

6. How do these results raise problems for Darwin's theory?  Do they confirm Jenkins'
criticism of blending inheritance?  (For further work on this you might want to read
Jenkins' review.)

7. This experiment involves a number of idealized assumptions which would not
generally be true  for populations in nature (even if they did have a blending mode of
inheritance.)  Here are 4 which would have been  relevant in Darwin's day, and a 5th
which would occur to modern ecologists of demographers. Consider whether relaxing
or modifying these assumptions has any effect on the outcome, and particularly,
whether Darwin could have used this to make at least a partial counter argument to
Fleeming Jenkin.
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a. This model assumes an infinitely large population, so that the frequencies of the
types are actual frequencies, rather than expected frequencies.  What effects would
sampling error due to a finite population size have on these results?  You can
describe these qualitatively, though this is a difficult question unless you know some
probability or statistics.

b. All of the effects in this model are due to blending inheritance.  No provision is
made for selection. If selection is incorporated into this model could it be made to
oppose the effects of blending inheritance?  For example, what would happen to the
population in successive generations if RW were lethal or sterile?  How does the
outcome of this differ if in the two cases first, p = q = .5, and p ≠ q? (Think about this
carefully--there’s more than immediately meets the eye.) This mimics the effects of
an important mechanism of species isolation. Could selection be made to worsen the
effects of blending inheritance? What if there is "stabilizing" selection with fitness
highest at the mean?

c. This model assumes that organisms (or beakers!) mate randomly--the so-called
"panmixia" assumption.  What if they did not do so?  Suppose that there were a
strong tendency for organisms to select organisms like themselves as mates
(assortative mating)?  Suppose that there were a strong tendency for organisms to
select organisms unlike themselves as mates?  Would either of these have helped
Darwin?  There are other processes in nature which don't depend upon mating
preference but which have the same effect.  Suppose that the species is subdivided
into populations which are relatively homogeneous, and that the probability is
much greater that organisms will mate with others in the same population than with
"outsiders."  Or suppose that the species has a large range (say from north to south),
that one extreme variant is found at the north and the other is found at the south,
and that individuals migrate freely, but that the 1-generation migration distance is
much less than the species range (mating is assortative by distance).7 3

d. Suppose that new variants are produced through spontaneous mutation.  What
kinds of assumptions would you have to make about the mutations if they are to
oppose the effects of blending inheritance?  Are these assumptions plausible in the
light of Jenkins' criticisms?

e.  What if organisms don't die when they produce offspring, but continue to
survive to produce one more generation (a so-called "overlapping generations"
model)?  Consider two different cases: (You may limit your consideration to
qualitative effects--detailed predictions are not necessary, though you can construct
such a model if you like.)  (i) suppose they stay mated for life, and thus produce the
same genotypes or phenotypes in successive generations.  (ii) suppose they mate at
random anew each generation, with no bias toward mating with same-generation
organisms.  Assume that two offspring are produced by each mating in whatever
generation.  Once you've got this down, suppose they survive and mate for n
generations?  Suppose they are immortal?

                                    
73This range difference in phenotype or genotype is called a "cline".  Such differences are usually
maintained by selection for locally optimal phenotypes, and opposed by random migration of
individuals from regions where other phenotypes are favored.
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(8) How good is the beaker model as a model of blending inheritance? Assume that
there is about an Avogadro's number of molecules of water in each beaker (that's 6 x
1023.)  Suppose that there are a finite number of dye particles, say 1018, in each red
beaker.  How many generations would be required to show that inheritance in the
beakers is not truly blending but that the number of dye particles is truly quantized?
Would this be a plausible experiment to do, i.e., do you think that practically one could
get data in this way which would produce an unambiguous result?  If not, why not?
Consider (a) distinguishability of types, (b) No.  of beakers required.  Using the formula
for variance you derived above, can you estimate the variance in this generation, (a) if p
= .5; (b) if p = .01?  (Express your results in terms of the formula rather than calculating
them out.)  Could you modify this experiment to use fewer beakers and tell if the
number of states was much larger than the number of beakers?  

(9) Suppose that one had a Mendelian genetic system for height determination
involving 10 loci, each of which could have a "tall" or a "short" gene for each of its 2
alleles, and such that the height of the organism was a linear or additive function of the
number of "tall" genes it had.  Could you tell from the behavior of the system under
various conditions that you could set up that this was a Mendelian or a blending
system?  How?  (There is more than one way.)  What would you have to assume about
the effects of the environment on height in order to get a clear answer using this
method?

(10)  Optional:  If you know something about probability distributions, explain how you
can get the normal distribution and Poisson distribution as limits of the binomial
distribution.  Demonstrate distributions which get successively closer to these limits
using the program.

Projects Involving Current Disputes

(11)  Discuss the "migrant pool" assumption and its effects on the efficacy of group
selection in models which assume it.  (See Wade (1978), and/or Wimsatt (1980b, 1981b)
for relevant background.)

(12)  A "new paradigm" for problem-solving in artificial intelligence is the so-called
"genetic algorithms" or GA approach pioneered in the late 1960's by John Holland at the
University of Michigan.  In this approach, proposed problem solutions are supposed to
be made up of partial solutions which are strung together in chromosome-like entities.
Better solutions (chromosomes) leave more copies around than poorer ones, and
chromosomes are picked from the population at random and allowed to cross over and
recombine at random to generate new combinations of partial solutions.  The
mechanisms here are based upon those of classical Mendelian genetics and population
genetics.  (For an introduction to this field, see Goldberg, 1989.)  A competing
paradigm, the so-called "evolutionary strategies" (or ES) approach has arisen in
Germany.  (See the first paper (by Bäck, Hoffmeister, and Schwefel) in R. Belew and L.
Booker, Eds., 1991, for an example of this approach.)  The ES approach involves a form
of blending inheritance.  Its proponents claim that it converges to solutions much more
rapidly than the GA approach, and is therefore more efficient.  Can you explain why
and in what circumstances this should be so?  What kinds of solutions should it be good
at finding?  What kinds should it be bad at finding?  The ES approach characteristically
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involves much higher mutation rates than the GA approach.  ES advocates have also
shown a particular interest in assortative mating schemes.  Can you explain why these
might be so?  If you can get your hands on the Belew and Booker volume, try to
characterize as precisely as possible how the model of blending inheritance assumed in
the ES approach is similar and how it is different from the model discussed here, and
what consequences the differences could be expected to have.



Appendix A:  How To Use Logistic Growth and Blending
Inheritance

This appendix is a copy of the User’s Manual for the Modeling Tools module.  The
Modeling Tools module contains the simulation programs Logistic Growth and Blending
Inheritance and is intended to accompany the Modeling module.  These applications can be
found in the Modeling Tools folder inside the Collection Candidates folder on The
BioQUEST Library CD.

Appendix A has been removed from this copy of Modeling to reduce the size of
the document.  It can be found in the Modeling Tools folder inside the Collection

Candidates folder titled "Modeling Tools User Manual".



Model Building    1 7 1

Appendix B: Functions of False Models as
 Means to Truer Theories

(with examples from biology)
W. C. Wimsatt  12-10-85 (revised: 6-26-91)

(1) An oversimplified model may act as a starting point in a series of models of increasing
complexity and realism. (Note that these often form branching trees, rather than linear series
in the structure of their assumptions in complex cases.)  An important question here:  how
do we evaluate goodness of a starting point?

1. Population growth: exponential, logistic, MDLS, age structure, density-dep. age 
str., N-species Lotka-Volterra, etc.
2. Population genetics: deterministic models for 2 alleles at 1 locus, 3 alleles at 1 
locus, inbreeding, frequency dependent selection, density-dependent selection, 
migration,  2A2L (linkage), stochastic models of same.
3. Classical genetics: single factor cross, with dominance, over- and under- dominance,

co-dominance, partial penetrance, multiple factor crosses, sex-linkage, linkage,
pleiotropy, epistasis, linkage mapping with multiple crossing over and interference.

4.  Sequence of more realistic models in 19th century  kinetic theory and statistical 
mechanics of gases.
5.  Genetic nets (Kauffmann, Wimsatt, and Schank):  a. directed graph models: 
constant fitness decrement models, both linear (K, W/S) and power functions (K), 
variable decrement models (to reflect generative entrenchment) (W/S), truncation

selection models in which fitness decrements may sum to > 1 (W/S);  b. Boolean
automata models:  (K, W/S).

(2a,b) A known (or believed?) incorrect but otherwise suggestive model may undercut the
too ready acceptance of a preferred hypothesis by
(a) suggesting new alternative lines for the exploration or explanation of the phenomena, or
(b)  providing an existence proof to show that models of a given class are capable of
explaining a phenomenon which is held to be inexplicable by any models which fall into that
or a broader class.

1.  Use of "neutral models" in testing selectionist explanations.
2.  Use of automata theory to show that any specifiable behavior (of finite length) 
can (in principle) be explained by a neural network, contra those who claimed that 
certain behaviors could never be explained mechanically  (cf. McCulloch and Pitts 
(1943), and Kleene (1956)).
3.  Kauffman's random networks and generic properties  (but cf. also "robustness 
analysis" under (10) below).

(3) An incorrect model may suggest new predictive tests or new refinements of an
established model, or highlight specific features of it as particularly important.

1. blending inheritance and preservation of variance under H-W equilibrium, and
higher-level segregation analogues.

2. Goldschmidt's "pea-pod" model, Castle's "distributed chromosome" model.

(4) A model which is incomplete may be used as a template which captures larger or
otherwise more obvious effects which can then be "factored out" to detect phenomena which
would otherwise be masked or  too small to be seen.
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1. a. Linear expectations vs HMF due to multiple crossovers,
b. HMF vs Muller data due to interference,
c. "mapping function" approach of early Bridges, Muller, Haldane vs "no 

general function" approach from third chromosome data of Bridges and 
Morgan (1923).
2. H-W equilibrium expectations as reference state to detect and look for       

explanations of deviations from it.

(5) A model which is incomplete may be used by comparison with the data as a template
for estimating the magnitude of parameters which are not included in the model.

1. HMF vs Muller data to estimate interference distance.
2. H-W equilibrium expectations as reference state to detect and look for 
explanations of deviations from it.

(6) An oversimplified model may provide a simpler arena for answering questions about
properties of more complex models which also appear in this simpler case, and answers
derived here can sometimes be extended to cover the more complex models.

1.   2D arguments against Castle's 3D model.
2.  Analysis of chaos in single-species growth equations to predict (qualitatively) 
chaotic behavior in multispecies systems, and in more complex single-species 
systems  (compare Logistic with MDLS).
3.  Roughgarten's use of 2A1L model with high mutation rates to explain qualitative

features of 2A2L system.

