Resources

Text Search:
Applied Filters
    Potential Scenario
    254

    views

    67

    downloads

    0

    comments

    2018-Van_Kinh Nguyen-Esteban_Hernandez-Vargas-Parameter estimation in mathematical models of viral infections using R
    Mathematical modeling has played a central role to understand mechanisms in different viral infectious diseases. In this approach, biological-based hypotheses are expressed via mathematical relations and then tested based on empirical data.
    Potential Scenario
    149

    views

    103

    downloads

    0

    comments

    2017-Fred_Adler-Mathematically Modeling Asthma
    Our Asthma models have examined how a viral infection can tip the immune system into a different state, with the potential to predispose an individual to future asthma
    Potential Scenario
    147

    views

    51

    downloads

    0

    comments

    2006-Loyd-Wodarz-Drug Resistance in Acute Viral Infections-Rhinovirus as a Case Study
    We develop an epidemiological model that can be used to address the spread of resistance at the population level, and a virus dynamics model that can be used to study the dynamics of virus over the time course of an individual’s infection.
    Potential Scenario
    277

    views

    83

    downloads

    0

    comments

    2009-Munz-EtAl-When Zombies Attack-Mathematical modelling of an Outbreak of Zombie Infection
    We introduce a basic model for zombie infection, determine equilibria and their stability, and illustrate the outcome with numerical solutions.
    Article or Presentation
    129

    views

    33

    downloads

    0

    comments

    2002-Patrick_Nelson-Alan_Perelson-Mathematical_analysis_of_delay_differential _equation_models_of_HIV-1_infection
    Models of HIV-1 infection that include intracellular delays are more accurate representations of the biology and change the estimated values of kinetic parameters when compared to models without delays.
    Potential Scenario
    142

    views

    47

    downloads

    0

    comments

    2008-Huangi-Lu-Modeling long-term longitudinal HIV dynamics with applications to an AIDS clinical study 
    To better understand the factors responsible for the virological failure, this paper develops the mechanism-based nonlinear differential equation models for characterizing long-term viral dynamics with ARV therapy.
    Potential Scenario
    151

    views

    53

    downloads

    0

    comments

    2009-Noakes-Sleigh-Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards
    Understanding the risk of airborne transmission can provide important information for designing safe healthcare environments with an appropriate level of environmental control for mitigating risks.
    Potential Scenario
    166

    views

    71

    downloads

    0

    comments

    2011-Yanyu_Xiao-Study of Malaria Transmission Dynamics by Mathematical Models
    The novelty lies in the fact that different distribution functions are used to describe the variance of individual latencies. The theoretical results of this project indicate that latencies reduce the basic reproduction number.
    Modeling Scenario
    372

    views

    644

    downloads

    0

    comments

    6-007-FunctionsAndDerivativesInSIRModels-ModelingScenario
    Given a system of differential equations, how do the solution graphs compare with the graphs of the differential equations? Students tackle this question using SIR models for well-known infectious diseases.
    Potential Scenario
    154

    views

    51

    downloads

    0

    comments

    2012-Tweedle-Smith-Mathematical model of Bieber Fever-The most infectious disease of our time
    We develop a mathematical model to describe the spread of Bieber Fever, whereby individuals can be susceptible, Bieber-infected or bored of Bieber.
    Potential Scenario
    168

    views

    93

    downloads

    0

    comments

    2014-Rogert_Smith-Mathematical Modeling of Zombies
    Here, we use diffusion to model the zombie population shuffling randomly over a one-dimensional domain.
    Modeling Scenario
    322

    views

    494

    downloads

    0

    comments

    6-016-PandemicModeling-ModelingScenario
    The recent coronavirus outbreak has infected millions of people worldwide and spread to over 200 countries. How can we use differential equations to study the spread of coronavirus?
    Potential Scenario
    247

    views

    62

    downloads

    0

    comments

    2011-Cruz-Aponte-Herrera-Valdez-Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administrati
    We present a SIR-like model that explicitly takes into account vaccine supply and the number of vaccines administered per day and places data-informed limits on these parameters.
    Potential Scenario
    184

    views

    80

    downloads

    0

    comments

    2011-Nakul-Chitnis-Introduction to Mathematical Epidemiology - Deterministic Compartmental Model
    Deterministic compartmental models form the simplest models in the mathematical study of infectious disease dynamics. They assume that a population is homogenous (all people are the same) and the only distinction is in their disease state.
    Potential Scenario
    147

    views

    44

    downloads

    0

    comments

    2006-Ousmane_Mousa_Tessa-Mathematical model for control of measles by vaccination
    In this article, we use a compartmental mathematical model of the dynamics of measles spread within a population with variable size to provide this framework.
    Modeling Scenario
    308

    views

    210

    downloads

    0

    comments

    6-011-HumansVsZombies-ModelingScenario
    Students analyze the SIR differential equations model in the context of a zombie invasion of a human population. Students analyze a two equation system representing only two populations, humans and zombies and then recovered zombies.
    Potential Scenario
    230

    views

    57

    downloads

    0

    comments

    2009-Schaffer-Bronnikova-Controlling malaria
    The present paper reviews potential control strategies from the viewpoint of mathematical epidemiology.
    Modeling Scenario
    182

    views

    147

    downloads

    0

    comments

    6-003-SchoolFluEpidemic-ModelingScenario
    We offer a model of the spread of flu in a school dormitory and are asked to find when the flu levels reach their peak and explain long term behavior of the spread of the flu.
    Potential Scenario
    202

    views

    63

    downloads

    0

    comments

    2010-Jungck-EtAl-Mathematical Manipulative Models-In Defense of Beanbag Biology
    This paper offers up samples of projects from the Bio- QUEST Curriculum Consortium’s 24-yr experience of holding faculty development workshops for biology and mathematics educators.