Resources

Text Search:
Applied Filters
    Potential Scenario
    369

    views

    97

    downloads

    0

    comments

    2017-Varanis-Mereles-Mathematical Model of a Vehicle Crash A Case Study
    The model proposed in this paper allows one to obtain the parameters of the system, and then compare them with the ones obtained experimentally to test the suitability of the model with the vehicle crash.
    Modeling Scenario
    308

    views

    125

    downloads

    0

    comments

    5-036-HalfCarVibration-ModelingScenario
    Vibration vehicle models provide an opportunity to integrate vehicle-based vibrations into a mechanical engineering vibrations course. The project is on a multiple-degree-of-freedom (MDOF) including pitch and bounce of vehicle body on suspension...
    Modeling Scenario
    259

    views

    208

    downloads

    0

    comments

    3-105-FrequencyResponse-ModelingScenario
    We describe the frequency response to a second order differential equation with a driving function as the maximum steady state solution amplitude and perform some analyses in this regard.
    Technique Narrative
    896

    views

    117

    downloads

    0

    comments

    3-090-ChebyshevPolynomialSolution-TechniqueNarrative
    The Chebyshev equation is presented as a vehicle to view series solutions techniques for linear, second order homogeneous differential equations with non-constant coefficients.
    Article or Presentation
    179

    views

    70

    downloads

    0

    comments

    2004-Mark_McCartney-Using_second-order_ordinary_differential_equations_to_model_traffic_flow
    A simple mathematical model for how vehicles follow each other along a stretch of road is presented. The resulting linear second-order differential equation with constant coefficients is solved and interpreted.
    Article or Presentation
    140

    views

    50

    downloads

    0

    comments

    2014-C_W_Groetsch-S_A_ Yost-Vertical Projection_in_a_Resisting_Medium_Revelations_on_Observations_of_Mersenne
    This article, inspired by a 17th-century woodcut, validates empirical observations of Marin Mersenne (1588–1648) on timing of vertically-launched projectiles for a general mathematical model of resistance.