(7) An incorrect simpler model can be used as a counterfactual reference standard to evaluate
causal claims about the effects of variables which are left out of them but included in more
complete models, or in different competing models to determine how these models fare if
these variables are left out.

1. Use of HMF-transformed data to calculate what Castle's map would look like in 
the absence of interference.

(8) Two (or more) false models may be used to define the extremes of a continuum of cases
in which the real case is presumed to lie, but for which the more realistic intermediate
models are too complex to analyze or the information available is too incomplete to guide
their construction or to determine a choice between them.  In defining these extremes, the
"limiting" models specify a property of which the real case is supposed to have an
intermediate value.

1. Bracketing of linkage cases by Mendelian single-factor inheritance with pleio- 
tropy or 2 linked factors without recombination on one side and Mendelian two-
factor case with independent assortment on the other.
2. Haldane's (1919) use of "infinitely  flexible" (HMF) and "rigid" models of the 
chromosome to bracket the real case (interpretation 1).
3.  Note that Haldane's actual procedure (see Wimsatt, 1992) is actually more 
sophisticated, and involves use of three limiting cases to derive a parameterized 
scale-dependent causal meta-model -- a kind of inductive (or better adductive) 
generalization from the limiting cases (interpretation 2).

(9) A false model may suggest the form of a phenomenological relationship between the
variables (a specific mathematical functional relationship which gives a "best fit" to the data,
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but which is not derived from an underlying mechanical model).  This "phenomenological
law" gives a way of describing the data, and (through interpolation or extrapolation) making
new predictions, but also, if its form is conditioned by an underlying model, may suggest a
related mechanical model which is capable of explaining the phenomena.

1. Virial equation of state
2. Logistic growth equation?
3.  Interpretation of significance of b in Hassell's growth equation.
4.  Haldane's (1919) predictive equation as decidedly non-causal (because it gives map

distance as a function of recombination frequency), derived as a linear combination of
non-causal forms of two limiting case causal models--so see also (8) above.

(10) A family of models of the same phenomenon, each one of which makes a variety of
false assumptions, may be used in a variety of ways:  (a) to look for results which are true in
all of the models, and therefore presumably independent of the various specific assumptions
which vary from model to model (Levins' (1966) "robust theorems") and thus are more likely
trustworthy or "true"; (b) in the same manner to determine assumptions which are irrelevant
to a given conclusion; and (c) where a result is true in some models and false in others, to
determine which assumptions or conditions a given result depends upon. (See Levins (1966,
1968) and Wimsatt (1980a, 1981) for further discussion.)

1. Species tend to broader niches in uncertain environments (Levins, 1966).
2. Population growth is roughly exponential at  low to intermediate densities.
3. Chaotic behavior results in non-linear systems with time lags when r∆t is too 
large, and is produced more readily in larger, more complex systems (because of 
longer time lags).

(11) A model which is incorrect by being incomplete may serve as a limiting case to test the
adequacy of new, more complex models. (If the model is correct under special conditions,
even if these are seldom or never found in nature, it may nonetheless be an adequacy
condition or desideratum of newer models that they reduce to it when appropriate limits are
taken.)  Note also that in complex models, unrealistic (often extreme) values  of parameters
may be used to test limiting behavior of models, or to understand how it works -- e.g.,
assumption of equal fitnesses  or of no variability in a deterministic selection model should
produce a ∆q  of 0.

1. Felsenstein's use of the HMF as a limiting case for more complex mapping 
functions.
2.  H-W equilibrium limits for more complex selection models.
3.  Ideal gas law as limit of Van der Waals equation of state.
4. Use of deterministic limit to test stochastic models of selection (this is a more 
general strategy for related stochastic and deterministic models).
5. Setting l's and m's in age structure model to values necessary to get synchron- ous

non-overlapping generation model.

(12)  Limiting case models may also play a role when a conservative underestimate or
overestimate is desired.  Thus Muller's (1916) procedure for estimating interference from
distance between crossovers used as a conservative underestimate the shortest distance that
could not be ruled out, rather than the most likely distance.  This led him to underestimate
interference (a good conservative procedure for demonstrating its existence to a skeptic) but
probably also led to underestimates of recombination peak at modal distance.
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(13)  Use of an incorrect model under conditions where it does not deviate too strongly from
the correct state of affairs (e.g., for the "right" parameter ranges, or aspects of the model
which are not too sensitive to the incorrect aspects of the model) to calibrate apparatus, or
provide correction factors  for calculations involving better models.

1.  Use of the HMF to estimate a minimum discriminable distance for deviations from
linearity which must be subtracted from the real data in using Muller's data to estimate
interference distance.

2.  Use of incorrect linkage map + correction curves + new data to iterate to half- new
correction curves, half-new map, 3/4-new correction curves and map, etc., as
recommended in Bridges and Morgan (1923), in which an incorrect starting value (but
one that is "in the ballpark") is used with an iterative procedure to converge on the correct
or better answer.  (This iteration is purely computational,

and thus does not count as a case of type 1, above, and isn't used to calibrate or (by 
itself) to provide correction factors, so perhaps it deserves to be distinguished as a 
separate kind of case -- i.e., . . .

(14) Use of an incorrect model to "prime the pump" by providing a reasonable starting value
for an iterative numerical computational procedure (one that may not converge, or may
converge too slowly if starting with a value that is too far from the right one).

(15) Where optimization or adaptive design arguments are involved, an evaluation of
systems or behaviors which are not found in nature, but which are conceivable alternatives
to existing systems, can provide explanations for the features of those systems which are
found, or for why alternative systems are not found. This may lead to the discovery of new
selection forces.  If the found alternative is not optimal, this may lead to the discovery of new
constraints on the design problem.

1.  Use of 3 or n-sex models to explain why there are (not more than) 2 sexes 
(Wimsatt, 1987).
2.  Use of models of chaotic behavior to explain why it should be selected against, 
and is not found more widely in nature (Wimsatt, 1980a).
3. Use of blending inheritance models to explain adaptive advantages of Mendelian

inheritance and higher-level segregation analogues (Wimsatt, 1980b, 1981b).
4.  Use of Simon's "lock models" (1962) to explain why near-decomposeability and 
quasi-independence (the simple lock, rather than the complex one) should be 
found in phenotypic design  (see also Lewontin, 1978).
5.  Use of "symmetry breaking" argument to show that state of equal selection 
coefficients for all genes in genome is an unstable state, and that variable generative

entrenchments in gene control networks is a doubly generic property  (Wimsatt and
Schank, 1988).
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Appendix C:  Reductionistic Problem-Solving
Heuristics and their Biases
W. C. Wimsatt (11-15-84)  rev. 7-9-91

I. Properties of Heuristics

(1) By comparison with truth-preserving algorithms or with other procedures for which
they might be substituted, heuristics make no guarantees (or if substituted for a
heuristic, weaker guarantees) that they will produce a solution or the correct solution to
a problem.  A truth-preserving algorithm correctly applied to true premises must
produce a correct conclusion.  But one may correctly apply a heuristic to correct input
information without getting a correct output.

(2) By comparison with the procedures for which they may be substituted, heuristics
are very "cost-effective" in terms of demands on memory, computation, or other
limited resources.  (This of course is why they are used.)

(3) The errors produced by using a heuristic are not random, but systematically biased.
By this, I mean two things: (a) The heuristic will tend to break down in certain classes of
cases and not in others, but not at random.  Indeed, with an understanding of how the
heuristic works, it should be possible to predict the conditions under which it will fail.
(b) Where it is meaningful to speak of a direction of error, heuristics will tend to cause
errors in a certain direction, which is again a function of the heuristic and of the kinds of
problems to which it is applied.

(4) The application of a heuristic to a problem yields a transformation of the problem
into a non-equivalent but intuitively related problem.  This means that answers to the
transformed problem may not be answers to the original problem, even though
various cognitive biases operative in learning and science may lead us to ignore this.

(5)  Heuristics are useful for something--they are purpose relative.  Tools which are
very useful for one purpose may be very bad for another (Levins, 1968). This often
gives a useful way of identifying or predicting their biases:  one would expect a tool to
be relatively unbiased for the applications it was designed for, and perhaps quite biased
for others.  One might also expect that increases in performance in one area will be
accompanied by decreases elsewhere.

II.  The Origins of Bias in Reductionistic Heuristics

Reductionistic problem-solving strategies have systematic biases.  How these
biases arise can be easily seen from a general characterization of the problem-solving
context of a reductionistic problem-solver:

(1) One starts by choosing, designating, or constructing a system for analysis.  This
immediately partitions the world of study into that system and its environment.
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(2) Second, we must make Simon's (1957) "assumption of bounded rationality":  That
any real world system is too complex to study in all of its complexity, so we must make
simplifications--through selection of properties or objects for study, simplified
assumptions about relationships between these properties or objects, assumptions
about what variables must be controlled or randomized, and the like.

(3) Third, I will assume a very general characterization of what it is to be a reductionist,
merely that a reductionist is interested in understanding the character, properties, and
behavior of the studied system in terms of the properties of its parts and their
interrelations and interactions.  (This is a sufficiently inclusive description that it
probably captures any analytic methods in general, even that of many who would not
call themselves reductionists.  It should in any case be acceptable to any reductionist.)

From (3), the reductionist is primarily interested in the entities and relations
internal to the system of study.  But this fact, together with the assumption of bounded
rationality, has an interesting consequence.  While simplifications will in general have to
be made everywhere, the focus of the reductionist will lead him to order his list of
"economic" priorities so as to simplify first and more severely in his description,
observation, control, modeling, and analysis of the environment than in the system he
is studying.  This systematic bias is characteristic of all  reductionistic problem-solving
strategies (see list from Wimsatt, 1980b, p. 235). Each one is used in some circumstances
because its adoption transforms the initial problem into one which is easier to analyze
and to solve.  Each of them can be seen as an application of the general schema for
making simplifications to a specific scientific activity.

A particularly crucial factor in explaining the inability to see the biasing effects of
these strategies (whose effects are not only cumulative, but also "cover" for each other,
since they all produce biases in the same direction) is what I have called "perceptual
focus. (Wimsatt, 1980b, pp. 248-249.)  This is the tendency to see all phenomena in terms
of properties of entities at the focal level of interest.  Thus, "We are nothing more than
bags of genes" or "Groups are nothing more than collections of individuals" indicates
lower level foci, while the "invisible hand" of free market economics indicates a higher
one.  The only way to eliminate level-relative biases is to change the boundary between
system and environment by going to a higher or lower level.  The same heuristics will
then have different effects, and different-level models of the same system can be used
to check each other.

