Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem
Resource Image

A Hands-on Introduction to Hidden Markov Models

Author(s): Tony Weisstein1, Elena Gracheva2, Zane Goodwin2, Zongtai Qi2, Wilson Leung2, Christopher D. Shaffer2, Sarah C.R. Elgin2

1. Truman State University 2. Washington University in St. Louis

620 total view(s), 180 download(s)

0 comment(s) (Post a comment)

Summary:
A lesson in which students will understand the basic structure of an HMM, the types of data used in ab initio gene prediction, and its consequent limitations.

Description

From the Abstract: In this Lesson, we describe a classroom activity that demonstrates how a Hidden Markov Model (HMM) is applied to predict a eukaryotic gene, focusing on predicting one exon-intron boundary. This HMM lesson is part of the BIOL/CS 370 'Introduction to Bioinformatics' course (Truman State University, MO) and of Bio4342 'Research Explorations in Genomics' (Washington University in St. Louis, MO). The original target student audiences include both Biology and Computer Sciences majors in their junior and senior years, although we believe the model activity would be successful with younger students.

Citation:

Weisstein, A.E., Gracheva, E., Goodwin, Z., Qi, Z., Leung, W., Shaffer, C.D. and Elgin, S.C.R. 2016. A Hands-on Introduction to Hidden Markov Models. CourseSource. https://doi.org/10.24918/cs.2016.8

Cite this work

Researchers should cite this work as follows:

Comments

There are no comments on this resource.