III.  Specific Reductionistic Biases

In the processes of reductionistic analysis, the standard procedure is to analyze a
complex system into its parts, analyze the behavior of these parts in isolation, and then
resynthesize these parts and the explanations of their behavior into a composite
explanation of the behavior of the whole system.  In doing so, a number of heuristic
strategies are employed which carry with them systematic biases which lead to
ignoring or downplaying context-sensitivity of results and the importance of the
environment.  These are:
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A. Biases of Conceptualization

(1) Descriptive localization:  describe a relational property as if it were monadic, or a
lower order relational property.  Thus, e.g., describe fitness as if it were a property of
phenotypes or genes, ignoring the fact that it is a relation between organism and
environment.

(2) Meaning reductionism: assume that lower-level redescriptions change the meanings
of terms, but higher-level descriptions do not.  Result:  philosophers (who view
themselves as concerned with meaning relations) are inclined to a reductionistic bias.
(cf. also multidimensional context-sensitivity as an intermediate between positivist
"objectivity" (context-independence of observations) and total meaning holism.

(3) Interface determinism:  Assume that all that counts in analyzing the nature and
behavior of a system is what comes or goes across the system-environment interface.
This has two versions:  (a) black-box behaviorism -- all that matters about a system is
how it responds to given inputs; and (b) black-world perspectivalism -- all that matters
about the environment is what comes in across system boundaries and how the
environment responds to system outputs.  Either can introduce reductionistic biases
when conjoined with the assumption of "white box" analysis -- that the order of study is
from a system with its input-output relations to its subsystems with theirs, and so on.
The analysis of functional properties, in particular, is rendered incoherent and
impossible by these assumptions.

(4) Entificational anchoring: Assume that all descriptions and processes are to be
referred to a entities at a given level, which are particularly robust, salient, or whatever.
This is the ontological equivalent of assuming that there is a single cause for a
phenomenon.  Thus the tendency to regard individual organisms as primary, and more
important than entities at either higher or lower levels (or similarly for genes for some
reductionist neo-Darwinians).  cf. perceptual focus and multilevel reductionistic
modeling.
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B. Biases of Model-Building and Theory Construction

(4) Modeling localization: look for an intrasystematic mechanism to explain a systemic
property rather than an intersystemic one.  Corollary 4a: Structural properties are
regarded as more important than functional ones.

(5) Contextual simplification: in reductionistic model-building, simplify environment
before simplifying system.  Thus the environment may be treated as constant (in space
or in time), regular in some other way, or random.  This strategy often legislates
higher-level systems out of existence, or leaves no way of describing systemic
phenomena appropriately.

(6) Generalization:  When starting out to improve a simple model of the system in
relation to its environment, focus on generalizing or elaborating the internal structure,
at the cost of ignoring  generalizations or elaborations of the existing structure.
Corollary 6a:  If a model doesn't work, it must be because of simplifications in
description of internal structure, not because of simplified descriptions of external
structure.

C. Biases of Observation and Experimental Design

(7) Observation:  Reductionists will tend not to monitor environmental variables, and
thus will often tend not to record data necessary to detect interactional or larger-scale
patterns.

(8) Control:  Reductionists will tend to keep environmental variables constant, and will
thus tend to miss dependencies of system variables on them.  (Ceteris paribus is
regarded as a qualifier on environmental variables.)  Mill's methods applied with this
heuristic will yield as a systematic bias apparent independence of system variables from
environmental variables, though the right experiments won't have been done to
establish this.

(9) Testing:  Test a theory only for local perturbations, or only under laboratory
conditions, rather than testing it in natural environments, or doing appropriate
robustness or sensitivity analyses to suggest what are important environmental
variables or parameter ranges.

(10) Abstractive reification:  Observe only those things that are common to all cases;
don't record individuating circumstances. Losses: (1) sense of natural (or populational)
variation; (2) lose detail necessary to explain variability in behavior, or exploitable in
experimental design.

(12) Articulation-of-Parts (AP) coherence (Kauffman/Taylor/Schank):  Assuming that
studies done with parts studied under different (and often inconsistent) conditions are
context-independent, and thus still valid when put together to give an explanation of
the behavior of the whole. (Schank:  Checking this gives a non-trivial use for computer
simulation.)
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(13) Behavioral regularity (Schank/Wimsatt):  The search for systems whose behavior is
relatively regular and controllable will result in selection of systems which may be
uncharacteristically stable because they are relatively insensitive to environmental
variations  (Schank:  regular 4-day cyclers among Sprague-Dawley rats are insensitive
to con-specific pheromones; Mendel's selection of 7 out of 22 characters which are
relatively constant and insensitive to the environment probably resulted in unconscious
selection against epistatic traits.)

D.  Functional Localization Fallacies

(14)  Assuming that the function of a part is to produce whatever the system fails to do
when that part is absent (e.g., Spark plugs as "sputter suppressors"), or generally,
reifying added or subtracted behaviors of the system as functional properties of the
manipulated unit.

(15)  Assuming simple 1-1 mappings between recognizable parts and functions.

(16)  Ignoring interventive effects and damage due to experimental manipulation.

(17)  Mistaking lower-level functions for higher-level ends, or misidentifying system
which is benefited.

(18)  Imposition of incorrect set of functional categories  (common in philosophy of
psychology which ignores ecology and evolutionary biology).

E.  Other Important Biases
(No.'s 10, 11, and these can generate either reductionistic or holistic biases in different
contexts.)

(19)  Perspectival blindness:  Assuming that a system can be exhaustively described and
explained from a given perspective because it has been very successfully and powerfully
described.  (Not all problems of biology are problems of genetics, molecular biology,
physiology, or anatomy.)

(20)  Tool-binding:  Becoming sufficiently bound to a specific (usually very powerful) tool
that one chooses problems for it, rather than conversely  ("The right job for the
organism," rather than "The right organism for the job!")  This may be an efficient division
of labor if mastery of the tool is very demanding -- it is problematic only if it facilitates
errors No. 11 or 16.
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Appendix D:  Analyzing the Assumptions of the Logistic and
MDLS Models

Analysis of Assumptions

An explicit list of the assumptions of a model or class of models can serve as a
reminder of the dimensions and nature of the simplifications in the models, (a) to
indicate the limitations of the models, (b) to provide a resource for directions to increase
the realism of existing models or for generating new models, (c) where a given model is
advanced as providing an explanation for a particular case, to provide a list of
simplifications which can suggest other possible mechanisms to explain the result when
the simplifications are relaxed.  (d) Making changes in one respect often naturally
suggests changes in others, so that in seeing a list of simplifications together, the whole
may be more than the sum of the parts.

Thus, going from a non-overlapping-generations to an overlapping-generations
(age structure) model conceptually opens up a much wider variety of mechanisms  and
functional forms for density dependence than are suggested by the logistic or MDLS
models.  Thus, how does density dependence affect birth rates (m's) and death rates
(l's)?  The question does not arise when they are not distinguished but lumped into a
single r.  Is the density dependence itself a function of age structure?  (Different aged
organisms may eat more or less, bring in more or less food, be more or less likely to
share with selected others, or more or less likely to give it up in competitive
interaction).

Seeing a list of assumptions may help at all stages with the "3P's."  The elaboration of
density-dependent interactions in the preceding paragraph could serve as the beginning
of a classification of possible density and age-structure-dependent causal interactions
among individuals in a population prior to constructing a model.  Here it is helping to
structure the space of possible interesting interactions which we seek to try to model.  It
is aiding in posing the problem or Problem-posing.  In the explanation of the behavior of
a particular interaction in nature—say, cooperativity in which more individuals actually
produce young at a higher effective growth rate—it can give us the resources to
construct alternative possible explanations, an exercise in Problem-solving.  And in the
last stage, that of Persuasion, when we are trying to validate and convince others of the
explanation we have fixed upon, it provides a list of parameters we need to measure to
test the sufficiency of our hypothesis, and a list of possible alternative causal
mechanisms which need to be ruled out to demonstrate its necessity.

It is important to remember in all of these cases that these methods are heuristic,
and that the judgments generated from them are conditional.  In the real world, we
never can be sure that we have got all of the assumptions, that we have figured out all
of the alternatives that arise by relaxing them, or that we have assessed correctly the
results of the assumptions we have made.  But that is part of the seductiveness of
science.  It is the richest source of problems, and the source of the richest problems that
we know.

Assumptions of the Logistic and MDLS Models
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The assumptions here are somewhat arbitrarily divided into mathematical and
biological assumptions.  There is however usually a complex interaction among
mathematical and biological assumptions and measurement problems.  Testing a model
involves both an adequate solution to these measurement problems, and a comparative
analysis of other relevant, possibly competing, models, both of which are discussed
after listing the assumptions.

Mathematical  Assumptions

1. r is positive  (note strange consequences if it is negative, even though this is OK
for exponential growth).  This is not required for the exponential growth model, but is
for the logistic and MDLS models.  Note that adding assumptions to a model may
require changes in the assumptions that are already there. This problem disappears if
we separate out birth and death rates and assume that the intrinsic birth rate is ≥ 0.

2.  All parameters can meaningfully take on real values--allowing, e.g., fractional
population sizes.

Biological  Assumptions

3. Non-overlapping generations with organisms which either die while giving birth
or are immortal and do not age.

4. All organisms have the same fitnesses and other parameters (thus no variability,
differential selection, or  genetics;  note, e.g., that small population size can produce
inbreeding depression, and that selection may change the phenotype with effects on r,
K, and C).  Common implicit assumption used to justify this:  gene frequency change is
slow on the scale of population size changes.

5. All organisms have the same needs and consume the same resources,
independent of age. (So K is compared just with N, rather with some weighting for
different ages.)  In the worst case, an organism's needs as well as the available resources
vary with the numbers and age distribution, as might be true if there are cooperative
effects;  e.g., cooperative nesting may (1) reduce individual effort required for nest
construction; (2) increase abilities for predator avoidance or defense; (3) reduce
metabolic demand through reduced heat loss, etc.

6. r, K, C are constants over space, time, and the same for all individuals. (K could
fluctuate seasonally, could be different for different activities (e.g., food, nest sites,
territory sizes), could decrease over time as the environment is poisoned or depleted,
or as other species change in their numbers--cf. e.g., succession.)  C is not a function of
sex ratio, or of other environmental variables which could change over time.  Note also
that there could be different C's for different purposes--mating, predation, defense
against predation, and the like.  Similarly for r.  Spatial heterogeneity of environments
could also have a variety of effects.

7. Synchronous reproduction.
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8. Linear dependence of density effects for both K and C.

9.  Independence of all parameters on context  (no other species affect them).

10. Reproduction is asexual.

11. Time lag for feedback of density-dependent effects is 1 generation (and is
constant across different effects).

12. Competition for resources is of the "scramble" rather than of the "contest"
variety.

13. No other species affect growth of the population in question in ways which
depend on their densities, or their densities are constant.

Measurement  Assumptions and Problems

Meanings of and values to put in for r, K, C are not always clear, both in testing a
model and also in evaluating the significance of empirical studies:

1. r is measured in the laboratory under low-density conditions--not clearly a good
estimate for r in nature. r has both viability and fecundity components, and
measurements of either in nature have problems.  (Talk about marker genes, and
mark-recapture methods.)

2. K is Carrying Capacity, but a variety of different things can be limiting in nature
(e.g., resources (and note that these fluctuate over time in a seasonal environment), nest
sites, and territory sizes, all of which may vary both spatially and temporally.)

3. Similarly for C--e.g., probability of finding a mate for sexual species (and notice
that this depends upon sex  ratio), critical size needed for efficient feeding (e.g., wolf
packs need critical minimum size to hunt large prey), or neutralization of toxins in
environment (for certain bacteria).  Also hidden genetic variables here--e.g., if
population size is too small, get inbreeding depression, which acts to reduce r (over
several generations).

4.  The problem here is not just what factors to include in measuring r, K, and C, but
also whether the assumed functional dependence of growth rates on these parameters
should have the same functional form for all of these factors.

Comparative Evaluation of Assumptions--A Look at Other  Models

1. Overlapping age-structure model.

2. Overlapping age-structure model with density-dependent effects on l's  and m's.

3. Overlapping age structure model with above and contribution to K as an age-
dependent phenomenon.
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4. How about required balance among age-classes?  e.g., without parents, young
might all starve to death. (Suppose we also have a helping coefficient for different age
classes?  Also a dependency coefficient--e.g., which could be higher for the very young
and the very old?  Also, if there is more dependency need than helping capacity, how
do we want to distribute helping effects--i.e., how does this affect l's and m's of various
classes?  Also, consider scramble vs contest competition for aid as well as food.))

5. Density-dependent selection model.

6. Model in which r, K, and C might be seasonally variable (e.g., sinusoidal or more
complex?).

7.  Stochastic fluctuations in r, K, and C?  (See Biota and PopDyn for models which
allow this kind of variation.)

8. Hassell model for contest vs scramble competition.  (Note that in other respects,
the Hassell model is a curve-fitting model, with no clear interpretation for the variables
in it.)

Topics for Discussion

1. Consider classification of above simplifying assumptions with respect to how easy
they are to model--some are easily corrected for, others (e.g., spatial heterogeneity
assumptions) are very complex or computationally demanding to simulate.

2.Look at explosion of difficulty in understanding interactions as the number of
variables in the models grows, and also in finding good sets of values of the parameters
to study (combinatorial explosion in sets of variables to investigate). Consider also the
increase in number of parameters to be measured in experimental tests of the model in
real situations.  This suggests that it is better to deal with a family of simpler models
including the effects of a few factors at a time rather than an all-encompassing model in
which everything is variable.

3. Look at variables for (1) how easy they are to measure, (2) ambiguities in the
definitions, (3) whether they are biologically meaningful, (4) whether they enter
realistically in the equations.

4.  Look at results of the models to see how sensitive they are to (1) specific
parameter values, and (2) assumptions in the models. (If the natural phenomena are
stable, but the model requires very special values to produce the phenomena, this is
grounds for suspicion of the model.)

5.  Evaluate models (both in general and in specific situations to which they are to be
applied) to see how well they meet (Taylor's) conditions of quasi-independence and
coherent aggregation.

6.  Look at reductionistic research strategies and their biases for these models
(Wimsatt, 1980b).
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7.  Look at strategies/functions of using false models (Wimsatt, 1987).

8.  Identify sufficient parameters, and the variables that they aggregate.  Identify
conditions under which they may fail to be sufficient (Levins,1966, 1968).

9.  Look for robust theorems, models in which they fail, and conditions under which
they may break down (Levins, 1966, 1968).
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Appendix E:  The Use of Graphics Options To Explore and
Enhance Pattern-Detection and Analysis, and Examples of the
Diagnosis of Causes from the Character of Patterns

These simulations have deliberately been designed with a lot of graphical options
so that you can play with them to emphasize those aspects of the phenom-ena you
wish to focus upon.  In addition to the flexibility inherent in the 4 different modes of
data analysis, you have additional degrees of flexibility available within each of them
appropriate to that means of analysis.  You can change the rate of presentation of
points, speeding them up (within the limits of your computer) to see more holistic
patterns, or slowing them down to follow particular changes.  (In some cases it is
possible to discern as many as three different levels of order in the patterns by
changing their presentation rate relative to our "natural" flicker fusion and perceptual
frequency filters.)  The size and patterns of the spots can be varied, and connected with
lines if you choose. Direct manipulation of graph coordinates allows for analysis of
moire effects (enhanced by colors).  Control of the grid scale facilitates not only
measurement but also evaluation of periodic and nearly periodic patterns.

We will discuss some of our particular visual talents for the analysis of data, and
then proceed to discuss examples which illustrate and use these talents, or involve
particularly interesting diagnostic patterns of behavior.

One of the most important capabilities of our visual system is the processing of
visual information about motion.  There are at least three important components here:
(1) motion detection, (2) the integration of similar, temporally ordered, and spatially
contiguous stimuli into ordered motion of identifiable though possibly changing
objects, and building on these reifications, (3) "hard wired" tendencies to hypothesize
causal relationships--though not always correctly. All three of these condition our
perception of patterns.  (The fact that they may sometimes lead to incorrect
conclusions--generating "illusions"--is not problematic if we can either be warned when
errors are likely, or restrict their application, through careful analysis and design, to
situations where they work. See the discussion of heuristics in Wimsatt, 1981 or 1984.)
In the modeling simulation used to generate the pictures of chaotic behavior, motion
detection is useful in detecting equilibrium, approach to equilibrium, divergence from
unstable equilibrium, bifurcations, replication of arbitrary periodicities, roundoff error
effects, and differential sensitivity of variables to parameter changes in the same and
different parts of its range. (Motion can't be shown here, unless you are reading this
manual on a computer, in which case the graphics will be redrawn in the order
originally produced--effectively re-running the simulation before your eyes.  Even so,
you have no control over the presentation rates of the data unless you use the redraw
option in the Simulation menu to change the plot delay.)  Seen as static objects, these
figures often show a confusion of points.  But presented in temporal order, the
trajectories of these same points are integrated as ordered transitions--demonstrating
the second point above.  Finally, all of the simulations with this program are designed
to be run as families of curves in which the same system is run many times for
systematically changing values of a key parameter.  The visual impression of a causal
relation between changes in the parameter value and in the behavior of the system is
both overwhelming and usually justified.
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Visual presentation is particularly appropriate when one needs to see or to track
(where they are systematically changing) similarities and differences among complex
entities which are changing in space, time, or--generalizing from these--in some subset
of properties comprising the base components of an n-dimensional property space.
These tasks make visual or spatial representation particularly appropriate:
 

(1) Analysis of highly multidimensional data. (In effect, this means two or more
dimensions.)  
(2) The need to see, or to find, in such data (a) similarities in diverse cases in spite of
their differences, or (b)  differences in spite of their similarities, or (c) to factor
perceived global dissimilarities into localizable similarities and differences.  These are
all instances of template matching.
(3) The need to look for relationships among patterns on several different size scales
or levels of organization (Wimsatt, 1976; Tufte, 1983).
(4) The need to combine or use jointly information from different perspectives on
(i.e., using different ways of accessing or measuring) the same object (Wimsatt,
1974), or
(5) To determine where there are boundaries between objects, or to identify
whether there is a common object, property, or cause, behind apparently correlated
patterns, i.e., to localize objects (Wimsatt, 1981).

The visual system has been selected for the efficient, reliable, and rapid solution of
tasks like those of (2)-(5) above in a complex variegated natural environment.  The
discrimination, identification, and reidentification of objects, the identification of
camouflaged predators, and the tracking of prey--all in the rapid service of feedback-
controlled locomotion--require an on-board computer of enormous power that is older
than and probably much more powerful than our specialized language capacity—which
undoubtedly draws on it for processing in ways that we are just beginning to discover.
Even the term "perspective" here, in (4), betrays the visual origin of this metaphor for
the multidimensional integration of diverse kinds of information about the same object.
The connections among realism, objectification, and multiple independent means of
access to a common robust object--beginning with our three spatial senses, vision,
hearing, and touch--go very deep (Wimsatt, 1974, 1976, 1981), and almost certainly
represent an interleaved family of heuristics with a long evolutionary history.  We need
to learn how to draw on the enormous power of our visual system by representing
data in ways that allow us to see the patterns in it effectively.

 Many of the most complex cases of pattern detection require the comparative
analysis of images, (1) looking for similarities and differences, (2) for transform-ations
between images, or (3) for a common reference frame to use when integrating the
information from different images.  As noted by Tufte (1983), these cannot be done
effectively unless the images are juxtaposed so that they can be seen together.  This is
plausibly due to two factors:  (A) we have the highest sensitivity for compar-ative
differences and similarities in local analysis.  (B) More global comparisons require some
way of transporting local information, but we aren't very good at doing this
simultaneously for multiple dimensions of that information.  So multi-dimensional
comparisons have to be done locally, or one dimension at a time, using or
supplemented by symbolic and analytical techniques.  Thus, for example, a graph grid
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allows local comparison with grid elements (providing a common reference frame) to
give more global comparisons of the location of features, involving comparison of only
one spatial component at a time. We can change from local to global comparisons via a
scale change, preserving multidimensional information by making what was global
local, but do so under pain of losing fine detail.

Let us see in more detail how some of these abilities work.  In most cases, this
will involve comparisons  of information from a variety of closely related graphs.  In
some cases, the discussion will not illustrate, but presuppose the claims made in this
section.  I doubt, for example, whether the bifurcation plots or the effective population
size plots below could be meaningfully compared unless they were presented together.
When you do your investigations, try to keep some of these facts (and the examples we
have discussed) in mind, and use them to your advantage in your own presentations
and analyses.

Spurious Patterns Which Are Artifacts of Mode of Presentation

The next eight graphs all involve the same data set, but are presented differ-ently
to illustrate some of the graphics options and some perceptual and mechanical effects
which can have a significant effect on how they appear.  In the first two, the first 100
generations of 5 runs are plotted.  In all the others the first 200 generations are shown.
These are actually the same data used in the first Monte Carlo simula-tion exercise (see
Figure 3-1)—depicting infinite sensitivity and divergence, followed by capture of the
trajectories by the period-3 attractor.  Here they are plotted as strip charts, and
redundant chart labels are deleted (by resizing the images to cover them up) to get
several of them on a page to facilitate direct visual comparison.
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Figures E1 through E3.  The same data at different densities and with/without lines.

Comparison of the first two charts illustrates that lines are an ambiguous
advantage.   For the depiction of the gradual divergence of the trajectories in the first 20
generations, the lines act to cluster what points should go together and be com-pared.
This is before the divergence of trajectories produces a thicket of lines.  When the lines
are deleted in the second chart, it is much easier to tell where various points are and to
see how the divergence of the trajectories produces phase shifts (e.g., in trajectory No.
1, between generations 27 and 29).  This can also be seen clearly in the partial overlap of
the spots from the different trajectories in the 3 bands of the 3-point equilibrium.  (Since
trajectories cycle through the three points, returning to each one only every third
generation, partial overlap indicates that the different trajectories are returning there in
different generations, and are thus out of phase.)
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In the 200 generation chart, viewed in black and white, you can no longer see
that the trajectories are out of phase, since period-3 returns are plotted so close together
that the last trajectory plotted covers over all of the preceding ones once they have all
fallen into the stable 3-point cycle.  (This could be partially compensated for by choosing
smaller spot sizes.)  If you are viewing this on a color monitor, you will still be able to
see a sign of the different phase relations, however, because the different colored lines
of the different runs show a period 3 repeat, like a woven fabric.  The third chart also
acts as a reference standard for the charts that follow, in that it indicates how these
patterns look when 200 generations are plotted.  

In all of the subsequent 200 generation plots--designed to illustrate moire effects
(or other effects that look more like crystal dislocations) in the patterns pro-duced by
the lines, the point patterns have been changed to solid.  The trajectories are still
distinguishable by color if you are reading this manual on a computer with a color
monitor, but black and white are just fine to illustrate the effects we will dem-onstrate
now.  These effects show how pattern can sometimes be used as a very sen-sitive
indicator of dimensional magnitudes—in this case of the width of the graph.

In the first of the graphs below, the length of the graph, including both end bars,
is 401 pixels (left and right graph coordinates of 25 and 426, respectively).  Depicting
generations 0 through 200 involves plotting 201 points.  With 401 pixels, this means that
the point for each generation is plotted 2 pixels to the right of its predecessor.  As a
result, after all of the trajectories have settled into their places in the 3-point cycle, a
very regular pattern ensues.  The second graph is one pixel longer (402 pixels) and the
third is one pixel shorter (400 pixels.)   In these cases, the graphics software tries to place
the points at equally spaced intervals, but it can't because it has to plot at an integral
number of pixels.  Roundoff error means that the extra pixel (or the missing one, for
the third graph) has to be stuck in (or removed) somewhere, and given that the
difference is just 1, roundoff at .5 will make it occur in the middle, at generation 100.  
And sure enough--there is a white band at that point in the second graph, and a
corresponding black band there in the third.  It was the desire to be able to eliminate
these extraneous bands (especially problematic given the complexity of the patterns
produced with chaotic behavior) that led us to the decision to allow direct control over
the graph coordinates.

Where do you think the bands will occur if you put in or take out 2 pixels?  or 3?
or n?  Try it!  Here mathematical relations and the fact that the computer is a digital
machine are used to make differences in length visible which could not be otherwise
perceived or measured directly.  Similar processes of tuning the stimulus to the visual
system by changing the ratio of two quantities are used in a variety of other
measurement processes throughout science.  Thus, with Vernier calipers, matching
intermediate marks on 2 scales which divide equal lengths into 9 vs into 10 equal
divisions gives an additional decimal place in accuracy of measurement.
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Figures E4 through E6.  Moire or "crystal dislocation" effects arising when a graph (E4) is
lengthened (E5) or shortened (E6) by 1 pixel.

(See also Figures E9 through E14 below.) "Newton's rings" provide accurate
measurements of the distance between two glass lenses (one flat, the other curved) in
units of the wavelength of light through the production of interference bands of
varying intensity--used by lens grinders to produce symmetrically ground lenses.
Pilots can fine-tune the relative speed of aircraft engines in multi-engine aircraft by
listening to the beats produced by the differences in their speeds. And variable speed
strobe flashes can accurately measure the speed of a rotating wheel by tuning the
strobe to "freeze" the image--which happens when the strobe frequency matches the
time it takes the next radially symmetric pattern in the wheel to rotate into the position
of the last.  (If the strobe is a little too fast, the wheel will appear to be rotating slowly
backwards--a scene that appears often also in movies or videos.)
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Figures E7 and E8.  Confusion of moire effects when there is no small common divisor.

Too large a mismatch, producing too many bands, makes problems, because the
extra variability overloads the visual system, and this process of counting bands loses
diagnostic effectiveness.   (This is true for all of the examples mentioned above —the
ratio of the two quantities must be tuned to a small integral multiple, or the difference
between the two quantities being compared  is lost in a welter of confus-ing pattern.)
This is illustrated in the last two graphs in this series, Figures E7 and E8.  These are 200
generation graphs which have pixel widths of 350 and 351, respectively, producing pixel
ratios of 1.75 or 1.755 per generation.  This generates a repeat pattern of 4 generations
every 7 pixels in the first which produces a confusion of visual complexity.  Can you see
a difference in their patterns?  You usually can find differences by looking in one for a
variety of very small features found in the other.   Is it a difference you can use to tell
you how to change the length to get more regular patterns?  I've never been able to tell
which is which by looking.  (The first should produce the more regular appearance, but
to my eyes, it is the second which appears to do so, and in any case, it is not clear which
way to go.)

For those of you working with a laser printer, which prints at 300 dots per inch
(or DPI), the process described above presents new complexities.  The standard screen
pixel ratio for Macintoshes (and the ImageWriter printer) is 72 DPI;  300 DPI is not an
exact multiple of this, so trying to print images designed to be shown at 72 DPI at 300
DPI can produce additional interference effects, because the printer driver will aim to
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preserve the size of the image rather than its exact proportions.  To best see this, print
the graphs on one of these pages (probably the three of 401, 402, and 400 pixels) out at
the different resolution settings on the printer (300, 150, and 75 DPI), both with and
without the "best bitmap" option checked.  The best bitmap option shrinks the image to
96% of its original size, producing resolution settings of 288, 144, and 72 DPI, which are
integral multiples of 72, and removes these extran-eous interference or moire effects.
(In printing these out, particularly for the r vs N plots below, make sure that you do
NOT have the "smooth bitmap" option on.  This can introduce all kinds of spurious
forms, particularly in the clouds of random points produced in the chaotic regions of
bifurcation plots.  You might try it both ways to see what will happen.)

So the net effect of all of this is two warnings:  (1) use the graph coordinate
options to set the graph width to eliminate extraneous patterns in the screen pictures
and your scrapbook and PICT files; and (2) use the "best bitmap" option where it is
available (on all laser printers, and most other higher resolution (e.g., inkjet) printers) to
keep from reintroducing interference patterns in your printed output.

All of this might seem out of place here.  Isn't this more appropriate to a printer
manual or a handbook on desktop publishing?  It might well be appropriate there too,
but it is included here because it directly illustrates again one of the most important
lessons of this module--that the computer is just another kind of instru-ment, and
works no better than the assumptions put into it.  This includes not just the models
simulated, but the program written to simulate them, the language the program is
written in, the screen and printer drivers written to display the results of the program,
and the computer, screen, and printer hardware which turn these instructions into
visible output.  Until you understand the kinds of errors, biases, and noise that can be
introduced by each of these, you cannot reliably tell artifactual errors from "real"
phenomena (meaning phenomena which are products of the system under study and
not of the instruments used to study it) under conditions where artifacts can arise.  You
need to be able to tell these various kinds of errors apart if you are going to be able to
eliminate or correct for them, and you need to know how they can arise if you are
going to design your experiments and design or calibrate your instruments to show
what you hope they can show, and to know when you can trust their results.  Patterns
are an important diagnostic tool for us, and interference effects change patterns, so we
need to study them here.

But why, if we know how to eliminate or correct for these errors, don't we just
eliminate all of them?  Unfortunately, just as there is no universal set of variables to be
controlled for in an experiment in order to eliminate error, there is no general
procedure for eliminating all of these biases.  Thus, in an experiment, you can't control
for the variable you are studying, because controlling it means keeping it constant, and
if you are studying it, you need to vary it to see the effects of changing it.  Thus, you
can't control for everything because one person's experimental control is bound to be
someone else's variable of interest.  Computers, programming languages, software
applications, and printer drivers are all cost-benefit compromises designed to produce
tools which are usable by a wide variety of individuals for a large range of tasks.  If you
try to automatically correct for everything, you will make the devices larger, more
complex, and more expensive, and—undoubtedly—you will introduce constraints on
how you do things which a variety of different people will need to violate in different
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ways.  Special purpose instruments and special market software are just devices for
which a certain group has an interest in taking certain constraints as given because they
don't have to fiddle with then to do what they want to do, and not having to fiddle with
them makes their task easier.  Given this, the only defense we have is to learn to
recognize when we are coming up against these constraints, to know either what we
can and cannot trust if the constraints are ineliminable, or how to get around them to
eliminate or minimize their biasing effects if they can be finagled.

Real Differences Which Are Products of How the Data Are Sampled

To make good on this promise, we will illustrate a kind of case which it is
important to distinguish from the preceding interference or moire effects, although it
seems similar.  This case also involves changing the width of the graph, but because of
how the r vs N viewing mode works, this actually changes the data pro-duced by the
simulation.  It is easy to understand why the data are changed in this case, but we will
follow this with a "mystery effect" whose cause we have not proven (though there are
good reasons to believe what it is) which could well be a case worth substantial further
study.7 4

The three pictures below (Figures E9 through E11) show the middle strand in the
period-3 window in the r vs N or bifurcation plot for the logistic.  Graph height has
been reduced to 100, and the bottom labels for the top two have been deleted in order
to aid comparison.  These pictures differ in the width of the graph (set using the graph
coordinates  option at Right - Left = 400, 401, and 402 pixels, respectively).  These small
differences in graph width aren't directly noticeable as length differences by eye, but
they make a profound difference in the r-values used to construct the graph.  All three
graphs use the same lower and upper limits for r-values, but they interpolate 400, 401,
and 402 r-values in between them, yielding corresponding ∆r values of .00010000,
.00009975, and .00009950, respectively.  (The number of pixels for  a strange graph can
be calculated by dividing the range in r  (2.86 - 2.82 = .04 in this case) by the value of ∆r
found in the data box at the bottom of the graph.  Rounding this to the nearest integer
should yield the number of pixels.)

                                    
74Although you can't test this explanation directly, you can test it indirectly using the "round N" or the
Numerical precision" options to see if you can replicate phenomena like those found here.  See the discussion of
the use of these options in chapter 3.
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Figures E9 through E11.  Vernier interpolated r-values with three bifurcation plots
of widths 400, 401, and 402 pixels.

The first and second graph have no r-values in common except at the endpoints,
and the sampling points are maximally out of phase in the middle.  It is a measure of
the infinite sensitivity of the fine structure of chaos that the graphs differ noticeably
across their entire range.  The first and third bifurcation graph differ in width by 2
pixels, rather than 1, and are in phase in the middle as well as at the ends, and
maximally out of phase at the 1/4 and 3/4 points.  For plotting smooth curves or
patterns these differences would have no effect, but the infinite sensitivity of chaotic
behavior guarantees that these minuscule differences in where the r-values are sampled
produce noticeable changes.  (These differences can never be larger than half  of the
width of the broadest band sampling of r—half of .0001, or .00005, and will range down
from there to 0 in 200 increments)  Major features remain roughly the same in all three,
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but smaller features (particularly the presence and width of transient dark bands of
points, and correspondingly, the structure, width, and even the presence of the
equilibrated lighter bands of points) have changed.

Figures E12 through E14. Vernier interpolated r-values with three effective population size
 plots of widths 400, 401, and 402 pixels.

Figures E12 through E14 are the r vs Neff(t) plots for the same parameter values
and pixel widths as the bifurcation plots, and show corresponding differences from one
another.  Detailed comparisons within this group show the same patterns of macro-
similarities and micro-differences.  Cross comparisons between the two sets are also
useful, since they give different reflections of the differences produced by changing the
sampling interval.  These differences tend to show up in the same places, i.e., for the
same r-values, indicating that effective population size is a good indicator variable for at
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least some aspects of the structure of the bifurcation plots.   It should thus be clear in
any case that graph width is an extremely important variable in the r vs N and the r vs
Neff(t) plots, and that reproducing a result in these plot modes requires use of the same
graph width.

These last 6 plots in effect represent a generalized version of Vernier
interpolation:  If 2 scales cover the same interval, each dividing it into v and v+1 equal
intervals, respectively, one can use the proportional distance along the whole scale to
estimate how far apart (what fraction of a unit) the corresponding small divisions are
out of synchronization.  Vernier interpolation can be used to give a more accurate
reading of a variable which changes monotonically (ideally, linearly) between the two
endpoints.   Chaotic behavior fails to meet that condition, and so you might think that
Vernier interpolation would be useless.  In this case, it serves the opposite conclusion:
the fact that the three plots are no more alike half-way or thirds of the way along the
plot gives a much higher-resolution confirmation of the infinite sensitivity to initial
conditions characteristic of chaotic behavior. There is behavioral divergence not only
between neighboring pixels (∆r ≈ .0001) but also (contrasting the divergent behaviors of
corresponding points on homologous graphs) for differences as small as 1/400 of that,
or .00000025.

Roundoff Errors Unmasked—Quantized Escape Orbits

We now turn to a more difficult case—one where the argument for the causes of
the phenomenon has to be indirect, but in which it is fairly certain none-theless, as can
be shown by subjecting the phenomenon to various tests.  (See also note 1, 3 pages
above.)  This is a phenomenon which you will probably discover when you do the
problem suggested above of localizing the boundary of an attractor by doing
successive sweeps at successively higher resolution.  In these runs, just as in those, r is
fixed, and the differences are differences in the starting values for population size, No.
These trajectories do not appear to straddle the boundary, as the trajectories you would
choose for that investigation (they don't because they all escape in the same way at
about the same time--there are no "holdbacks") but they must be very close to it as it
takes 39 generations before the first deviation becomes observable in the graph.  This
deviation is a motion of a point in trajectory 10 (white or hollow circles) up 1 pixel in the
middle line, showing an edge of trajectory 6 (black or solid light blue circles) below it.
The puzzling case is shown below:  
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Figure E15.  Nearly synchronous phase-shifted divergence in trajectories near an attractor boundary.

What is puzzling about this case is that there is entirely too much regularity in it
for what we expect with chaotic behavior.  If fact, if you ignore the medium gray spots,
you will see that the entire rest of the picture is made up of repeated quartets of spots in
which dark gray is covered by light gray, which is covered by black, which is covered
by white.  (This is much more obvious when seeing the PICT redrawn on the computer
screen, as when scrolling the image into view.  There the repetition and phase shifts of
the trajectories become objects for our visual processing of motion detection and
integration, which immediately pick out the similarities in the shifted
trajectories—sensed most immediately as global color or gray-shifts as the successive
trajectories are drawn.  If you can't see this, try plotting 400 generations in the same
width graph--401 pixels.  This will pull the quartets closer together and make it easier to
see them as a single (fused) object.)
 

In order to figure out what is going on, we need first to be able to identify the
trajectories, so that we can relate changes in them to changes in the starting values for
population size, No.  Then we need to be able to characterize the patterns of changes in
these trajectories as No  increases.  This will involve in part doing additional runs for
families of trajectories with different values of ∆N.  Finally, we need to combine what
we know to analyze the causal interactions which produce the patterns.   



1 9 8     Model Building

We start by noting that the identity of trajectories seems ambiguous in black and
white—from the trajectory labels it seems that the hollow circle could be 5, and the solid
one 1, instead of the postulated 6 and 10.  In fact, from the trajectory labels at the right
of the graph, it seems that each type of spot from black to white has two possible
trajectories that it could be, one in the interval 1-5, and another in the interval 6-10.  This
and other similar ambiguities can be removed in different ways:

First, the apparent ambiguity can be removed by deduction, if we note that
higher numbered trajectories are plotted after lower numbered ones and can partly or
completely cover but cannot be at all covered by them.  The solid circles cover others
and thus cannot be from the first trajectory.  So they are 6's.  Thus the open circles,
which cover them, can't be 5's and must be 10's. Similar reasoning reveals that a darker
can cover a lighter spot only if the lighter is from the first 5 trajectories, and the darker
is from the second 5.  (Look at the key for earlier and later traject-ories.)  Now look at
the repeated multiples of 4 trajectories ganged together with separations of 3.  The solid
6 (overlapped by the 10) overlaps a lighter colored spot, which therefore has to be a 4,
rather than a 9, which overlaps a darkest gray, which thus has to be a 2, rather than a 7.
Further looks for overlaps reveal that the med-ium gray has to be an 8, rather than a 3.
Thus the visible trajectories are 2, 4, 6, 8, and 10.

There are two other means of validating these inferences, and you should use
both, though either will do; the third can be done on any machine.

Second, the ambiguities are completely removed on a color monitor, where the
visible spots can all be seen to be from trajectories 2 (dark gray), 4 (light gray), 6 (black),
8 (medium gray), and 10 (white), with colors red, yellow, light blue, black, and pink,
respectively.  

Third,, if you remember the plotting order and play (redraw) the runs at a slower
speed, (3 works fine, but try your own speed) you can see what covers up what in what
order.  This will show that odd-numbered runs are covered by their successors, and
that each odd number establishes a new trajectory.  So in the series, {1,2}, {3,4}, {5,6},
{7,8}, and {9,10}, the second number in each bracket covers the first, and there are 5
distinct trajectories, initiated by 1, 3, 5, 7, and 9.

A sense of scale can be obtained by looking at the spot separations at the
beginning before the trajectories escape the period-3 cycle and remembering that
successive spots in each line have to be 3 generations apart.  But this is also just the
separation between the quadrupled spots in the above figure.  What does it mean for
the spots to be quadrupled together in this way?  It means that most of the traject-ories
(8 of them to be exact) are the same trajectory--differing only in when they escape from
the period 3 lines.  Trajectories 9 and 10 are followed 3 generations later by trajectories
5 and 6, they in turn 3 generations later by 3 and 4, and they 3 generations later by 1
and 2.  Trajectories 7 and 8, though identical to each other, appear to be different from
all of the others.  So in all, we see only two basic trajectory types, and the most
common change between trajectories appears to be just a phase shift.  That this phase
shift is always by 3 and is significant.  We will return to it below.
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Now it is time to notice just how anomalous this is.  Our experience with chaos
so far has been to demonstrate that (A) any differences in starting values, no matter
how small, cause exponentially increasing divergences between trajectories with
increasing time, and (B) there seems to be an arbitrarily large number of different
trajectories—all apparently random in appearance.  But here, we saw (1) that
neighboring increments in ∆N yielded identical trajectories, (2) that accum-ulating
increments caused phase-shifted trajectories, but not different trajectories, and (3) that
10 runs yielded only 2 basic trajectory types.  Taken together, these seem to contradict
both properties (A) and (B) which we have learned to expect from chaotic systems.

I want to suggest an explanation which seems to explain almost all of the
phenomena observed.  Note that the differences in ∆N between successive traject-ories
are very small (.00004), and that right at the boundary of the attractor, traject-ories are
delicately poised between falling in and flying out--so delicately that they move very
little from one generation to the next (or actually every third generation) so they
diverge relatively slowly.  I want to suggest (1) that given the small size of ∆N, roundoff
error is removing the significant differences between successive trajectories (2) that
roundoff error is similarly reducing the number of available "escape" trajectories
available in that neighborhood (i.e., in the boundary region).  If this explanation is
correct, then (a) making ∆N  still smaller for this value of No  should reduce the variety
of trajectories still further, and (b) ∆N 's of this size should not have a similar
constraining effect on trajectory number for values of No  not near the boundary.
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Figures E16 and E17.  Reduced variety of phase shifts with smaller ∆r's.

We can see exactly this in the next 2 graphs, in which No  is the same as before
(set at 70.916) but ∆N  is set at .00002 and .00001, respectively.  We see that in both of
them, there is now only one trajectory, which is phase shifted—twice for .00002, (after
trajectories 3 and 6) and once for .00001 (after trajectory 8).   The variety decreases (as
predicted) with smaller values of ∆N, and in fact disappears entirely for slightly smaller
values.  You can see for yourself that clause b is met--that we do not get the same
restricted array of trajectories for other values of No .

There is one other revealing fact suggesting the same thing more directly.  The
values for  No showing in the parameter listings below the graph will be those of the
last trajectory, including possible roundoff errors.  All of these plots started with No set
for 70.916.  What they end up with should be 9 times the increment value of ∆N  they
actually used greater than this value. (To run 10 trajectories, the starting value together
with the value from 9 successive increments are used.) The differences are .000382
(instead of .000360) for ∆N  = .00004; .000229 (instead of .000180) for ∆N  = .00002, and
.000077 (instead of  .000090) for ∆N  = .00001.  There are two interesting things to notice:
first, that the percentage errors in these increment sums from what they should be are
enormous—low for 1 and high for 2 and 4 x 10-5. Second, the summed increments are
in a ratio very close to 5:3:1 instead of 4:2:1.  This suggests that the smallest effective
unit (the roundoff quantum) that the computer can use in incrementing N at No  =
70.916 is approximately 1/9 of .000077, or 8.5 x 10-6, and that it used 1, 3, and 5 of these
units as "best fits" to the desired 1, 2, and 4 x 10-5.

The second question is where this rounding off error occurs which reduces the
variety of trajectories possible, and here the patterns give us another intriguing clue.
Phase shifts are the changes produced by the smallest differences in ∆N .  They are the
last changes to disappear before all trajectories look alike.  One of the remark-able
things about the phase-shifted trajectories is that the phase-shift is always by a multiple
of 3 generations.  This suggests that the roundoff error is always occurring in the same
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place, i.e., when the trajectories are in the same phase of their 3-point cycle.  Once it has
occurred, producing identical values in the different trajectories, they will be
constrained to follow each other from there on.  And where might this be?  In fact, it
has to occur before they diverge from the 3-point cycle (both because of the period-3
phase shifts, and also because the trajectories are clearly (i.e., observa-tionally) already
entrained when they leave the 3-point cycle.  But which point of the cycle is to blame?
We can answer this one too:  it has to be the top point because there the envelope of the
attractor is mapped into the narrowest region and roundoff errors will have the largest
effect in gathering diverse trajectories as one.  This also explains why the "roundoff
quantum" should be so large measured at No  = 70.916.  It is actually the much smaller
spread around the top point at 129.575 that gives the real size of the roundoff error.
And in which cycle does it occur?  Barring means whereby the divergences of
trajectories can get smaller then larger (in the topmost point of the trajectory, where
they are already maximally close), we have to suppose that the quantization occurs the
first time they pass through the top region.

An unresolved question which I leave for you to puzzle over is where the
aberrant path followed by trajectories 7 and 8 came from—flanked as it was by the
common phase-shifted trajectories on both sides.  And investigating these phenomena
more, how phase shifting and different trajectories can happen in this realm of
deterministic quanta, and how the patterns of appearance of diverse trajectories and
phase shifts, as ∆N is increased,  are to be explained.  You might want to explore this
phenomenon in general using the "round N" option and with different K values to see if
you can generate roundoff errors that are large enough to investigate further.  Good
luck!
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(*  Appendix F  *)

(* This entire appendix can be used as a Mathematica program.  All text enclosed
between the "parenthesis/asterisk" symbols, such as the symbols around the title of this
appendix, are considered comments, and Mathematica will ignore them.  Do not
remove those symbols if you wish to run this program in Mathematica. *)

(* NOTE ON USING THIS APPENDIX IN MATHEMATICA:  First, you should be
familiar with the basic Mathematica user interface and the basic syntax and commands
for performing symbolic manipulations and plotting functions.  Second, in order to
reproduce--as closely a possible--the printed version of this appendix, you should do
four things:

(i) Save this document as a Text Only file.

(ii)   Choose "Select All" from the Edit menu, change the Font to Palatino, and
then simultaneously press the Shift-Apple-d keys in order to make the text Plain and
not Bold.

(iii)  Next, after each Mathematica instruction (e.g., LeftSide = 
Integrate[1/N,N]) choose from the Cell menu "Divide Cell" to divide the cells 
after each instruction.  In this way, Mathematica will place the output of an 
instruction below each instruction.

(iv) Again choose "Select All" from the Edit menu and either press the 
"Enter" key or evaluate the cells from the Cells menu.

In this appendix, we will use the computer program Mathematica to symbolically
solve and plot the continuous versions of the exponential, logistic, and minimum-
density limited logistic growth equations:

(1) dN/dt = rN (exponential growth)

(2) dN/dt = rN(1 - N/K) (logistic growth)

(3) dN/dt = rN(1 - N/K)(1 - C/N) (minimum-density limited
logistic growth)

where N = population size or density, r = growth rate, K = Carrying Capacity, C =
minimum population size or density.

For each equation we can rewrite it in separable form:

(1) 1/N dN = r dt (exponential growth)
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(2) 1/N(1 - N/K) dN  = r dt (logistic growth)

(3) 1/(N(1 - N/K)(1 - C/N)) dN = r dt  (minimum-density 
limited logistic growth)

For each case, we will integrate the left and right sides of these equations and
solve for N under the initial value condition that N(0) = N0.

First, for equation (1) we integrate the left and right sides for the variables N and
t, respectively: *)

LeftSide = Integrate[1/N,N]

RightSide = Integrate[r,t] + A

(* where A is an arbitrary constant of integration.  *)

(*We can now solve for the arbitrary constant A under the initial condition N(0) = N0,
which is simply: A = Log[N0].  We then substitute Log[N0] for A: *)

RightSide =  RightSide //. A -> Log[N0]

(* Finally we exponentiate both sides to solve for N *)

LeftSide = Exp[LeftSide]

RightSide = Exp[RightSide]

(* Note that Mathematica does not always write an equation in its simplest form even
when the function Simplify is called explicitly.  In simpler form, the right side of the
above equation becomes: *)

Nexp[t_] = N0 * Exp[r * t]
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(* We can now use Mathematica  to plot a family of curves for exponential population
growth by varying the value of r for each plot: *)

Show[Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.1}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.2}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.3}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.4}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.5}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.6}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.7}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.8}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 0.9}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nexp[t]//. {N0 -> 25.0,r -> 1.0}, {t, 0, 10}, DisplayFunction -> Identity],
DisplayFunction -> $DisplayFunction];

(* Next, consider the logistic growth equation (2).  We will use the same procedure as
before. *)

LeftSide = Integrate[1/(N*(1 - N/K)),N]

RightSide = Integrate[r,t] + A

Solve[LeftSide == RightSide //. {t -> 0, N -> N0}, A]

(* We then substitute for the arbitrary constant A back into the right side. *)

RightSide = RightSide //. A -> (-Log[K - N0] + Log[N0])

(* We can now exponentiate each side and solve for N *)

Solve[Exp[LeftSide] == Exp[RightSide], N]

Nlogistic[t_]= (Exp[r * t] * K * N0)/(K - N0 + Exp[r * t] * N0)
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(* We can again plot a family of curves for the logistic growth equation, and again we
will vary the value of r for each plot. *)

Show[Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.1,K ->100}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.2,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.3,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.4,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.5,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.6,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.7,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.8,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 0.9,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
Plot[Nlogistic[t]//. {N0 -> 25.0,r -> 1.0,K ->100}, {t, 0, 10}, DisplayFunction -> Identity],
PlotRange -> {20,100},DisplayFunction -> $DisplayFunction];

(* Note again that Mathematica does not always find a solution in its simplest form.  A
simpler form for the solution to the logistic equation is given below: *)

Nlogistic[t] = K/(1 + (K/N0 - 1) * Exp[-r * t])

(* Finally, we solve the minimum-density limited logistic equation. *)

LeftSide = Integrate[1/(N * (1 - N/K) * (1 - C/N)),N]

RightSide = Integrate[r ,t] + A

(* Solving for A we get: *)

Solve[LeftSide == RightSide //. {N -> N0, t -> 0}, A]

(* Now, we can simplify the left side by simple multiplication and division: *)

LeftSide = Simplify[LeftSide * (-C + K) * 1/K]

RightSide = Simplify[RightSide * (-C + K) * 1/K]
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(* Finally we exponentiate both sides, substitute for A, and solve for N: *)

Simplify[Solve[Exp[LeftSide] == Exp[RightSide]  //. A -> (K * (-Log[C - N0] + Log[K -
N0]))/(C - K), N]]

NMDL[t_] = ((-C + (Exp[((-C + K) * r * t)/K] * K * (C - N0))/(K - N0)))/((-1 + (Exp[((-C +
K) * r * t)/K] * (C - N0))/(K - N0)))

(* We can again plot a family of curves for the logistic growth equation, this time
varying the value of N0 close to C: *)

Show[Plot[NMDL[t]//. {N0 -> 24.0,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 24.2,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 24.4,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 24.6,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 24.8,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 25.0,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 25.2,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 25.4,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 25.6,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 25.8,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
Plot[NMDL[t]//. {N0 -> 26.0,r -> 0.5,K ->100,C ->25}, {t, 0, 10}, DisplayFunction ->
Identity],
PlotRange -> {-60,60},DisplayFunction -> $DisplayFunction];
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Society for Computer Simulation, San Diego, California: 590-596.  Argues that there are
parallels between experimental design and design of a computer program, and for an object-
oriented approach to model-building and testing as the way to implement Kauffman’s strategy of
model-building.

Schank, Jeffrey C.  and M. K. McClintock, (1992), “A Coupled-Oscillator Model of
Ovarian-Cycle Synchrony Among Female Rats.” Journal of Theoretical Biology,  157:
317-362.

Schank, J. C. & C. Twardy (1997) “Mathematical Models.”  In: Volume 6 of the
Cambridge History of Science Series: The Life and Earth Sciences, (Peter J. Bowler and
John Pickstone, eds.) Cambridge Univeristy Press

Simon, Herbert A., (1981); The Sciences of the Artificial. 2nd. ed. Cambridge: MIT
Press. (E)  A classic exposition by the father of heuristic programming in artificial intelligence
(and Nobelist in economics) of the role of a heuristic vision of man as problem-solver--one of the
key assumptions of the approach to model-building advocated here.  Chapter 7 is independently
one of the most important founding papers on hierarchial organization and complexity.

Singh, Jagjit, (1968); Great Ideas of Operations Research, New York: Dover
Publications.  (E)  Singh is one of the great (and unfortunately nearly unknown) expositors of
the mathematical sciences.  In this book, see his Chapters 2 (on statistical description of data and
probability distributions--including the binomial) and 7 (on Monte Carlo simulations).  He has
other excellent books, all published by Dover, Great Ideas of Cybernetics, Information
Theory and Artificial Intelligence, and Great Ideas of Modern Mathematics.  He
manages to give simple and elegant descriptions of complex ideas with clear examples and
without distortion as well or better than anyone I have read.

Sober, Elliot, (1984); Conceptual Issues in Evolutionary Biology, Cambridge:  MIT
Press. (E/M)  This is the best single collection of methodological, conceptual, and philosophical
articles on evolutionary biology.  Contains Levins, 1966 (#3), Wimsatt, 1976 (#26), and
Wimsatt, 1980b (#11).  Other clearly relevant articles on model-building or critical discussions
of the influence of broad theoretical perspectives which have lead to many models include those of
Lewontin (#1) Gould and Lewontin (#15), Oster and Wilson (#16), Maynard Smith (#17),
Sober and Lewontin (#13), and Felsenstein (#34).

Taylor, Peter J., (1985); Construction and Turnover of Multi-species Communities:  A
Critique of Approaches to Ecological Complexity.  Ph.D. dissertation. Department of
Organismal and Evolutionary Biology. Harvard University. 328 pp. (M/H)  The long first
chapter of this is an extended elaboration and critical discussion of various model-building
strategies in ecology, with a close examination of Levins’ strategies.
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Wimsatt,  W. C. , (1974); Complexity and Organization, in K. F. Schaffner and R. S.
Cohen, eds., PSA-1972 (Boston Studies in the Philosophy of Science, volume 20),
Dordrecht: Reidel, pp. 67-86. (M)  Builds on Kauffman’s analysis to consider problems and
strategies of problem formulation and solution when we have multiple partial perspectives on the
object of study (a biological organism!), no one of which is adequate by itself to solve the problem-
-a common, if not the universal, situation in biology, psychology, and the social sciences.

Wimsatt,  W. C., (1976); Reductive Explanation--A functional account, in R. S. Cohen, et.
al., PSA-1974, Dordrecht: Reidel, pp. 671-710. (M)  Argues for a distinction between two
different kinds of reduction in science in terms of the roles that they serve in construction,
elaboration, and testing of theory.  Both types of reduction have been important sources of model-
building.  The heuristic account of explanation offered there is also closely connected with the
views of model-building argued for here. Reprinted in Sober, 1984.

Wimsatt,  W. C., 1980a. (see above)

Wimsatt,  W. C., (1980b); Reductionistic research strategies and their biases in the units
of selection controversy. in T. Nickles, Ed. Scientific Discovery-vol. II: Case Studies
Dordrecht: Reidel, pp. 213-259. (M) A systematic examination of 9 reductionistic model-
building strategies, and their strengths (and failures) in a now classic controversy in population
genetics. The last two sections expose the role of incorrect blending inheritance-like assumptions
in the construction of mathematical models of group selection which led to biased underestimates
of its importance.  See Wade, 1978. (See also appendix C-III). Reprinted in Sober, 1984.

Wimsatt,  W. C., (1981); Robustness. reliability and overdetermination. in M. Brewer
and B. Collins. eds. Scientific Inquiry and the Social Sciences. San Francisco: Jossey-
Bass, pp. 124-163. (E/M) A discussion of one of the most important methodological strategies in
science--the use of multiple independent means to measure properties, detect entities, evaluate
models, or demonstrate conclusions--crucial to the development of trustworthy theories, models,
explanations, and measurements. (See also Cartwright, for related views).

Wimsatt,  W. C., (1985a); "Heuristics and the Study of Human Behavior," in D. W. Fiske
and R. Shweder, Eds., Metatheory in Social Science: Pluralisms and Subjectivities,
Chicago: University of Chicago Press, pp. 293-314.  (E/M) A compact discussion of
reductionistic problem-solving heuristics and their biases building on Wimsatt, 1980b.

Wimsatt,  W. C., (1986); “Forms of aggregativity.” in A. Donagan, N. Perovich, and M.
Wedin, Eds. Human Nature and Natural Knowledge. Dordrecht: Reidel, pp. 259-293.
(M)  An analysis of the conditions under which a system property is or is not analyzable as an
aggregate of parts' properties.  Relevant to the analysis of reductionistic model-building
heuristics and their biases.

Wimsatt,  W. C., (1987); “False Models as Means to Truer Theories,” in M. Nitecki and
A. Hoffmann, (above), pp. 23-55. The falsity of a model needn’t be a handicap--it can in fact be
a powerful tool in the construction of better ones.  Documents 12 different strategies for the use
of false models, with examples from the history of genetics. (See also appendix B for a more up to
date list.)
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References on Blending Inheritance and Binomial Distribution:

The readings in this section assume that the reader is familiar with the basics of classical
genetics, such as can be gotten from most genetics textbooks.  An excellent book with a historical
development of the relevant material, beginning with Darwin (but surprisingly, failing to
mention Jenkin) is Moore, 1972.  For the binomial distribution, see the Batschelet reference
given at the beginning.  It is also useful to consult one of the Hartl books, one of the Crow books,
or Roughgarden for the discussion of quantitative genetics to provide a perspective on how a
Mendelian account can be given for the phenomena which seemed most suggestive to some of the
blending inheritance model.

Belew, R.  and L. Booker, Eds., (1991); Proceedings of the Fourth International
Conference on Genetic Algorithms, San Mateo, CA:  Morgan Kaufmann.  The latest
current research and applications papers on genetic algorithms and evolutionary
strategies—Mendelian and blending modes of inheritance for the population genetics of different
possible worlds.

Darwin, Charles, (1868); Variation of Plants and Animals Under Domestication.  See
especially Chapter 27, "The provisional hypothesis of pangenesis.” Reprinted widely.
(E/M)

Eiseley, Loren, (1967); Darwin's Century.  Doubleday (Anchor). (E) A very readable
overview of the conceptual changes leading up to Darwin's theory of evolution by natural
selection, it also discusses problems with Darwin's theory of heredity.  It has a chapter on
Mendel, and discusses Jenkins’ criticism of blending inheritance.

Fisher, Ronald A., (1930); The Genetical Theory of Natural Selection, Cambridge:
Cambridge University Press. (M/H).  One of the three classic founding texts of the
mathematical theory of population genetics by a man who was also probably the leading
theoretical statistician of the century.  Often deceptively easy to read, though the derivations are
usually sketchy.  Fisher opens the first chapter with a discussion of the deleterious consequences
of blending inheritance and how they are avoided by Mendelian segregation.

Jenkin, Fleeming, 1867, review of Darwin's The Origin of Species, The North British Review,
reprinted in D. L. Hull, Ed., Darwin and His Critics, Chicago:  The University of
Chicago Press, 1987. (E/M)  Jenkin' s review is the classic critique of blending inheritance
and is worth closer attention than it is usually given.  Also, in a case where the physicists came
out wrong, it provides a clear presentation of Kelvin's arguments that the earth couldn't have
been habitable for long enough for life to evolve. These were very influential in leading Darwin
to place more weight on the inheritance of acquired characters to "speed up" the rate of
evolution. (Kelvin's arguments and time scale had to be completely rewritten with the discovery
of nuclear fission and fusion processes, and the inheritance of acquired characters died with the
rise of Weismannism.)

Moore, John A., (1972); Heredity and Development, 2nd ed., Oxford:  Oxford University
Press. (E/M) The best short historical presentation of the development of genetics designed for
use as a textbook that I know.  Starts with Darwin's theory of pangenesis, and goes in detail
through the development of cytology and the interacting role of theories of heredity and
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development in localizing the genes on chromosomes.  Excellent up through the development of
classical genetics at the hands of the Morgan school.

Olby, Robert, (1987); The Origins of Mendelism, 2nd rev. ed., Chicago:  The University
of Chicago Press.  (E/M) The best history of the origins and rediscovery of Mendelian
genetics.  Reprints many of the original sources as appendices.

Wade, M. J., (1978); "A critical review of the models of group selection,” Quarterly Review
of Biology, pp. 301-314. (M) A classic review of five simplifying assumptions built into
standard models of group selection which strongly bias the case against the efficacy of group
selection as a process.  Includes the infamous "migrant pool” assumption which reintroduces a
particularly strong form of "blending inheritance” at the group level.  One of the most centrally
important articles in the group selection controversy.  Discussed in Wimsatt, 1980b.

Wimsatt, W.C. , (1981b); "Units of selection and the structure of the multi-level
genome." in P. D. Asquith and R. N. Giere. Eds. PSA-1980, volume 2. East Lansing.
Michigan: The Philosophy of Science Association, pp. 122-183. (M)  In the last parts
extends the discussion of blending inheritance of Wimsatt 1980b to look at higher level genetic
models and analogues to Mendelian segregation in population structure.

References on Developmental Constraints in Evolution and Models of Finite Automata:

Arthur, W. , (1984);  Mechanisms of Morphological Evolution: A Combined Genetic,
Developmental and Ecological Approach, New York and London: John Wiley and
Sons.

Gelfand, A. E.  and C. C. Walker, (1984); Ensemble Modeling: Inference from Small-
Scale Properties to Large-Scale Systems. Marcel Dekker Inc.: New York and Basel.

Kauffman, Stuart A., (1969); Metabolic stability and epigenesis in randomly constructed
genetic nets.  Journal of Theoretical Biology, 22: 437-467.

Kauffman, Stuart A. ,  (1985);  Self-Organization, Selective Adaptation and Its Limits:  A
New Pattern of Inference in Evolution and Development  in Evolution at a Crossroads:
The New Biology and the New Philosophy of Science, edited by David J. Depew and
Bruce H. Weber, MIT press, Cambridge, Massachusetts.

Kauffman, Stuart A., (1992); The Origins of Order...  See under refs. on "model-
building."

Schank, J. C.  and W. C. Wimsatt, (1988a); Generative entrenchment and evolution, in
A. Fine and P. K. Machamer, Eds., PSA-1986, volume 2. East Lansing: The Philosophy of
Science Association, pp. 33-60.

Wimsatt, W. C. , (1986a); Developmental constraints, generative entrenchment, and the
innate-acquired distinction, in P. W. Bechtel, Ed. Integrating Scientific Disciplines.
Dordrecht: Martinus-Nijhoff, pp. 185-208.
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Wimsatt, W. C.  and J. C. Schank, (1988b); Two constraints on the evolution of complex
adaptations and the means for their avoidance, in M. Nitecki, ed.,  Evolutionary
Progress, Chicago: The University of Chicago Press, pp. 231-273.
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